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Aims

•  Introduce students to software engineering, and in 
particular to the problems of
–  building large systems
–  building safety-critical systems
–  building real-time systems

•  Illustrate what goes wrong with case histories
•  Study software engineering practices as a guide to 

how mistakes can be avoided



Objectives

•  At the end of the course you should know how 
writing programs with tough assurance targets, or 
in large teams, or both, differs from the 
programming exercises done so far. 

•  You should appreciate the waterfall, spiral and 
evolutionary models of development and be able 
to explain which kinds of software development 
might profitably use them



Objectives (2)

•  You should appreciate the value of other tools and 
the difference between incidental and intrinsic 
complexity

•  You should understand the basic economics of the 
software development lifecycle

•  You should also be prepared for the organizational 
aspects of your part 1b group project, for your part 
2 project, and for courses in systems, security etc



Resources

•  Recommended reading:
– S Maguire, ‘Debugging the Development 

Process’
– N Leveson, ‘Safeware’ (see also her ‘System 

Safety Engineering’ online)
– SW Thames RHA, ‘Report of the Inquiry into 

the London Ambulance Service’
– RS Pressman, ‘Software Engineering’



Resources (2)
•  Additional reading:

–  FP Brooks, ‘The Mythical Man Month’
–  J Reason, ‘The Human Contribution’
–  MPP cases: O Campion-Awwad et al, ‘The National 

Programme for IT in the NHS – A Case History’
–  H Thimbleby, ‘Improving safety in medical devices and 

systems’
–  R Anderson, ‘Security Engineering’ 2e, ch 25–6, or 1e 

ch 22–23
•  And read widely in whichever application areas 

interest you!



Outline of Course

•  The ‘Software Crisis’
•  How to organise software development
•  Critical software
•  Tools
•  Large systems
•  Guest lecture on current industrial practice (20th 

October)
•  NB 3rd lecture on Oct 16, not 15 (swap)



The ‘Software Crisis’
•  Software lags far behind the hardware’s 

potential!
•  Many large projects are late, over budget, 

dysfunctional, or abandoned (LAS, CAPSA, 
NPfIT, DWP, Addenbrookes …)

•  Some failures cost lives (Therac 25) or 
billions (Ariane 5, NPfIT)

•  Some expensive scares (Y2K, Pentium)
•  Some combine the above (LAS)



The London Ambulance Service System

•  Widely cited example of project failure 
because it was thoroughly documented (and 
its pattern has been frequently repeated)

•  Attempt to automate ambulance dispatch in 
1992 failed conspicuously with London 
being left without service for a day

•  Hard to say how many deaths could have 
been avoided; estimates ran as high as 20

•  Led to CEO being sacked, public outrage



Original System
•  999 calls written on paper tickets; map reference 

looked up; conveyor to central point
•  Controller deduplicates tickets and passes to three 

divisions – NW / NE / S
•  Division controller identifies vehicle and puts note 

in its activation box
•  Ticket passed to radio controller
•  This all takes about 3 minutes and 200 staff of 

2700 total. Some errors (esp. deduplication), some 
queues (esp. radio), call-backs tiresome



Project Context
•  Attempt to automate in 1980s failed – system 

failed load test
•  Industrial relations poor – pressure to cut costs
•  Public concern over service quality
•  SW Thames RHA decided on fully automated 

system: responder would email ambulance
•  Consultancy study said this might cost £1.9m and 

take 19 months – provided a packaged solution 
could be found. AVLS would be extra



The Manual Implementation
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Dispatch System
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Bid process
•  Idea of a £1.5m system stuck; idea of AVLS 

added; proviso of a packaged solution forgotten; 
new IS director hired

•  Tender 7/2/1991 with completion deadline 1/92
•  35 firms looked at tender; 19 proposed; most said 

timescale unrealistic, only partial automation 
possible by 2/92

•  Tender awarded to consortium of Systems Options 
Ltd, Apricot and Datatrak for £937,463 – £700K 
cheaper than next lowest bidder!



First Phase

•  Design work ‘done’ July 
•  Main contract signed in August
•  LAS told in December that only partial 

automation by January deadline – front end 
for call taking, gazetteer, docket printing

•  Progress meeting in June had already 
minuted a 6 month timescale for an 18 
month project, a lack of methodology, no 
full-time LAS user, and SO’s reliance on 
‘cozy assurances’ from subcontractors



The Goal
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From  Phase 1 to Phase 2
•  Server never stable in 1992; client and server lockup
•  Phase 2 introduced radio messaging – blackspots, channel 

overload, inability to cope with ‘established working 
practices’

•  Yet management decided to go live 26/10/92
•  CEO: “No evidence to suggest that the full system 

software, when commissioned, will not prove reliable”
•  Independent review had called for volume testing, 

implementation strategy, change control … It was ignored!
•  On 26 Oct, the room was reconfigured to use terminals, not 

paper. There was no backup…



LAS Disaster
•  26/7 October vicious circle:

