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1 Introduction

In the era of the telephone, voice traffic dominated physical telecommunication lines. With the birth
of the Internet, and its subsequent adoption as a key means of communication, data traffic has taken
over (though some of this data traffic is actually re-badged voice traffic using Voice over IP). With the
advent of new applications such as video streaming, and the rapid growth of data traffic from mobile
devices, we are witnessing a global data explosion.

Given the ever increasing importance of the Internet, knowledge of its traffic has become increas-
ingly critical. The Internet, however, is just an all-encompassing term to describe the vast global
collection of networks, and so it largely falls on individual network providers to determine their own
traffic. This knowledge is vital for continued operations because it allows network operators to perform
important tasks such as providing enough network capacity to carry the current traffic, as well as to
predict and prepare for future trends. Traffic data is also important in network maintenance, necessary
if services and content are to be provided to customers with minimal delay and interruption.

The focus of this chapter is on the traffic matrix, which, in a nutshell, is an abstract representa-
tion of the traffic volume flowing between sets of source and destination pairs. Each element in the
matrix denotes the amount of traffic between a source and destination pair. There are many variants.
Depending on the network layer under study, sources and destinations could be routers or even whole
networks. “Amount” here, in the networking context, is generally measured in the number of bytes or
packets, but could refer to other quantities such as connections.

Traffic matrices, as will be clearer below, are highly important for a variety of network engineering
goals, such as prediction of future traffic trends, network optimisation, protocol design and anomaly
detection. Considering the importance of these matrices, the first objective of this chapter is to provide
an entry level for graduate students and new researchers to current research on traffic matrices. To
that end, the material is organised in a tutorial-like fashion, so as to ensure key concepts can be easily
understood.

1.1 Motivation

Why study Internet traffic matrices? Simply because their implications for network operators are vast.
If the traffic matrix of a network is exactly known, then, armed with topology and routing information
of the network, the operator knows exactly what is going on in the network, rendering network man-
agement tasks relatively easy. If the traffic matrix is completely unknown, then a network operator is
blind. Subtle faults may plague their network, substantially reducing performance. Congestion may
be rife, or sudden shifts in traffic may cause transient traffic losses.

The issues are becoming more important. The dominant philosophy in the early days of the Internet
was best effort delivery. Most applications then did not have high quality of service (QoS) requirements.

∗The authors are with the School of Mathematical Sciences, The University of Adelaide, Australia (Email:
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These applications had some tolerance to packet drops and link failures, without drastically affecting
QoS. In recent years, however, the landscape of the Internet is fast changing with the introduction
of streaming content such as video, high definition television and Voice over IP (VoIP), with more
stringent QoS requirements. For example, excessive packet drops and delays would produce highly
noticeable artefacts in streamed video. These changes are driven primarily by user demands, with the
introduction of new applications, such as online social networking, entertainment services and online
multi-player gaming. Furthermore, with the increasing computational power of mobile devices and
increasing wireless speeds, it is evident that a significant portion of future traffic will be generated by
these devices. These trends are making measurements more and more critical.

For most operators, the state of their measurements is somewhere between extremes. Most op-
erators have some traffic data (if only link counts). However, it is rare (in our experience) to find a
network operator who knows everything about their traffic. As such, one of the tasks we shall consider
here is how to measure these matrices1, but also how to obtain estimates of traffic matrices when
presented with incomplete data. The traffic matrix inference or completion or recovery problem is one
of the major areas of research into these interesting creatures, and it is intricately related to modelling
the matrices, both as measurements supply data to populate the models, and because models are used
to perform the inference. Even those operators with extensive measurements and exact knowledge of
today’s traffic matrix may be interested in methods to predict their matrices for use in future planning,
and this can be seen as another form of matrix completion.

Traffic matrices have many uses, apart from the simple fact that this type of business intelligence is
critical to understanding your network. The more direct uses include network optimisation, anomaly
detection and network protocol design.

There are three common optimisation problems on networks. Capacity planning is needed to ensure
there is adequate bandwidth for users in the present and future, but at minimal cost. There are two
types of network planning: evolutionary planning and green fields planning; see §5 for details. Traffic
engineering tasks include day-to-day maintenance of the network as well as predicting growth trends
and anticipating traffic demands. Routing involves organising traffic flow in the network. This includes
functions such as finding the shortest paths for flows but also, importantly, load balancing to ensure
links remain uncongested. In all these cases, the traffic matrix is a key input to perform the tasks
effectively and efficiently.

Traffic matrices can also be used to detect sudden shifts in traffic due to anomalies. Anomalies
include sudden unexpected events, such as network failures, or more malicious events, such as the
September 11 World Trade Centre attack, worm infections and distributed denial of service (DDoS)
attacks [74]. Regardless, these anomalies need to be detected so as to develop appropriate measures
against possible threats to the network.

Traffic matrices may also be used to conduct reliability analyses, where the effect (on traffic) or
network failures is considered. A basic task in most network design is to create redundant paths to
carry traffic in case of failure, but if high reliability is required, then an operator should also ensure
that there is sufficient capacity in the network to carry this traffic along its alternate paths.

