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Words in Google
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Sentences in Google
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Image Search
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Compositional + Distributional ?
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Formal Semantics
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Vector Space Semantics
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From Words to Sentences
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man killed by dog
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Vector-Based Models of Sentences
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Grefenstette et. al, New Directions in Vector Space Models of Meaning (ACL, 2014)



Lecture Outline

• Arguments against sentence vectors

• Vector addition

• Recurrent (recursive) neural networks

• Type-driven compositional distributional framework
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Vectors are “Too Small”

★“You canʼt cram the meaning of a whole %&!$# sentence into a single 
$&!#* vector!” (Ray Mooney)
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Arguments Against Sentence Vectors

• A fixed-size vector can’t hold enough information (languages are infinite)

• are languages really infinite? (not in practice, and maybe not in theory*)

• the sentence vector could be a structured object (e.g. density matrix)

• the sentence space doesn’t have to solve all of semantics (necessarily)

• (and wouldn’t this argument apply to lexical semantics as well?)
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*Recursion and the Infinitude Claim (Pullum and Scholz, 2010)



Arguments Against Sentence Vectors

• A fixed-size vector can’t hold enough information (languages are infinite)

• are languages really infinite? (not in practice, and maybe not in theory*)

• the sentence vector could be a structured object (e.g. density matrix)

• the sentence space doesn’t have to solve all of semantics (necessarily)

• (and wouldn’t this argument apply to lexical semantics as well?)

• What about (formal) semantics?

• compositionality, inference, logical operators, quantification, ...
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*Recursion and the Infinitude Claim (Pullum and Scholz, 2010)



Talk Outline

• Arguments against sentence vectors

• Vector addition

• Recurrent (recursive) neural networks

• Type-driven compositional distributional framework
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Element-wise Operators on Context Vectors
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black 0.34 0.64 ... -0.06 ...

cat 0.15 0.29 ... -0.03 ...

+

black
+ cat 0.49 0.93 ... -0.09 ...

=
cat 0.15 0.29 ... 0.03 ...

black
o cat 0.05 0.19 ... -0.002 ...

=

black 0.34 0.64 ... -0.06 ...



Circular Convolution

16

1 2 3

cat

black

0.0032 0.0025 -0.0085

0.0006 0.0005 -0.0017

1.90E-06 1.60E-06 5.00E-07

1.50E-06 1.25E-06 -4.25E-07

-5.1E-06 -4.25E-06 -1.15E-06

blackT x cat

-2.76E-06 4.55E-06 -4.39E-06

+ +
+

black      cat =



Phrase Similarity Data

Mitchell & Lapata 2010 Dataset: 

AN: national government    cold air                    1 
  new information                    further evidence                6

NN: environment secretary          party leader                    5
       telephone number                 future development           2

VO: offer support                   provide help                     7
  fight war                                 win battle                          5
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Phrase Similarity Results
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Sentence Similarity Data

• Semantic Textual Similarity (STS) datasets from SEMEVAL

• MSR Par dataset (1,500 pairs):

The fines are part of failed Republican efforts to force or entice the 
Democrats to return.
Perry said he backs the Senates efforts, including fines, to force the 
Democrats to return.                                                                              2.8

   
   The bill says that a woman who undergoes such an abortion couldn't be 
   prosecuted.
   A woman who underwent such an abortion could not be prosecuted 
   under the bill.                                                                                         5.0                                                                                           
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Addition for Sentence Vectors?
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“I know of no pressure,” said Mr. Feith, the under secretary of defense for policy.

“I know of nobody who pressured anybody,” Douglas Feith, undersecretary of defense 
for policy, said at a Pentagon briefing.

[Similarity 3.8/5]

Agirre et al. (Semeval STS); Polajnar, Rimell and Clark (LREC 2014) 



Addition for Sentence Vectors?
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“I know of no pressure,” said Mr. Feith, the under secretary of defense for policy.

• Lexical overlap baseline is hard to beat

• Out of the vector-space methods, addition is hard to beat

• “Is God trying to tell us something?”

Agirre et al. (Semeval STS); Polajnar, Rimell and Clark (LREC 2014) 

“I know of nobody who pressured anybody,” Douglas Feith, undersecretary of defense 
for policy, said at a Pentagon briefing.

[Similarity 3.8/5]



Lecture Outline

• Arguments against sentence vectors

• Vector addition

• Recurrent (recursive) neural networks

• Type-driven compositional distributional framework
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Composition in Neural Models
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Deep Learning for NLP (Socher et al., 2013)



Composition in Neural Models
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Socher et al. (EMNLP 2013)



Lecture Outline

• Arguments against sentence vectors

• Vector addition

• Recurrent (recursive) neural networks

• Type-driven compositional distributional framework
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Categorial Grammar
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cat chases dog
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Categorial Grammar
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cat chases dog
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Function application = “cancellation”



Categorial Grammar
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Predicate-Argument Semantics
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cat chases dog
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Predicate-Argument Semantics
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cat chases dog

NP (S\NP)/NP NP
cat� λx.λy chases�(x, y) dog�

S\NP
λy chases�(dog�, y)

SFunction application = substitution



Predicate-Argument Semantics
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cat chases dog

NP (S\NP)/NP NP
cat� λx.λy chases�(x, y) dog�

S\NP
λy chases�(dog�, y)

S
chases�(dog�, cat�)



Vector Space Semantics?