–  system progressively lost track of vehicles
–  exception messages scrolled up off screen and were lost
–  incidents held as allocators searched for vehicles
–  callbacks from patients increased causing congestion
–  data delays → voice congestion → crew frustration → 

pressing wrong buttons and taking wrong vehicles → 
many vehicles sent to an incident, or none

–  slowdown and congestion leading to collapse
•  Switch back to semi-manual operation on 26th and 

to full manual on Nov 2 after crash









Collapse 

•  Entire system descended into chaos: 
–  e.g., one ambulance arrived to find the patient 

dead and taken away by undertakers 
–  e.g., another answered a ‘stroke’ call after 11 

hours, 5 hours after the patient had made their 
own way to hospital

•  More people probably died as a result
•  Chief executive resigns



What Went Wrong – Spec

•  LAS ignored advice on cost and timescale
•  Procurers insufficiently qualified and experienced 
•  No systems view
•  Specification was inflexible but incomplete: it was 

drawn up without adequate consultation with staff
•  Attempt to change organisation through technical 

system (3116)
•  Ignored established work practices and staff skills



What Went Wrong – Project
•  Confusion over who was managing it all
•  Poor change control, no independent QA, 

suppliers misled on progress
•  Inadequate software development tools
•  Ditto technical comms, and effects not 

foreseen
•  Poor interface for ambulance crews
•  Poor control room interface



What Went Wrong – Go-live
•  System went live with known serious faults

–  slow response times
– workstation lockup 
–  loss of voice comms

•  Software not tested under realistic loads or 
as an integrated system

•  Inadequate staff training
•  No back up



NHS National Programme for IT
•  Like LAS, an attempt to centralise power 

and change working practices
•  Earlier failed attempt in the 1990s
•  The February 2002 Blair meeting
•  Five LSPs plus national contracts: £12bn
•  Most systems years late and/or don’t work
•  Coalition government: NPfIT ‘abolished’ 
•  See case history written by MPP students in 

2014 (linked from course materials page)
 



Next – Universal Credit

•  Idea: unify hundreds of welfare benefits and 
mitigate poverty trap by tapered withdrawal as 
claimants start to earn

•  Supposed to go live Oct 2013! Problems … 
•  General: big systems take 7 years not 3
•  They hoped ‘agile’ development would fix it …
•  Depended on real-time feed of tax data from 

HMRC, which in turn depended on firms 
•  Descended into chaos; NAO report



Next – Smart Meters?
•  Idea: expose consumers to market prices, get peak 

demand shaving, make use salient
•  EU Electricity Directive 2009: 80% by 2020
•  Labour 2009: £10bn centralised project to save the 

planet and help fix supply crunch in 2017
•  March 2010: experts said we just can’t change 47m 

meters in 6 years. So excluded from spec
•  Coalition government: wanted deployment by 

2015 election! Planned to build central system 
Mar–Sep 2013 (then: Sep 2014 …)

•  Contracts tendered while spec still fluid…
•  Spec still fluid, tech getting obsolete, despair …



CAPSA
•  Cambridge University wanted ‘commitment 

accounting’ scheme for research grants etc
•  Oracle Financials bid £9m vs next bid £18m; VC 

unaware of Oracle disasters at Bristol, Imperial,…
•  Target was Sep 1999 (Y2K fix); a year late
•  Old system staff sacked Sep 2000 to save money
•  Couldn’t cope with volume
•  15 years later, still can’t supply the data that grant 

holders or departmental administrators want
•  We had to write our own scripts to scrape and 

mash it to make it even halfways workable



Managing Complexity
•  Software engineering is about managing 

complexity at a number of levels
–  At the micro level, bugs arise in protocols etc because 

they’re hard to understand
–  As programs get bigger, interactions between 

components grow at O(n2) or even O(2n)
–  …
–  With complex socio-technical systems, we can’t predict 

reactions to new functionality
•  Most failures of really large systems are due to 

wrong, changing, or contested requirements (see 
paper by Curtis, Krasner and Iscoe on web page)



Project Failure, c. 1500 BC



Nineteenth Century

•  Charles Babbage, ‘On Contriving 
Machinery’
–  “It can never be too strongly impressed upon 

the minds of those who are devising new 
machines, that to make the most perfect 
drawings of every part tends essentially both to 
the success of the trial, and to economy in 
arriving at the result”



Complexity, 1870 – Bank of England



Complexity 1876 – Dun, Barlow & Co



Complexity 1906 – Sears, Roebuck

•  Continental-scale mail order meant specialization
•  Big departments for single bookkeeping functions
•  Beginnings of automation



Complexity 1940 – ���
First National Bank of Chicago



1960s – The Software Crisis
•  In the 1960s, large powerful mainframes made 

even more complex systems possible
•  People started asking why project overruns and 

failures were so much more common than in 
mechanical engineering, shipbuilding…

•  ‘Software engineering’ was coined in 1968
•  The hope was that we could things under control 

by using disciplines such as project planning, 
documentation and testing



How is Software Different?
•  Many things that make writing software fun also 

make it complex and error-prone:
–  joy of solving puzzles and building things from 

interlocking moving parts
–  stimulation of a non-repeating task with continuous 

learning
–  pleasure of working with a tractable medium, ‘pure 

thought stuff’
–  complete flexibility – you can base the output on the 

inputs in any way you can imagine
–  satisfaction of making stuff that’s useful to others