Further, the performance of many network protocols depends on the traffic they carry, and the cross-
traffic which forms their background. Design of new protocols therefore requires realistic measures, or
models of such traffic. Models can be used to test protocols on artificially synthesised traffic. In this
way, the limitations of a protocol may be understood in a controlled environment before running it on
an actual network.

These issues will be examined in-depth in §5, where algorithms utilising traffic matrices to perform
these tasks will be discussed.

1This chapter isn’t really a primer on measurement tools as such, so much as the principles that underlie those tools.
We won’t tell you how to set up Netflow on your particular router, but instead we will aim to tell you what you could
achieve with this type of flow-level measurements.
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1.2 A primer on modelling

Motivated by a lack of understanding of Internet traffic and as a response to the recent shifting
landscape of traffic demands, various traffic models have been developed over the last decade or so.
There are literally hundreds of papers describing data traffic modelling, however, here we shall focus
on one group of such models that are particularly useful to operators: models for traffic matrices.

A good model captures the essential characteristics of the underlying traffic, while being robust
enough to cope with changes in traffic, for example, with regards to the time of the day, or the
introduction of unexpected events, such as attacks on the network. Much can be gained from a good
model, enabling the categorisation and analysis of the data in a systematic, and desirably, a simplified
manner.

The ultimate goals are to use these models in various networking tasks, and the “essential” qualities
that the model must capture depend critically on the task. For instance, traffic properties are highly
dependent on time scale: in very short time scales (in seconds), the traffic volume distributions have
been shown to exhibit complex statistical behaviour such as high variability, long-range dependence,
and multi-fractal behaviour. On long time scales (hours to days to weeks) traffic exhibits strong
periodicities: there are distinct diurnal and weekly cycles with traffic peaks occurring around mid-
day or in the evening and troughs in the early morning. This pattern correlates to user behaviour,
where they access the Internet during the day for work or school and sleep in the night. There is
also an observable long-term growth trend underlying the traffic volume when measured over years,
corresponding to increasing global traffic demand. However, most traffic matrices are measured at
some intermediate time scale, often at 5 to 15 minute intervals.

The time scale is not just a property of the measurements though, the tasks we wish to perform
usually have an associated timescale. In capacity planning, we are often concerned with a “busy hour”
– certainly peak measures over some intermediate period are important. However, anomaly detection
needs to act at a relatively fine time scale, in minutes, or perhaps even in seconds.

We also have to consider the planning horizon of a task. Capacity planning may be aimed at
determining the correct network design six months in advance or more, where-as traffic engineering is
sometimes conducted on scales as short as a day. The planning horizon determines how far in advance
we must predict traffic matrices.

We can, perhaps, start to see that modelling traffic matrices is quite a challenging task. However,
there are complexities layered on complexities. The Internet is designed in terms of layers, with
different protocols overlaid atop each other. Such a paradigm was adopted to ensure that each layer
works independently (in theory) to each other, although there are some overlaps between these layers
in practice. The basic properties of traffic matrices will depend on the network level, but the congestion
control mechanism at the transport layer can change traffic. Traffic can be measured between logical
or physical source/destinations, and at different levels of aggregation, and at these different levels, new
models may apply. Furthermore, changing trends in network usage, deployment of Content Distribution
Networks (CDNs), and increasing mobile traffic mean that any model developed today may become
outdated quickly.

Underlying all Internet traffic is the undeniable fact that all traffic is driven by consumer demands.
It does not take a genius to realise that human behaviour is inherently difficult to model, let alone
understand. A complicated model may be accurate for today, but fail in predicting traffic demands for
the next few years or so, given fluctuations in demand and unexpected changes in traffic patterns [89].
Thus we believe there is no single model that captures all observed properties of once and future traffic
matrices. It is often preferable to have simple, robust models, in preference to precise, but fragile ones.

Measurements of networks serve as the foundation in any model development. The caveat, however,
is the measurements themselves are subject to errors and inconsistency, which may lead to an incorrect
model. Moreover, several hypotheses may fit a particular observation of the network, leading to several
possible models explaining the observation. To argue for the use of one model over another requires
additional knowledge from new data, or from domain knowledge. Additionally, even if new information
becomes available, there is a question of how to incorporate it into the model. There is a variety of

3



possible approaches, all equally valid [6].
Moreover, it is misleading to talk about a “correct” traffic matrix model. As pointed out in [6],

just because a model replicates properties of the observed data does not necessarily mean the model is
“correct”, as there is a dangerous possibility of over-fitting. After all, better fitting is usually achievable
simply by adding more parameters to the model. Several information criteria serving as guidelines
do exist to prevent the over-fitting problem, such as the Akaike information criterion [5], Bayesian
information criterion [77], Minimum Message Length [94] or the Minimum Description Length [69].
While these criteria are beyond the scope of discussion, the basic principle is to choose the simplest
explanation (measured in an information metric) amongst all competing explanations of the data. The
issue highlights the difficulty of choosing the number of parameters in a model, as it requires several
tradeoffs between simplicity and its connection to reality.

