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MT Tuning Algorithms

Algorithm Scalability Implementation

MERT Bad Easy and Simple

MIRA Good Complex

Pairwise Ranking 
Optimization (PRO)

Good Simple (very close to 
MERT architecture)



Tuning for MT
Candidate space: 

• Weights vector (w) = [-2, 1] 
• Policy: maps source sentences           to candidate translations J(i) 
• Scoring function: hw(i, j) = w . x(i, j) ->                           -> 
• e.g. for p1={1->2, 2->3}, Hw(p1) = 9  
• G -> the “gold” scores from BLEU algorithm (global scoring function)



Tuning for MT

• Tuning -> “Learn the weight vector w such 
that Hw(p) assigns a high score to good 
policies, and low score to bad policies.” 

 -> to minimize the loss function ls(Hw , G)



MERT

• Algorithm: Tune(s, G) 
 For n number of iterations: 

1. Candidate generation: generate the k-best 
candidates, based on hw of previous iteration 
(w is randomly initialized in iteration 1). 

2. Optimization: calculate weights that 
minimizes



Pairwise Ranking Optimization (PRO) 

• Decomposes gold scoring function 
  According to BLEU+1 
• For each pair e(i, j) and e(i, j’), we want: 
   



Pairwise Ranking Optimization (PRO) 

Training Data:  
  [x(i, j) - x(i, j’), +] 
         [x(i, j’) - x(i, j), -]  
  +ve and –ve labels are according to gold function g. 
e.g.:  
  since g(1, 1) > g(1, 3), we have:  
  ([-4, 3], +]) and ([4, -3], -]) 
   
   



Pairwise Ranking Optimization (PRO) 

• Training Data: [x(i, j) - x(i, j’), +],  [x(i, j’) - x(i, 
j), -]  

• Linear classifier to calculate the weights (They 
used MegaM classifier) 

• Loss function (ls , (Hw , G)) is calculated 
according to chosen classifier



Pairwise Ranking Optimization (PRO) 

• Full enumeration: feature vectors of O(|I| * 
J2

max)



Pairwise Ranking Optimization (PRO) 

• Full enumeration: feature vectors of O(|I| * J2
max) 

• Sampling! 
For each sentence i: 
1.  Generate Γ candidates <j, j’> 
2. Accepts pairs with probabilities αi(|g(i, j) - g(i, 

j’)|) 
3. Sort |g(i, j) - g(i, j’)|in accepted pairs 

decreasingly 
4. Returns Ξ candidates with largest |g(i, j) - g(i, j’)|



MERT Scalability

1. Create linear functions G, Hw of the same form 
2. Try to optimize to the gold weight vector w* 
3. Use 500 source sentences, 100 candidate 

translations per sentence 
4. Create feature vectors with random numbers: 

[0, 500] 
5. Change vectors dimensionality from 10 to 

1000, and repeat each setting 3 times 
6. Repeat the same experiment with adding noise



PRO Scalability

1. Same experiment 
2. Choose Γ (initial candidates) = 5000  
3. Choose Ξ (kept candidates) = 50 
4.  



Scalability Test Results



Experiment



Features

• Discount features for rule frequency bins 
• Target word insertion features 
• Rule overlap features (SBMT only) 
• Node count features (SBMT only) 
• Unigram word pair features for the 80 most frequent words (PBMT only) 
• Source, target and joint phrase length features from 1->7 (PBMT only)





Repeating the baseline experiment 5 times, SD of 
the test BLEU of MERT = 0.13, PRO= 0.05



Thank You! ☺ 
Questions?