How is Software Different? (2)
•  Large systems become qualitatively more complex, unlike 

big ships or long bridges
•  The tractability of software leads customers to demand 

‘flexibility’ and frequent changes
•  Thus systems also become more complex to use over time 

as ‘features’ accumulate
•  The structure can be hard to visualise or model
•  The hard slog of debugging and testing piles up at the end, 

when the excitement’s past, the budget’s spent and the 
deadline’s looming



The Software Life Cycle

•  Software economics can get complex
– Consumers buy on sticker price, businesses on 

total cost of ownership
–  vendors use lock-in tactics
–  complex outsourcing

•  First let’s consider the simple (1950s) case 
of a company that develops and maintains 
software entirely for its own use



Cost of Software

•  Initial development cost (10%)
•  Continuing maintenance cost (90%)

cost

time

development             operations              legacy



What Does Code Cost?
•  First IBM measures (60s)

–  1.5 KLOC/developer year (operating system)
–  5 KLOC/dev yr (compiler)
–  10 KLOC/dev yr (app)

•  AT&T measures
–  0.6 KLOC/dev yr (compiler)
–  2.2 KLOC/dev yr (switch)

•  Alternatives
–  Halstead (entropy of operators/operands)
–  McCabe (graph entropy of control structures)
–  Function point analysis



First-generation Lessons Learned
•  There are huge variations in productivity between 

individuals
•  The main systematic gains come from using an 

appropriate high-level language
•  High level languages take away much of the 

accidental complexity, so the programmer can 
focus on the intrinsic complexity

•  It’s also worth putting extra effort into getting the 
specification right, as it more than pays for itself 
by reducing the time spent on coding and testing



Development Costs

•  Barry Boehm, 1975

•  So – the toolsmith should not focus just on code!

Spec Code Test
C3I 46% 20% 34%
Space 34% 20% 46%
Scientific 44% 26% 30%
Business 44% 28% 28%



‘The Mythical Man-Month’
•  Fred Brooks debunked interchangeability
•  Imagine a project at 3 developers x 4 months

–  Suppose the design work takes an extra month. So we 
have 2 months to do 9 dev mth work

–  If training someone takes a month, we must add 6 devs
–  But the work 3 devs did in 3 months can’t be done by 9 

devs in one! Interaction costs maybe O(n2)
•  Hence Brooks’ law: adding manpower to a late 

project makes it later! 



Software Engineering Economics

•  Boehm, 1981 (empirical studies after Brooks)
–  Cost-optimum schedule time to first shipment 

T=2.5(dev-months)1/3

–  With more time, cost rises slowly
–  With less time, it rises sharply
–  Hardly any projects succeed in less than 3/4 T 

•  Other studies show that if people are to be added, 
you should do it early rather than late

•  Some projects fail despite huge resources!



The Software Project ‘Tar Pit’

•  You can pull any one of your legs out of the tar …
•  Individual software problems all soluble but …



Structured Design
•  The only practical way to build large complex 

programs is to chop them up into modules
•  Sometimes task division seems straightforward 

(bank = tellers, ATMs, dealers, …)
•  Sometimes it isn’t
•  Sometimes it just seems to be straightforward
•  Quite a number of methodologies have been 

developed (SSDM, Jackson, Yourdon, …)



The Waterfall Model
Requirements

Specification

Implementation &
Unit Testing

Integration &
System Test

Operations &
Maintenance



The Waterfall Model (2)
•  Requirements are written in the user’s language
•  The specification is written in system language
•  There can be many more steps than this – system 

spec, functional spec, programming spec …
•  The philosophy is progressive refinement of  what 

the user wants
•  Warning – when Winton Royce published this in 

1970 he cautioned against naïve use
•  But it become a US DoD standard …



The Waterfall Model (3)
Requirements

Specification

Implementation &
Unit Testing

Integration &
System Test

Operations &
Maintenance

validate

validate

verify

verify



The Waterfall Model (4)
•  People often suggest adding an overall feedback 

loop from ops back to requirements
•  However the essence of the waterfall model is that 

this isn’t done
•  It would erode much of the value that 

organisations get from top-down development
•  Very often the waterfall model is used only for 

specific development phases, e.g. adding a feature
•  But sometimes people use it for whole systems



Waterfall – Advantages
•  Compels early clarification of system goals and is 

conducive to good design practice
•  Enables the developer to charge for changes to the 

requirements
•  It works well with many management tools, and 

technical tools
•  Where it’s viable it’s usually the best approach
•  The really critical factor is whether you can define 

the requirements in detail in advance. Sometimes 
you can (Y2K bugfix); sometimes you can’t (HCI)



Waterfall – Objections
•  Iteration can be critical in the development process:

–  requirements not yet understood by developers
–  or not yet understood by the customer
–  the technology is changing
–  the environment (legal, competitive) is changing

•  The attainable quality improvement may be 
unimportant over the system lifecycle

•  Specific objections from safety-critical, package 
software developers



Iterative Development

 
Develop

outline spec

Build system Use system

Deliver system

OK?
Yes

NoProblem: this algorithm 
might not terminate!



