
Topics in Concurrency
Lecture 12

Jonathan Hayman

10 February 2015



An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,
posing as A.

A −→ B : {m,A}Pub(B)

B −→ A : {m, n}Pub(A)

A −→ B : {n}Pub(B)

A E B

{m,A}Pub(E) {m,A}Pub(B)

{m, n}Pub(A)

{n}Pub(E) {n}Pub(B)



An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,
posing as A.

A −→ B : {m,A}Pub(B)

B −→ A : {m, n}Pub(A)

A −→ B : {n}Pub(B)

A E B

{m,A}Pub(E)

{m,A}Pub(B)

{m, n}Pub(A)

{n}Pub(E) {n}Pub(B)



An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,
posing as A.

A −→ B : {m,A}Pub(B)

B −→ A : {m, n}Pub(A)

A −→ B : {n}Pub(B)

A E B

{m,A}Pub(E) {m,A}Pub(B)

{m, n}Pub(A)

{n}Pub(E) {n}Pub(B)



An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,
posing as A.

A −→ B : {m,A}Pub(B)

B −→ A : {m, n}Pub(A)

A −→ B : {n}Pub(B)

A E B

{m,A}Pub(E) {m,A}Pub(B)

{m, n}Pub(A)

{n}Pub(E) {n}Pub(B)



An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,
posing as A.

A −→ B : {m,A}Pub(B)

B −→ A : {m, n}Pub(A)

A −→ B : {n}Pub(B)

A E B

{m,A}Pub(E) {m,A}Pub(B)

{m, n}Pub(A)

{n}Pub(E)

{n}Pub(B)



An attack against the original protocol

Man-in-the-middle attacker E convinces A to start communication with E
and uses the messages generated by A to follow the protocol with B,
posing as A.

A −→ B : {m,A}Pub(B)

B −→ A : {m, n}Pub(A)

A −→ B : {n}Pub(B)

A E B

{m,A}Pub(E) {m,A}Pub(B)

{m, n}Pub(A)

{n}Pub(E) {n}Pub(B)



The fixed protocol

(1) A −→ B: {m,A}Pub(B)

(2) B −→ A: {m, n,B}Pub(A)
(3) A −→ B: {n}Pub(B)

Only B can decrypt the message sent in (1)

A knows that only B can have sent the message in (2)

B knows that only A can have sent the message in (1)

the nonces m and n are shared secrets

But these properties are informal and approximate, and we’ve only
described what’s supposed to happen . . .



SPL

Security Protocol Language

One of a range of languages and models for analyzing
crypto-protocols

Others include Spi calculus, strand spaces

Supports reasoning based on events (vs transitions)

Asynchronous communication

Messages persist on network

New-name generation on output

Input pattern-matches messages on network



Messages as patterns

Messages can contain variables.

ψ n, x {m, y ,B}Pub(A)

These are used to perform matching.

Examples:

match {A,B}Pub(A) against the pattern ψ

ψ 7→ {A,B}Pub(A)

match {m, n,B}Pub(A) against the pattern {m, x ,Y }Pub(A)

x 7→ n,Y 7→ B

match m, (n,A) against the pattern n, x where m 6= n

no match



Messages as patterns

Messages can contain variables.

ψ n, x {m, y ,B}Pub(A)

These are used to perform matching.

Examples:

match {A,B}Pub(A) against the pattern ψ ψ 7→ {A,B}Pub(A)
match {m, n,B}Pub(A) against the pattern {m, x ,Y }Pub(A)

x 7→ n,Y 7→ B

match m, (n,A) against the pattern n, x where m 6= n

no match



Messages as patterns

Messages can contain variables.

ψ n, x {m, y ,B}Pub(A)

These are used to perform matching.

Examples:

match {A,B}Pub(A) against the pattern ψ ψ 7→ {A,B}Pub(A)
match {m, n,B}Pub(A) against the pattern {m, x ,Y }Pub(A)
x 7→ n,Y 7→ B

match m, (n,A) against the pattern n, x where m 6= n

no match



Messages as patterns

Messages can contain variables.

ψ n, x {m, y ,B}Pub(A)

These are used to perform matching.