• What are the semantic types of the vectors?

• What is the equivalent of function application?
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cat chases dog

NP (S\NP)/NP NP
cat� λx.λy chases�(x, y) dog�
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Adjective-Noun Combinations

red car

N /N N

N
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Adjective-Noun Combinations

• Functions are matrices (linear maps) in linear algebra

• Functions combine with arguments using matrix multiplication         
(Baroni and Zamparelli, 2010)
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red car

N /N N

N



Matrix Multiplication





R11 R12 R13 R14 R15

R21 R22 R23 R24 R25

R31 R32 R33 R34 R35

R41 R42 R43 R44 R45

R51 R52 R53 R54 R55









c1
c2
c3
c4
c5




=





rc1
rc2
rc3
rc4
rc5





RED −→car
−−−−→
red car
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Matrix Multiplication
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R11 R12 R13 R14 R15

R21 R22 R23 R24 R25

R31 R32 R33 R34 R35

R41 R42 R43 R44 R45

R51 R52 R53 R54 R55









c1
c2
c3
c4
c5




=





rc1
rc2
rc3
rc4
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−−−−→
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Syntactic Types to Tensors
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cat chases dog
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Syntactic Types to Tensors
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Type and Tensor Reductions
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cat chases dog
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Type and Tensor Reductions
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Function Composition in CCG
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Pat might kiss Sandy

NP (S\NP)/(S\NP) (S\NP)/NP NP



Function Composition in CCG
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Function composition = “cancellation”

Pat might kiss Sandy

NP (S\NP)/(S\NP) (S\NP)/NP NP

>B

(S\NP)/NP



Function Composition in CCG
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Function composition = taking inner products

Pat might kiss Sandy

NP (S\NP)/(S\NP) (S\NP)/NP NP
N S⊗N⊗ S⊗N S⊗N⊗N N

>B

(S\NP)/NP
S⊗N⊗N

Maillard, Clark, Grefenstette (2014) 



From Theory to Implementation

• We have wide-coverage CCG parsers, and syntax determines semantics

• But, two crucial questions the framework does not answer:

1. what is the sentence space?

2. how do we learn the tensors?

• The tensors can get very large:

44

Revitalized Classics Take the Stage in Windy

N /N N (S [dcl ]\NP)/NP NP [nb]/N N ((S\NP)\(S\NP))/NP N /N



Contextual Sentence Spaces

• Two contenders for the sentence space in the current literature:

• a space automatically induced by a (un-)supervised learning criterion

• a contextual sentence space (extending the distributional hypothesis*)

45

*Baroni, Bernardi, Zamparelli; Grefenstette et al.



Contextual Sentence Spaces

• Two contenders for the sentence space in the current literature:

• a space automatically induced by a (un-)supervised learning criterion

• a contextual sentence space (extending the distributional hypothesis*)

• should contextual noun and sentence spaces be the same?

46

*Baroni, Bernardi, Zamparelli; Grefenstette et al.



Context-based Sentence Vectors
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St−2: M. Atget captured the old Paris in his pictures. St−1: His pho-

tographs show the city in its various facets. St: He photographed stair-

wells and architectural details. St+1: His interests also extended to the

environs of Paris. St+2: He also photographed street-hawkers and small

tradesmen, as well as popular amusements.



Context-based Sentence Vectors
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St−2: M. Atget captured the old Paris in his pictures. St−1: His pho-

tographs show the city in its various facets. St: He photographed stair-

wells and architectural details. St+1: His interests also extended to the

environs of Paris. St+2: He also photographed street-hawkers and small

tradesmen, as well as popular amusements.

IDist: stairwell, architectural, detail



Context-based Sentence Vectors
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St−2: M. Atget captured the old Paris in his pictures. St−1: His pho-

tographs show the city in its various facets. St: He photographed stair-

wells and architectural details. St+1: His interests also extended to the

environs of Paris. St+2: He also photographed street-hawkers and small

tradesmen, as well as popular amusements.

IDist: stairwell, architectural, detail
DDist: capture, old, paris, picture, photograph, show, city, various,

interest, extend, popular, amusement



Context-based Sentence Vectors
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St−2: M. Atget captured the old Paris in his pictures. St−1: His pho-

tographs show the city in its various facets. St: He photographed stair-

wells and architectural details. St+1: His interests also extended to the

environs of Paris. St+2: He also photographed street-hawkers and small

tradesmen, as well as popular amusements.

IDist: stairwell, architectural, detail
DDist: capture, old, paris, picture, photograph, show, city, various,

interest, extend, popular, amusement

DVerb: capture, show, extend, photograph



Simpler Matrix Networks
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Polajnar, Fagarasan, Clark (EMNLP 2014); Paperno, Pham, Baroni (ACL 2014)



Low-Rank Approximations
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Fried, Polajnar, Clark (ACL 2015)



Summary
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• Sentence vectors are here to stay

• Evaluation is problematic

• Recursive neural networks provide one solution

• Type-driven compositional framework is more linguistically motivated, but 
problematic in practice

• Maybe there is an ideal middle ground

• Composition has a role to play in other modalities (what does a red car 
look like, a bike with no wheels, a sleeveless dress, ...?)