Spiral Model



Spiral Model (2)

•  The essence is that you decide in advance 
on a fixed number of iterations

•  E.g. engineering prototype, pre-production 
prototype, then product

•  Each of these iterations is done top-down
•  “Driven by risk management”, i.e. you 

concentrate on prototyping the bits you 
don’t understand yet



Evolutionary Model
•  Products like Windows and Office are now so 

complex that they evolve (MS tried to rewrite 
Word from scratch and failed)

•  The big change that’s made this possible has been 
the arrival of automatic regression testing

•  Firms now have huge suites of test cases against 
which daily builds of the software are tested

•  The development cycle is to add changes, check 
them in, and test them

•  The guest lecture will discuss this



Critical Software
•  Many systems must avoid a certain class of 

failures with high assurance
–  safety critical systems – failure could cause, death, 

injury or property damage
–  security critical systems – failure could allow leakage 

of confidential data, fraud, …
–  real time systems – software must accomplish certain 

tasks on time
•  Critical computer systems have much in common 

with critical mechanical systems (bridges, brakes, 
locks,…)

•  Key: engineers study how things fail



Tacoma Narrows, Nov 7 1940



Definitions
•  Error: design flaw or deviation from intended state
•  Failure: nonperformance of system, (classically) 

within some subset of specified environmental 
conditions

•  Reliability: probability of failure within a set 
period of time (typically mtbf, mttf)

•  Accident: undesired, unplanned event resulting in 
specified kind/level of loss



Definitions (2)
•  Hazard: set of conditions on system, plus 

conditions on environment, which can lead to an 
accident in the event of failure

•  Thus: failure + hazard = accident
•  Risk: probability of bad outcome
•  Thus: risk is hazard level combined with danger 

(probability hazard → accident) and latency 
(hazard exposure + duration) 

•  Uncertainty: risk not quantifiable
•  Safety: freedom from accidents



Ariane 5, June 4 1996

•  Ariane 5 accelerated faster than Ariane 4
•  This caused an operand error in float-to-integer conversion 
•  The backup inertial navigation set dumped core
•  The core was interpreted by the live set as flight data
•  Full nozzle deflection → 20o angle of attack → booster 
separation



Real-time Systems

•  Many safety-critical systems are also real-
time systems used in monitoring or control

•  Criticality of timing makes many simple 
verification techniques inadequate

•  Often, good design requires very extensive 
application domain expertise

•  Exception handling tricky, as with Ariane
•  Testing can also be really hard 



Example – Patriot Missile

•  Failed to intercept an Iraqi scud missile in Gulf 
War 1 on Feb 25 1991

•  SCUD struck US barracks in Dhahran; 28 dead
•  Other SCUDs hit Saudi Arabia, Israel



Patriot Missile (2) 
•  Reason for failure

–  measured time in 1/10 sec, truncated from .
0001100110011…

–  when system upgraded from air-defence to anti-
ballistic-missile, accuracy increased

–  but not everywhere in the (assembly language) code!
–  modules got out of step by 1/3 sec after 100h operation
–  not found in testing as spec only called for 4h tests

•  Critical system failures are typically 
multifactorial: “a reliable system can’t fail in a 
simple way”



Security Critical Systems
•  Usual approach – try to 

get high assurance of one 
aspect of protection

•  Example: stop classified 
data flowing from high to 
low using one-way flow

•  Assurance via simple 
mechanism

•  Keeping this small and 
verifiable is often harder 
than it looks at first!



Building Critical Systems
•  Some things go wrong at the detail level and can 

only be dealt with there (e.g. integer scaling)
•  However in general safety (or security, or real-

time performance) is a system property and has to 
be dealt with there

•  A very common error is not getting the scope right
•  For example, designers don’t consider human 

factors such as usability and training
•  We will move from the technical to the holistic …



Hazard Elimination

•  E.g., motor reversing circuit above
•  Some tools can eliminate whole classes of software 

hazards, e.g. using strongly-typed language such as Ada
•  But usually hazards involve more than just software



The Therac Accidents
•  The Therac-25 was a 

radiotherapy machine sold 
by AECL

•  Between 1985 and 1987 
three people died in six 
accidents

•  Example of a fatal coding 
error, compounded with 
usability problems and 
poor safety engineering



The Therac Accidents (2)
•  25 MeV ‘therapeutic 

accelerator’ with two 
modes of operation
–  25MeV focused electron 

beam on target to generate 
X-rays

–  5-25MeV spread electron 
beam for skin treatment 
(with 1% of beam current)

•  Safety requirement: don’t 
fire 100% beam at human!



