Listwise Approach to Learning to Rank - Theory and Algorithms

Presented by Jay Shah

Listwise Approach - Overview

- Takes ranked lists of objects as instances
- Trains a ranking function through a listwise loss function.
- Claimed to perform better on IR than Pointwise/Pairwise

Listwise Approach - Expected Loss

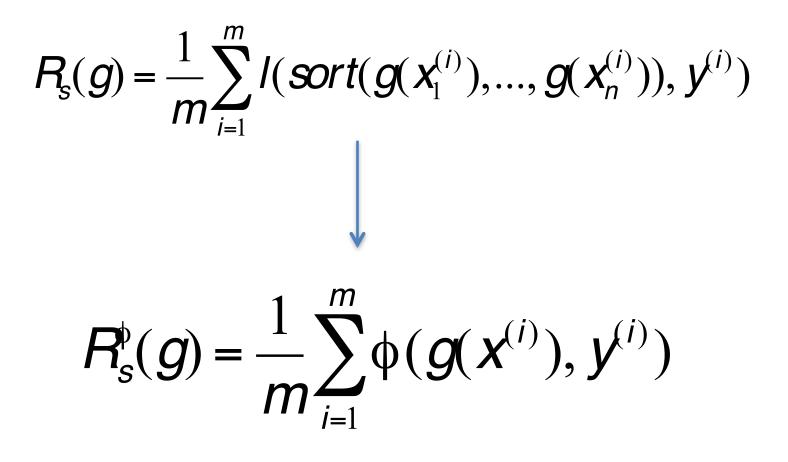
$$P(h) = \int_{X \times Y} I(h(x), y) dP(x, y)$$

$$\int_{X \times Y} I(h(x), y) = \begin{cases} 1, \text{ if } h(x) \neq y \\ 0, \text{ if } h(x) = y \end{cases}$$

Listwise Approach - Sampling

 $R_{s}(h) = \frac{1}{m} \sum_{i=1}^{m} I(h(x^{(i)})), y^{(i)})$ $h(x^{(i)}) = sort(\underline{g}(x_1^{(i)}), ..., \underline{g}(x_n^{(i)}))$ $\mathbf{R}_{s}(g) = \frac{1}{m} \sum_{i=1}^{m} l(sort(g(\mathbf{x}_{1}^{(i)}), ..., g(\mathbf{x}_{n}^{(i)})), \mathbf{y}^{(i)})$

Listwise - Surrogate Loss



Theoretical Analysis

- Consistency
- Soundness
- Continuity, differentiability and convexity
- Computational efficiency

