
Tuning as Ranknig 
Mark Hopkins and Jonathan May

Presented By: Youmna Farag

MT Tuning Algorithms

Algorithm Scalability Implementation

MERT Bad Easy and Simple

MIRA Good Complex

Pairwise Ranking
Optimization (PRO)

Good Simple (very close to
MERT architecture)

Tuning for MT
Candidate space:

• Weights vector (w) = [-2, 1]
• Policy: maps source sentences to candidate translations J(i)
• Scoring function: hw(i, j) = w . x(i, j) -> ->
• e.g. for p1={1->2, 2->3}, Hw(p1) = 9
• G -> the “gold” scores from BLEU algorithm (global scoring function)

Tuning for MT

• Tuning -> “Learn the weight vector w such
that Hw(p) assigns a high score to good
policies, and low score to bad policies.”

 -> to minimize the loss function ls(Hw , G)

MERT

• Algorithm: Tune(s, G)
 For n number of iterations:

1. Candidate generation: generate the k-best
candidates, based on hw of previous iteration
(w is randomly initialized in iteration 1).

2. Optimization: calculate weights that
minimizes

Pairwise Ranking Optimization (PRO) 

• Decomposes gold scoring function
 According to BLEU+1
• For each pair e(i, j) and e(i, j’), we want:

Pairwise Ranking Optimization (PRO) 

Training Data:
 [x(i, j) - x(i, j’), +]
 [x(i, j’) - x(i, j), -]
 +ve and –ve labels are according to gold function g.
e.g.:
 since g(1, 1) > g(1, 3), we have:
 ([-4, 3], +]) and ([4, -3], -])

Pairwise Ranking Optimization (PRO) 

• Training Data: [x(i, j) - x(i, j’), +], [x(i, j’) - x(i,
j), -]

• Linear classifier to calculate the weights (They
used MegaM classifier)

• Loss function (ls , (Hw , G)) is calculated
according to chosen classifier

Pairwise Ranking Optimization (PRO) 

• Full enumeration: feature vectors of O(|I| *
J2

max)

Pairwise Ranking Optimization (PRO) 

• Full enumeration: feature vectors of O(|I| * J2
max)

• Sampling!
For each sentence i:
1. Generate Γ candidates <j, j’>
2. Accepts pairs with probabilities αi(|g(i, j) - g(i,

j’)|)
3. Sort |g(i, j) - g(i, j’)|in accepted pairs

decreasingly
4. Returns Ξ candidates with largest |g(i, j) - g(i, j’)|

MERT Scalability

1. Create linear functions G, Hw of the same form
2. Try to optimize to the gold weight vector w*
3. Use 500 source sentences, 100 candidate

translations per sentence
4. Create feature vectors with random numbers:

[0, 500]
5. Change vectors dimensionality from 10 to

1000, and repeat each setting 3 times
6. Repeat the same experiment with adding noise

PRO Scalability

1. Same experiment
2. Choose Γ (initial candidates) = 5000
3. Choose Ξ (kept candidates) = 50
4.

Scalability Test Results

Experiment

Features

• Discount features for rule frequency bins
• Target word insertion features
• Rule overlap features (SBMT only)
• Node count features (SBMT only)
• Unigram word pair features for the 80 most frequent words (PBMT only)
• Source, target and joint phrase length features from 1->7 (PBMT only)

Repeating the baseline experiment 5 times, SD of
the test BLEU of MERT = 0.13, PRO= 0.05

Thank You! ☺
Questions?