The Therac Accidents (3)

•  Previous models (Therac 6 and 20) had 
mechanical interlocks to prevent high-intensity 
beam use unless X-ray target in place

•  The Therac-25 replaced these with software
•  Fault tree analysis arbitrarily assigned probability 

of 10-11 to ‘computer selects wrong energy’
•  Code was poorly written, unstructured and not 

really documented



The Therac Accidents (4)

•  Marietta, GA, June 85: woman’s shoulder 
burnt. Settled out of court. FDA not told

•  Ontario, July 85: woman’s hip burnt. AECL 
found microswitch error but could not 
reproduce fault; changed software anyway

•  Yakima, WA, Dec 85: woman’s hip burned. 
‘Could not be a malfunction’



The Therac Accidents (5)
•  East Texas Cancer Centre, Mar 86: man burned in 

neck and died five months later of complications
•  Same place, three weeks later: another man burned 

on face and died three weeks later
•  Hospital physicist managed to reproduce flaw: if 

parameters changed too quickly from x-ray to 
electron beam, the safety interlock failed

•  Yakima, WA, Jan 87: man burned in chest and 
died – due to different bug now thought to have 
caused Ontario accident



The Therac Accidents (6)

•  East Texas deaths caused by editing ‘beam type’ too quickly
•  This was due to poor software design



The Therac Accidents (7)
•  Datent sets turntable 

and ‘MEOS’, which 
sets mode and energy 
level

•  ‘Data entry complete’ 
can be set by datent, or 
keyboard handler

•  If MEOS set (& datent 
exited), then MEOS 
could be edited again



The Therac Accidents (8)
•  AECL had ignored safety aspects of software
•  Confused reliability with safety
•  Lack of defensive design
•  Inadequate reporting, followup and regulation – didn’t 

explain Ontario accident at the time
•  Unrealistic risk assessments
•  Inadequate software engineering practices – spec an 

afterthought, complex architecture, dangerous coding, 
little testing, careless HCI design…

•  AECL got out of the medical equipment business. But 
similar accidents are still happening! (NY Times article) 

•  Poor medical device safety usability still costs many lives



June 5th 2014 Birmingham



June 5th 2014 Birmingham



June 5th 2014 Birmingham



June 5th 2014 Birmingham



Medical device safety
•  Usability problems with medical devices 

kill about the same number of people as cars
•  Biggest killer nowadays: infusion pumps
•  Regulators are incompetent / captured
•  Nurses get blamed for fatalities
•  Avionics are safer, as incentives are better 

(airlines and pilots don’t want crashes)
•  Read Harold Thimbleby’s paper!



Redundancy

•  Some vendors, like Stratus, developed redundant 
hardware for ‘non-stop processing’

CPU

CPU CPU

CPU

? ?



Redundancy (2)

•  Stratus users found that the software is then where 
things broke

•  The ‘backup’ IN set in Ariane failed first!
•  Next idea: multi-version programming
•  But: errors significantly correlated, and failure to 

understand requirements comes to dominate 
(Knight/Leveson 86/90)

•  Professional implementations often give different 
answers…



Example: seismic analysis
•  Nine separate companies 

sell software to do 
standard processing on 
seismic data

•  Given the same inputs, 
their outputs differ 
significantly (Hatton/
Roberts 94; Hatton, 
Graham-Cummin, Ince 
2010)

•  How do you manage this?



Redundancy Management – 737



Panama crash, June 6 1992
•  Need to know which way up!
•  New EFIS (each side), old 

artificial horizon in middle
•  EFIS failed – loose wire
•  Both EFIS fed off same IN set
•  Pilots watched EFIS, not AH
•  47 fatalities
•  And again: Korean Air cargo 

747, Stansted Dec 22 1999



Kegworth crash, Jan 8 1989
•  BMI London-Belfast, fan 

blade broke in port engine
•  Crew shut down starboard 

engine and did emergency 
descent to East Midlands

•  Opened throttle on final 
approach: no power

•  47 dead, 74 injured
•  Initially blamed wiring 

technician! Later: cockpit 
design



Complex Socio-technical Systems
•  Aviation is actually an easy case as it’s a mature 

evolved system!
•  Stable components: aircraft design, avionics 

design, pilot training, air traffic control …
•  Interfaces are stable too
•  The capabilities of crew are known to engineers
•  The capabilities of aircraft are known to crew, 

trainers, examiners
•  The whole system has good incentives for learning



Cognitive Factors
•  Many errors derive from highly adaptive mental 

processes
–  E.g., we deal with novel problems using knowledge, in 

a conscious way
–  Then, trained-for problems are dealt with using rules 

we evolve, and are partly automatic
–  Over time, routine tasks are dealt with automatically – 

the rules have give way to skill
•  But this ability to automatise routine actions leads 

to absent-minded slips, aka ‘capture errors’



Cognitive Factors (2)

•  Read up the psychology that underlies errors!
•  Slips and lapses

–  Forgetting plans, intentions; strong habit intrusion
–  Misidentifying objects, signals (often Bayesian)
–  Retrieval failures; tip-of-tongue, interference
–  Premature exits from action sequences, e.g. ATMs

•  Rule-based mistakes; applying wrong procedure 
•  Knowledge-based mistakes; heuristics and biases



Cognitive Factors (3)

•  Training and practice help – skill is more reliable 
than knowledge! Error rates (motor industry):
–  Inexplicable errors, stress free, right cues – 10-5 
–  Regularly performed simple tasks, low stress – 10-4

–  Complex tasks, little time, some cues needed – 10-3

–  Unfamiliar task dependent on situation, memory – 10-2

–  Highly complex task, much stress – 10-1

–  Creative thinking, unfamiliar complex operations, time 
short & stress high –  ~1



Where should the path be?