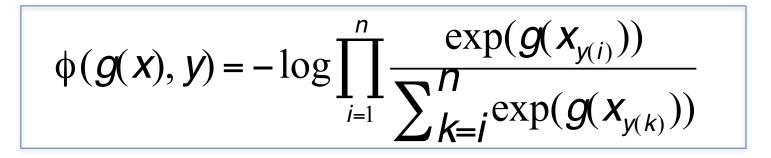
Case Studies

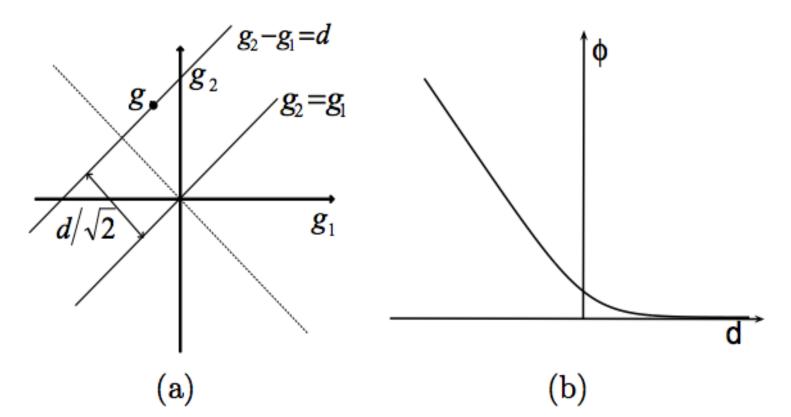
• Likelihood Loss → ListMLE

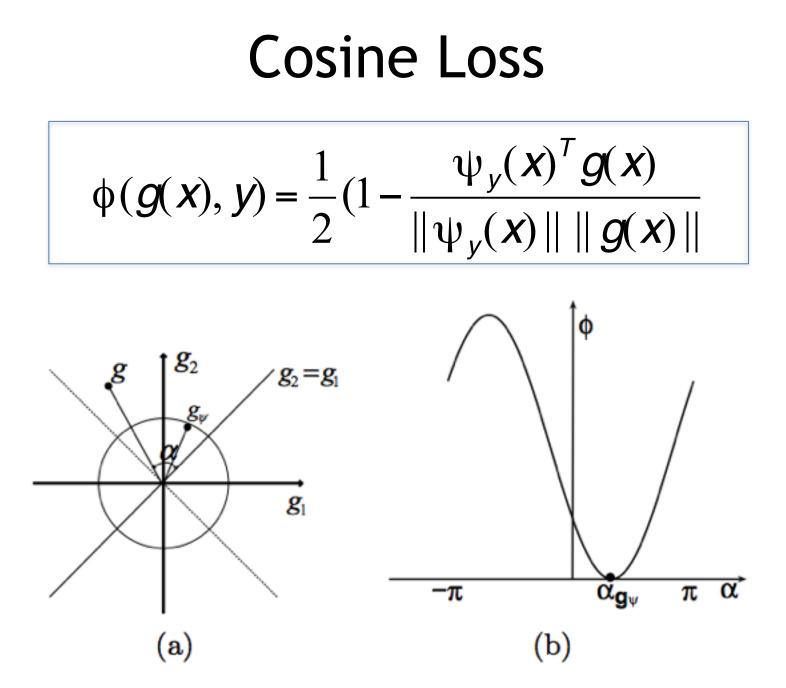
• Cosine Loss → RankCosine

• Cross Entropy Loss \rightarrow ListNet

Likelihood Loss

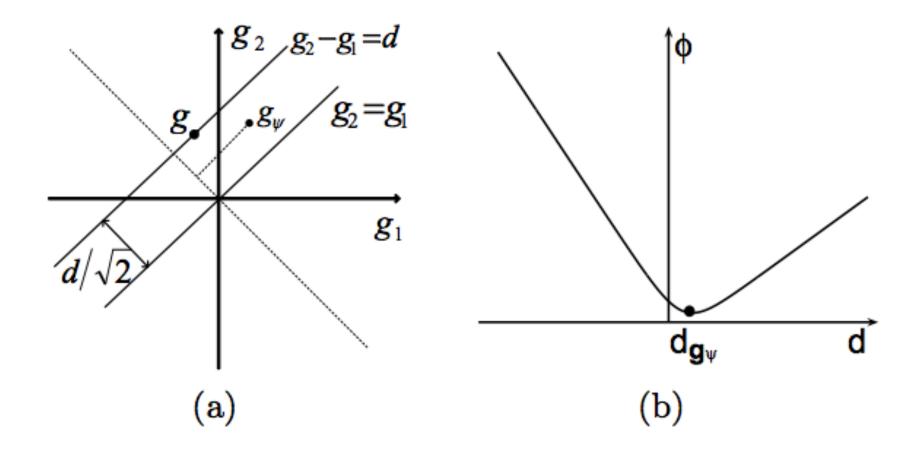






Cross Entropy Loss

 $\phi(\mathbf{g}(\mathbf{x}), \mathbf{y}) = D(P(\pi \mid \mathbf{x}; \psi_{\mathbf{y}}) || (P(\pi \mid \mathbf{x}; \mathbf{g}))$