Examples:

match {A,B}Pub(A) against the pattern ψ ψ 7→ {A,B}Pub(A)
match {m, n,B}Pub(A) against the pattern {m, x ,Y }Pub(A)
x 7→ n,Y 7→ B

match m, (n,A) against the pattern n, x where m 6= n no match



The NSL protocol in SPL

The initiator initiator of the protocol is parameterized by the identity of
the initiator and their intended participant:

Init(A,B) ≡ out new x {x ,A}Pub(B).
in {x , y ,B}Pub(A).
out {y}Pub(B)

The responder:

Resp(B) ≡ in {x ,Z}Pub(B).
out new y {x , y ,B}Pub(Z).

in {y}Pub(B)



Dolev-Yao assumptions

We can program various forms of attacker process. Viewing messages as
persisting once output to the network, they output new messages built
from existing ones.

Spy1 ≡ in ψ1.in ψ2. out (ψ1, ψ2)

Spy2 ≡ in (ψ1, ψ2). outψ1. outψ2

Spy3 ≡ in X .in ψ. out {ψ}Pub(X )

Spy4 ≡ in Priv(X ).in {ψ}Pub(X ). outψ

Spy ≡ ‖i∈{1,2,3,4} Spyi



The NSL system [p91]

We reason about concurrent runs of the protocol in parallel with ω-copies
of the attacker.

Pspy ≡ !Spy

Pinit ≡
n

A,B∈Agents

!Init(A,B)

Presp ≡
n

A∈Agents

!Resp(A)

Messages from one run of the protocol can be used by the attacker
against another run of the protocol.

NSL ≡
n

i∈{resp,init,spy}

Pi



Net semantics of SPL

Details won’t be given, but a semantics along the lines of the basic
net semantics for CCS can be given for the language used to
represent processes

Nets formed with events representing the possible behaviour of
processes

Three forms of condition: control, state and name.



The events of NSL [p100]: Initiator events

(Omitting tags!)

Out(Init(A,B);m)

Init(A,B)

out new m {m,A}Pub(B)

in {m, y ,B}Pub(A). out{y}Pub(B)
m {m,A}Pub(B)



In(in {m, y ,B}Pub(A). out{y}Pub(B)

in {m, y ,B}Pub(A). out{y}Pub(B) {m, n,B}Pub(A)

in {m, n,B}Pub(A)

out{n}Pub(B)



Out(out{n}Pub(B))

out{n}Pub(B)

out{n}Pub(B)

{n}Pub(B)



The events of NSL [p101]: Attacker events

Spy1 ≡ in ψ1.in ψ2. out (ψ1, ψ2)

Spy1

M1 M2 (M1,M2)



Spy2 ≡ in (ψ1, ψ2). outψ1. outψ2

Spy2

(M1,M2) M1 M2



Spy3 ≡ in X .in ψ. out {ψ}Pub(X )

Spy3

n M {M}Pub(n)



Spy4 ≡ in Priv(X ).in {ψ}Pub(X ). outψ

Spy4

Priv(X ) {M}Pub(X ) M



Secrecy of responder’s nonce [p104]

Theorem
Consider a run

〈NSL, s0, t0〉
e1−→ · · · er−→ 〈pr , sr , tr 〉

er+1−−→ · · · .

Suppose there is er with

act(er ) = resp : B0 : j0 : out new n0 {m0, n0,B0}Pub(A0)

where j0 is an index. If Priv(A0) 6@ t0 and Priv(B0) 6@ t0 then at all
stages n0 6∈ tl .



Prove a stronger invariant: For any stage l

for all messages M ∈ tl , if n0 @ M then either
{m0, n0,B0}Pub(A0) @ M or {n0}Pub(B0) @ M.

We have Fresh(er , n) and therefore, by freshness, the initial
configuration satisfies the invariant

Suppose for contradiction that there is a configuration that violates
the invariant. By well-foundedness, there is an earliest such
configuration

Consider the event e that causes the violation: ∃M ∈ e• satisfying
n0 @ M but neither {m0, n0,B0}Pub(A0) @ M nor {n0}Pub(B0)

e must be the earliest event with such a postcondition

Consider the possible forms of e in NSL: cannot be indexed input



Prove a stronger invariant: For any stage l

for all messages M ∈ tl , if n0 @ M then either
{m0, n0,B0}Pub(A0) @ M or {n0}Pub(B0) @ M.

We have Fresh(er , n) and therefore, by freshness, the initial
configuration satisfies the invariant

Suppose for contradiction that there is a configuration that violates
the invariant. By well-foundedness, there is an earliest such
configuration

Consider the event e that causes the violation: ∃M ∈ e• satisfying
n0 @ M but neither {m0, n0,B0}Pub(A0) @ M nor {n0}Pub(B0)

e must be the earliest event with such a postcondition

Consider the possible forms of e in NSL: cannot be indexed input



Case: e = init : (A,B) : i : Out(out{n}Pub(B)) for some index i and pair
of agents A,B.