Cognitive Factors (4)
•  Violations of rules also matter: they’re often an 

easier way of working, and sometimes necessary
•  ‘Blame and train’ as an approach to systematic 

violation is suboptimal
•  The fundamental attribution error
•  The ‘right’ way of working should be easiest: look 

where people walk, and lay the path there
•  Need right balance between ‘person’ and ‘system’ 

models of safety failure



Cognitive Factors (5)
•  Ability to perform certain tasks can very widely 

across subgroups of the population
•  Age, sex, education, … can all be factors 
•  Risk thermostat – function of age, sex
•  Example: banks tell people ‘parse URLs’
•  Baron-Cohen: people can be sorted by SQ 

(systematizing) and EQ (empathising)
•  Is this correlated with ability to detect phishing 

websites by understanding URLs?



 

 



Results

•  Ability to detect 
phishing is correlated 
with SQ-EQ

•  It is (independently) 
correlated with gender

•  The ‘gender HCI’ issue 
applies to security too



Cognitive Factors (6)

•  People’s behaviour is also strongly 
influenced by the teams they work in

•  Social psychology is a huge subject!
•  Also selection effects – e.g. risk aversion
•  Some organisations focus on inappropriate 

targets (King’s Cross fire)
•  Add in risk dumping, blame games
•  It can be hard to state the goal honestly!



Software Safety Myths (1)
•  ‘Computers are cheaper than analogue devices’

–  Shuttle software cost $108 pa to maintain
•  ‘Software is easy to change’

–  Exactly! But it’s hard to change safely
•  ‘Computers are more reliable’

–  Shuttle software had 16 potentially fatal bugs found 
since 1980 – and half of them had flown

•  ‘Increasing reliability increases safety’
–  They’re correlated but not completely



Software Safety Myths (2)
•  ‘Formal verification can remove all errors’

–  Not even for 100-line programs
•  ‘Testing can make software arbitrarily reliable’

–  For MTBF of 109 hours you must test >109 hours 
•  ‘Reuse increases safety’

–  Not in Ariane, Patriot and Therac, it didn’t
•  ‘Automation can reduce risk’

–  Sure, if you do it right – which often takes an extended 
period of socio-technical evolution



Defence in Depth

•  Reason’s ‘Swiss cheese’ model
•  Stuff fails when holes in defence layers line up
•  Thus: ensure human factors, software, procedures 

complement each other



Pulling it Together
•  First, understand and prioritise hazards. E.g. the motor 

industry uses:
1.  Uncontrollable: outcomes can be extremely severe 

and not influenced by human actions
2.  Difficult to control: very severe outcomes, influenced 

only under favourable circumstances
3.  Debilitating: usually controllable, outcome art worst 

severe
4.  Distracting; normal response limits outcome to minor
5.  Nuisance: affects customer satisfaction but not 

normally safety



Pulling it Together (2)
•  Develop safety case: hazards, risks, and  strategy per 

hazard (avoidance, constraint)
•  Who will manage what? Trace hazards to hardware, 

software, procedures
•  Trace constraints to code, and identify critical 

components / variables to developers
•  Develop safety test plans, procedures, certification, 

training, etc
•  Figure out how all this fits with your development 

methodology (waterfall, spiral, evolutionary …)



Pulling it Together (3)
•  Managing relationships between component 

failures and outcomes can be bottom-up or top-
down

•  Bottom-up: ‘failure modes and effects 
analysis’ (FMEA) – developed by NASA

•  Look at each component and list failure modes
•  Then use secondary mechanisms to deal with 

interactions
•  Software not within original NASA system – but 

other organisations apply FMEA to software



Pulling it Together (4)

•  Top-down – ‘fault tree analysis’ (in security, a threat tree)
•  Work back from identified hazards to identify critical 

components



Pulling it Together (5)
•  Managing a critical property – safety, security, 

real-time performance – is hard
•  Although some failures happen during the ‘techie’ 

phases of design and implementation, most 
happen before or after

•  The soft spots are requirements engineering, and 
operations / maintenance later

•  These are the interdisciplinary phases, involving 
systems people, domain experts and users, 
cognitive factors, and institutional factors like 
politics, marketing and certification



Tools

•  Homo sapiens uses tools when some 
parameter of a task exceeds our native 
capacity
– Heavy object: raise with lever
– Tough object: cut with axe
– …

•  Software engineering tools are designed to 
deal with complexity 



Tools (2)
•  There are two types of complexity:

–  Incidental complexity dominated programming in the 
early days, e.g. keeping track of stuff in machine-code 
programs. Solution: high-level languages

