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Specification logics

Logics for specifying correctness properties.
We'll look at:

@ Basic logics and bisimilarity
@ Fixed points and logic
o CTL

@ Model checking



Finitary Hennessy-Milner Logic

Assertions:
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Satisfaction: sE= A



Finitary Hennessy-Milner Logic

Assertions:

As=T|F|AgnAL| AoV AL | -A| (MA](-)A

Satisfaction: sE= A

seT
seEF
sEAANAL
S’:AOVA]_
sE-A
sE(MA
seE(-)A

Derived assertions

always

never

if seAy and seEA;

if sEAy or skEA;

if not seA

. . A

if thereexists s’ st. s >s" ands'EA

. . A

if there exist s’,\st.s>s" ands'EA



Finitary Hennessy-Milner Logic

Assertions:

As=T|F|AgnAL| AoV AL | -A| (MA](-)A

Satisfaction: sE= A

s&= T always
sE F  never
sEAANA; if sEAy and sEA;
sEAVAL if seEAy or sEA
se-A if not seA

. . A
sE= (M)A if there exists s’ s.t. s > s’ and s’ = A
: : A
sE(-)A if thereexists’,Ast.s>s ands'EA

Derived assertions

sE[AJAIff forall s’ st. s 2 s have s’ £ A



Examples

~ T~/

~ L~



Examples

Generally:

Give a transition system with initial state satisfying:

(-)[a]F Anla]<a>T



(Strong) bisimilarity and logic

A non-finitary Hennessy-Milner logic allows an infinite conjunction

A= NA | -Al (VA

iel

with semantics

s NAiff se A forall jel
i€eA

Define

p=q iff for all assertions A of H-M logic
pEAIffge A

Theorem

-
~ = ~

This gives a way to demonstrate non-bisimilarity of states



Fixed points and model checking

@ The finitary H-M logic doesn’t allow properties such as
the process never deadlocks

o We can add particular extensions (such as always, never) to the logic
(CTL)

o Alternatively, what about defining sets of states ‘recursively’? The
set of states X that can always do some action satisfies:

X = ()T A[-1X



Fixed points and model checking

@ The finitary H-M logic doesn’t allow properties such as
the process never deadlocks

o We can add particular extensions (such as always, never) to the logic
(CTL)

o Alternatively, what about defining sets of states ‘recursively’? The
set of states X that can always do some action satisfies:

X = ()T A[-1X

@ A fixed point equation: X = ¢(X)

@ But such equations can have many solutions. ..



Fixed point equations

@ In general, an equation of the form X = ¢(X) can have many
solutions for X.

o Fixed points are important: they represent steady or consistent
states

@ Range of different fixed point theorems applicable in different
contexts e.g.

Theorem (1-dimensional Brouwer's fixed point theorem)
Any continuous function f : [0,1] — [0,1] has at least one fixed point

(used e.g. in proof of existence of Nash equilibria)

@ We'll be interested in fixed points of functions on the powerset
lattice ~ Knaster-Tarski fixed point theorem and least and greatest
fixed points



Least and greatest fixed points on transition systems:
examples

o« e

b

In the above transition system, what are the least and greatest subsets of
states X, Y and Z that satisfy:



The powerset lattice

@ Given a set S, its powerset is
P(S)={S5]5<S}

@ Taking the order on its elements to be inclusion, ¢, this forms a
complete lattice



The powerset lattice

@ Given a set S, its powerset is
P(S)={S5]5<S}

@ Taking the order on its elements to be inclusion, ¢, this forms a
complete lattice

We are interested in fixed points of functions of the form

¢:P(S) = P(S)

@ ¢ is monotonic if S ¢ S” implies ¢(S) ¢ P(S")
@ a prefixed point of ¢ is a set X satisfying ¢(X) ¢ X
@ a postfixed point of ¢ is a set X satisfying X € ¢(X)



Knaster-Tarski fixed point theorem for minimum fixed
points

Theorem
For monotonic ¢ : P(S) - P(S), define

m=[ U XcS|o(X)cX}.

Then m is a fixed point of ¢ and, furthermore, is the least prefixed point:
Q@ m=¢(m)
Q@ ¢(X)c X implies mc X

m is conventionally written
pX.o(X)

Used for inductive definitions: syntax, operational semantics, rule-based
programs, model checking



Knaster-Tarski fixed point theorem for maximum fixed
points

Theorem
For monotonic ¢ : P(S) - P(S), define

M= J{XcS|Xcp(X)}.

Then M is a fixed point of ¢ and, furthermore, is the greatest postfixed
point.

Q M= ¢(M)
Q@ X co(X) implies X c M

M is conventionally written
vX.p(X)

Used for co-inductive definitions, bisimulation, model checking



(Strong) bisimilarity as a maximum fixed point [§5.2 p68|
Bisimilarity can be viewed as a fixed point ~ model checking algorithms.

Given a relation R (on CCS processes or states of transition systems)
define:

po(R) q
iff
Q Va,p. pSp =
3q’. 95q & pRJ
Q@ Voqd. g>qg =

. p=p & pPRY

Lemma
R c ¢(R) iff R is a (strong) bisimulation.

Hence, by Knaster-Tarski fixed point theorem for maximum fixed points:

Theorem
Bisimilarity is the greatest fixed point of ¢.



Theorem
Bisimilarity is the greatest fixed point of ¢.

Proof.

b4
1l

(J{R | R is a bisimulation}

ULRIR<o(R)}
vX.$(X)

(1) is by definition of ~

(2) is by Lemma

(3) is by Knaster-Tarski for maximum fixed points: note that ¢ is
monotonic



Theorem
Bisimilarity is the greatest fixed point of ¢.

Proof.

b4
1l

(J{R | R is a bisimulation}

ULRIR<o(R)}
vX.$(X)

(1) is by definition of ~

(2) is by Lemma

(3) is by Knaster-Tarski for maximum fixed points: note that ¢ is
monotonic

Question: How is this different from the least fixed point of ¢?