{m, n0,B}Pub(A)

out{n}Pub(B)

e
{n}Pub(B)

Event violates invariant, so n = n0 and B 6= B0



Case: e = init : (A,B) : i : Out(out{n}Pub(B)) for some index i and pair
of agents A,B.

{m, n0,B}Pub(A)

out{n}Pub(B)

e
{n}Pub(B)

By control precedence, there is an earlier event in the run that marks its
pre-control condition which must be of the form shown.



Case: e = init : (A,B) : i : Out(out{n}Pub(B)) for some index i and pair
of agents A,B.

{m, n0,B}Pub(A)

out{n}Pub(B)

e
{n}Pub(B)

By output-input precedence, there is an earlier event that marks the
condition {m, n0,B}Pub(A). Since B 6= B0, this also violates the invariant,
contradicting e being the earliest event in the run to do so.



Authentication for the responder

Theorem
Consider a run

〈NSL, s0, t0〉
e1−→ · · · er−→ 〈pr , sr , tr 〉

er+1−−→ · · · .

If it contains events b1, b2 and b3 with

act(b1) = resp : B0 : i : in {m0,A0}Pub(B0)

act(b2) = resp : B0 : i : out new n0 {m0, n0,B0}Pub(A0)

act(b3) = resp : B0 : i : in {n0}Pub(B0)

and Priv(A0) 6@ t0 then the run contains events a1, a2, a3 with a3 −→ b3
where, for some index j

act(a1) = init : (A0,B0) : j : out new m0 {m0,A0}Pub(B0)

act(a2) = init : (A0,B0) : j : in {m0, n0,B0}Pub(A0)

act(a3) = init : (A0,B0) : j : out{n0}Pub(B0)



Authentication: proof

b3b2b1

a′3a′2a′1 e

Draw e −→ e′ if e precedes e′ in the run



Authentication: proof

b3b2b1

a′3a′2a′1 e

Control precedence



Authentication: proof

b3b2b1

a′3a′2a′1 e

The invariant

Q(p, s, t) ⇐⇒ ∀M ∈ t : n0 @ M =⇒ {m0, n0,B0}Pub(A0) @ M

must be violated in the configuration immediately before b3

must hold in the configuration immediately after and all
configurations before b2, by freshness

so there exists an earliest event e that breaks the invariant



Authentication: proof

b3b2b1

a′3a′2a′1

e

The invariant

Q(p, s, t) ⇐⇒ ∀M ∈ t : n0 @ M =⇒ {m0, n0,B0}Pub(A0) @ M

must be violated in the configuration immediately before b3

must hold in the configuration immediately after and all
configurations before b2, by freshness

so there exists an earliest event e that breaks the invariant



Authentication: proof

b3b2b1

a′3a′2a′1

e

The invariant

Q(p, s, t) ⇐⇒ ∀M ∈ t : n0 @ M =⇒ {m0, n0,B0}Pub(A0) @ M

must be violated in the configuration immediately before b3

must hold in the configuration immediately after and all
configurations before b2, by freshness

so there exists an earliest event e that breaks the invariant



Authentication: proof

b3b2b1

a′3

a′2a′1 e

The only kind of event that can break the invariant

Q(p, s, t) ⇐⇒ ∀M ∈ t : n0 @ M =⇒ {m0, n0,B0}Pub(A0) @ M

is an initiator event

act(a′3) = init : (A,B0) : j : out{n0}Pub(B0)

using secrecy of Priv(A0)



Authentication: proof

b3b2b1

a′3a′2a′1

e

Control precedence



Authentication: proof

b3b2b1

a′3a′2a′1

e

Q(p, s, t) ⇐⇒ ∀M ∈ t : n0 @ M =⇒ {m0, n0,B0}Priv(A0) @ M

Q holds immediately before a′2, so A = A0 and m = m0



Authentication: proof

b3b2b1

a′3a′2a′1

e

Taking a1 = a′1, a2 = a′2 and a3 = a′3 we have

act(a1) = init : A0 : i : out new m0 {m0,A0}Pub(B0)

act(a2) = init : A0 : i : in {m0, n0,B0}Pub(A0)

act(a3) = init : A0 : i : out{n0}Pub(B0)