–  Intrinsic complexity is the main problem today, e.g. 
complex system (such as a bank) with a big team. 
‘Solution’: structured development, project management 
tools, …

•  We can aim to eliminate the incidental 
complexity, but the intrinsic complexity must be 
managed



Incidental Complexity (1)
•  The greatest single improvement was the 

invention of high-level languages like FORTRAN
–  2000 loc/year goes much farther than assembler
–  Code easier to understand and maintain
–  Appropriate abstraction: data structures, functions, 

objects rather than bits, registers, branches
–  Structure lets many errors be found at compile time
–  Code may be portable; at least, the machine-specific 

details can be contained
•  Performance gain: 5–10 times. As coding = 1/6 

cost, better languages give diminishing returns



Incidental Complexity (2)
•  Thus most advances since early HLLs focus on 

helping programmers structure and maintain code
•  Don’t use ‘goto’ (Dijkstra 68), structured 

programming, pascal (Wirth 71); info hiding plus 
proper control structures

•  OO: Simula (Nygaard, Dahl, 60s), Smalltalk 
(Xerox 70s), C++, Java … covered elsewhere (but 
do see ‘Objects have failed’ on the course page)

•  Don’t forget the object of all this is to manage 
complexity!



Incidental Complexity (3)
•  Early batch systems were very tedious for 

developer … e.g. GSCS
•  Time-sharing systems allowed online test – debug 

– fix – recompile – test – …
•  This still needed plenty scaffolding and carefully 

thought out debugging plan
•  Integrated programming environments such as 

TSS, Turbo Pascal,…
•  Some of these started to support tools to deal with 

managing large projects – ‘CASE’



Formal Methods
•  Pioneers such as Turing talked of proving 

programs correct
•  Floyd (67), Hoare (71), … now a wide range:

–  Z for specifications
–  HOL for hardware
–  BAN for crypto protocols

•  These are not infallible (a kind of multiversion 
programming) but can find a lot of bugs, 
especially in small, difficult tasks

•  Not much use for big systems



Programming Philosophies
•  ‘Chief programmer teams’ (IBM, 70–72): 

capitalise on wide productivity variance
•  Team of chief programmer, apprentice, toolsmith, 

librarian, admin assistant etc, to get maximum 
productivity from your staff

•  Can be effective during implementation
•  But each team can only do so much
•  Why not just fire the less productive 

programmers?



Programming Philosophies (2)
•  ‘Egoless programming’ (Weinberg, 71) – code 

should be owned by the team, not by any 
individual. In direct opposition to chief 
programmer team
–  But: groupthink entrenches bad stuff more deeply

•  ‘Literate programming’ (Knuth et al) – code 
should be a work of art, aimed not just at machine 
but also future developers
–  But: creeping elegance is often a symptom of a project 

slipping out of control



Programming Philosophies (3)
•  ‘Extreme Programming’ (Beck, 99): aimed at 

small teams working on iterative development 
with automated tests and short build cycle

•  ‘Solve your worst problem. Repeat’
•  Focus on development episode: write tests first, 

then the code. ‘The tests are the documentation’
•  Programmers work in pairs, at one keyboard and 

screen
•  That didn’t survive, but episodes did, and people 

added the ‘scrum’



Capability Maturity Model

•  Humphrey, 1989: it’s important to keep teams 
together, as productivity grows over time

•  Nurture the capability for repeatable, manageable 
performance, not outcomes that depend on 
individual heroics

•  CMM developed at CMU with DoD money
•  It identifies five levels of increasing maturity in a 

team or organisation, and a guide for moving up



Capability Maturity Model (2)
1.  Initial (chaotic, ad hoc) – the starting point for 

use of a new process
2.  Repeatable – the process is able to be used 

repeatedly, with roughly repeatable outcomes
3.  Defined – the process is defined/confirmed as a 

standard business process
4.  Managed – the process is managed according to 

the metrics described in the Defined stage
5.  Optimized – process management includes 

deliberate process optimization/improvement



Project Management
•  A manager’s job is to

–  Plan
–  Motivate
–  Control

•  The skills involved are interpersonal, not techie; 
but managers must retain respect of techie staff

•  Growing software managers a perpetual problem! 
‘Managing programmers is like herding cats’

•  Nonetheless there are some tools that can help



Activity Charts

•  ‘Gantt’ chart (after 
inventor) shows 
tasks and 
milestones

•  Problem: can be 
hard to visualise 
dependencies



Critical Path Analysis

•  Project Evaluation and Review Technique 
(PERT): draw activity chart as graph with 
dependencies

•  Give critical path (here, two) and shows slack
•  Can help maintain ‘hustle’ in a project
•  Also helps warn of approaching trouble



Keeping People Motivated
•  People can work less hard in groups than on their 

own projects – ‘free rider’ or ‘social loafing’ effect
•  Competition doesn’t invariably fix it: people who 

don’t think they’ll win stop trying
•  Dan Rothwell’s ‘three C’s of motivation’:

–  Collaboration – everyone has a specific task
–  Content – everyone’s task clearly matters
–  Choice – everyone has a say in what they do

•  Many other factors: acknowledgement, attribution, 
equity, leadership, and ‘team building’ (shared 
food / drink / exercise; scrumming)



Testing
•  Testing is often neglected in academia, but is the 

focus of industrial interest … it’s half the cost
•  Bill G: “are we in the business of writing software, 

or test harnesses?” 
•  Happens at many levels

–  Design validation
–  Module test after coding
–  System test after integration
–  Beta test / field trial
–  Subsequent litigation

•  Cost per bug rises dramatically down this list!