Surrogate Loss Comparison

Loss	Consistenc y	Soundnes s	Continuit y	Differentiabili ty	Convexit y	Complexit y
Likelihood	1	1	1	√	1	O(n)
Cosine		×	1	√	×	O(n)
Cross Entropy		×		✓		O(n! x n)

ListMLE

Algorithm 1 ListMLE Algorithm

Input: training data{ $(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), \ldots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)})$ } Parameter: learning rate η , tolerance rate ϵ Initialize parameter ω

repeat

for i = 1 to m do

Input $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$ to Neural Network and compute gradient $\Delta \omega$ with current ω

Update $\omega = \omega - \eta \times \bigtriangleup \omega$

end for

calculate likelihood loss on the training set until change of likelihood loss is below ϵ Output: Neural Network model ω

Experiment on Synthetic Data

• Randomly sample a point on area [0,1] x [0,1]

$$y = x_1 + 10x_2 + \varepsilon$$

• Assign score using

• Generate 15 points and scores this way.

Experiment on Synthetic Data

Algorithm	Accuracy	MAP	
ListMLE	0.92 ± 0.011	0.999 ± 0.002	
ListNet-log	0.905 ± 0.010	0.999 ± 0.002	
ListNet-sqrt	0.917 ± 0.009	0.999 ± 0.002	
ListNet-l	0.767 ± 0.021	0.995 ± 0.003	
ListNet-q	0.868 ± 0.028	0.999 ± 0.002	
ListNet-exp	0.832 ± 0.074	0.997 ± 0.004	
RankCosine-log	0.180 ± 0.217	0.948 ± 0.034	
RankCosine-sqrt	0.080 ± 0.159	0.886 ± 0.056	
RankCosine-l	0.917 ± 0.112	0.999 ± 0.002	
RankCosine-q	0.102 ± 0.161	0.890 ± 0.060	
RankCosine-exp	0.047 ± 0.163	0.746 ± 0.136	

Experiment on OHSUMED Data

- 106 queries, 16,140 query-document pairs.
- Definitely relevant, possibly relevant, or not relevant.
- Normalized Discounted Cumulative Gain (NDCG).

Experiment on OHSUMED Data

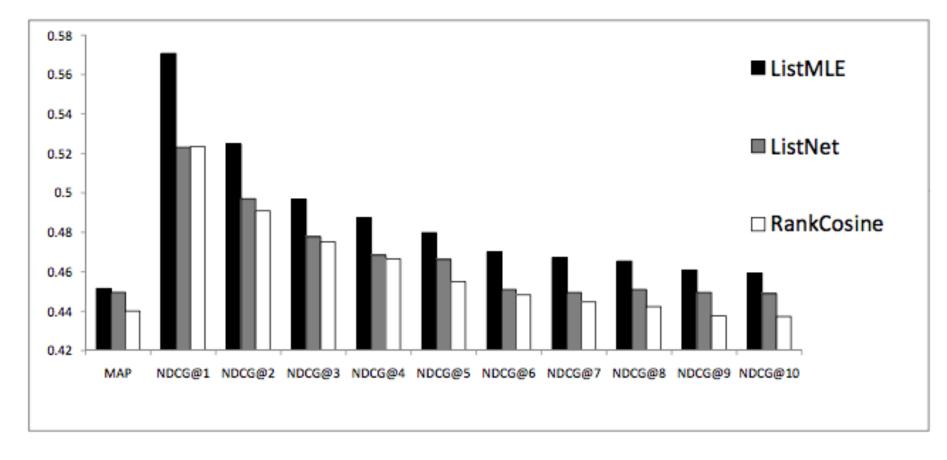


Figure 4. Ranking performance on OHSUMED data.

Future Work

- More theoretical analysis on properties of loss functions.
- Cost sensitive loss function instead of 0 -1 loss.
- Investigate other surrogate loss functions

Thank you for listening

Questions?