Testing (2)
•  Main advance in last 15 years is design for 

testability, plus automated regression tests
•  Regression tests check that new versions of the 

software give same answers as old version
–  Customers more upset by failure of a familiar feature 

than at a new feature which doesn’t work right 
–  Without regression testing, 20% of bug fixes 

reintroduce failures in already tested behaviour
–  Reliability of software is relative to a set of inputs – 

best use the inputs that your users generate



Testing (3)
•  Reliability growth models help us assess mtbf, number of 

bugs remaining, economics of further testing…
•  Failure rate due to one bug is e-k/T; with many bugs these 

sum to k/T
•  So for 109 hours mtbf, must test >109 hours 
•  But: changing testers brings new bugs to light



Testing (4)

•  The critical problem with testing is to exercise the 
conditions under which the system will actually be 
used

•  Many failures result from unforeseen input / 
environment conditions (e.g. Patriot)

•  Incentives matter hugely: commercial developers 
often look for friendly certifiers while military 
arrange hostile review (ditto manned spaceflight, 
nuclear)



Release Management

•  Getting from development code to production release can 
be nontrivial!

•  Main focus is stability – work on recently-evolved code, 
test with lots of hardware versions, etc

•  Add all the extras like copy protection, rights management



Example – NetBSD Release

•  Beta testing of release
•  Then security fixes
•  Then minor features
•  Then more bug fixes 

…



Change Control
•  Change control and configuration management are critical 

yet often poor
•  The objective is to control the process of testing and 

deploying software you’ve written, or bought, or got fixes 
for

•  Someone must assess the risk and take responsibility for 
live running, and look after backup, recovery, rollback etc

Development

Purchase
Test Production



Documentation
•  Think: how will you deal with management 

documents (budgets, PERT charts, staff schedules)
•  And engineering documents (requirements, hazard 

analyses, specifications, test plans, code)?
•  CS tells us it’s hard to keep stuff in synch!
•  Possible partial solutions: 

–  High tech: CASE tool
–  Bureaucratic: plans and controls department
–  Social consensus: style, comments, formatting



Problems of Large Systems

•  Study of failure of 17 large demanding systems, 
Curtis Krasner and Iscoe 1988

•  Causes of failure
1.  Thin spread of application domain knowledge
2.  Fluctuating and conflicting requirements
3.  Breakdown of communication, coordination

•  They were very often linked, and the typical 
progression to disaster was 1→ 2 → 3 



Problems of Large Systems (2)
•  Thin spread of application domain knowledge

–  How many people understand everything about running 
a phone service / bank / hospital?

–  Many aspects are jealously guarded secrets
–  Some fields try hard, e.g. pilot training
–  Or with luck you might find a real ‘guru’
–  But you can expect specification mistakes

•  The spec may change in midstream anyway
–  Competing products, new standards, fashion
–  Changing environment (takeover, election, …)
–  New customers (e.g. overseas) with new needs



Problems of Large Systems (3)
•  Comms problems inevitable – N people means 

N(N-1)/2 channels and 2N subgroups
•  Traditional way of coping is hierarchy; but if info 

flows via ‘least common manager’, bandwidth will 
be inadequate

•  So you proliferate committees, staff departments
•  This causes politicking, blame shifting
•  Management attempts to gain control result in 

restricting many interfaces, e.g. to the customer



Agency Issues
•  Employees often optimise their own utility, not the 

projects; e.g. managers don’t pass on bad news
•  Prefer to avoid residual risk issues: risk reduction 

becomes due diligence
•  Tort law reinforces herding behaviour: negligence 

judged ‘by the standards of the industry’
•  Cultural pressures in e.g. aviation, banking
•  So: do the checklists, use the tools that will look 

good on your CV, hire the big consultants…



Conclusions
•  Software engineering is about managing 

complexity. That’s why it’s hard. That’s our trade
•  We can cut incidental complexity using tools
•  But the intrinsic complexity remains: you manage 

it by getting early commitments, partitioning the 
problem, using project management, …

•  Top-down approaches can sometimes help, but 
really large systems evolve

•  The grand challenge facing engineers over the next 
25 years will be learning how to direct the 
evolution of complex socio-technical systems



Conclusions (2)
•  Things are made harder by the fact that complex 

systems are usually socio-technical
•  People come into play as users, and also as 

members of development and other teams
•  About 30% of big commercial projects fail, and 

about 30% of big government projects succeed. 
This has been stable for years, despite better tools!

•  Better tools let people climb a bit higher up the 
complexity mountain before they fall off

•  But the limiting factors are human too