It is for these reasons, models should be evaluated not just on their accuracy in making predictions
of particular statistics, but also their simplicity, robustness and consistency with relation to the realities
of network operations. Model assumptions should “make sense” to an operator as well as be empirically
tested on various datasets to understand their reliability and pitfalls, which is not to say we can’t learn
new ideas and principles from measurements. We just need to keep in mind that scope of application,
and the usefulness of these principles in practice may be limited.

At a fundamental level we need to accept that models are all unrealistic in some way. A model
describing the properties of a smaller scale network, such as a Local Area Network (LAN), may be
unsuitable at the backbone network level. The underlying assumptions of one may not hold in the
other. Models are simplifications of the glorious complexity that comprises humanity’s primary means
of telecommunication. We must, instead, reread the adage, by George E. P. Box: “All models are
wrong, but some are useful”. Some models have been more successfully used in real networks, and it
is to these that we shall devote most time here. However, we shall endeavour to cover the majority of
simple models with the view that individuals should use the best model for their application without
fear or favour.

No doubt, the murkiness and apparent self-contradictions of this discussion have left our readers
no wiser, as yet. Modelling is a topic that could be discussed endlessly. It is our aim that through
consideration of the qualities of various traffic matrix models, we shall not just inform about these
particular models, but also bring the reader to a new understanding of modelling, which makes these
issues a little less opaque.

1.3 Chapter outline

The theme of this chapter is to directly report on all key works in the field. No attempt will be made
to provide overt commentary on what techniques or models are good or bad, as the objective of this
chapter is to present comprehensive summaries of existing work. It is important to note that the
techniques, algorithms and models presented here were developed as tools to suit specific applications.
Hence, it is the onus of the practitioner to evaluate and decide which of these are applicable to his or
her situation. Whenever possible, the strengths and weaknesses of the inference techniques and models
are discussed objectively, so as to minimise the problem of a practitioner treating a particular tool as
the silver hammer for all proverbial nails.

The chapter is organised as follows. In §2, an overview is provided on traffic matrices: the basic
definitions and some illustrations to give a better handle on the topic. §3 discusses how data on traffic
matrices are collected in practice. §4 discusses the various models proposed in literature that aims to
capture the statistical properties of traffic matrices. §5 goes into a more in-depth treatment of the
applications of traffic matrices, in particular, how traffic matrix models are used for inference, network
optimisation applications, anomaly detection and traffic matrix synthesis. Not everything is known
about these matrices, and §6 summarises some open questions and concludes by giving some thoughts
on what the future holds for traffic matrix research. The chapter is concluded in §7.
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

Figure 1: An example of a traffic matrix. Note that often the diagonal elements, xAA, xBB , . . . are zero as
this traffic does not cross the network, however, in almost as many cases it is non-zero because a “node” in the
graph represents an aggregation of devices such as a PoP or an AS. In these cases we often do wish to measure
these diagonals, even though they may not cross the logical links pictured, because they affect traffic engineering
within the PoP, for example.

2 Definitions and Notation

In this section, a formal approach to networks and traffic matrices is defined. Traffic originates from
a source and is delivered to a destination (or several destinations). The traffic traverses a set of links
between some set of nodes. The links connecting nodes define the topology of the network, and the
paths chosen by traffic flows determine the routing. Traffic may be split across multiple paths by
load balancing, or may keep to a single path. Often, sources and destinations are identified with the
network nodes (though they can also refer to a location in a logical space attached to the network, for
instance IP addresses of prefix blocks).

Let Ω denote the non-empty set of all nodes in a network and let |Ω| = N . The nodes often have
a physical, geographic location, and so we regard the indices of the sources and destinations as spatial
variables, even when nodes are actually logical entities, such as Autonomous Systems (ASes), or cannot
be identified with the nodes, as with IP addresses.

A traffic matrix is naturally represented by a three dimensional, nonnegative hyper-matrix X(t),
with i, j-th entry Xi,j(t). Each entry represents the traffic volume, or demand, measured in terms
of bytes or packets, from source i to destination j in time interval [t, t + ∆t), the full measurement
interval denoted by T . As an aside, a matrix representation is useful for the representation of other
aspects of the network, for instance, delay, jitter, loss, bottleneck-bandwidth and distance [55], but
throughout the chapter, traffic will be the focus. Whenever the context is clear, for example, when
considering only the spatial structure of the matrix, the time index t is dropped.

A closely related concept is the demand matrix, distinct from the traffic matrix because the former is
offered load, and the latter carried load. They may be the same, but may differ where congestion limits
the carried traffic, or rate limiting is used on some traffic streams. In general we cannot measure offered
traffic, only carried traffic, and so almost all empirical research has concentrated on traffic matrices, but
it is important to note that many of the assumptions of traffic-matrix models are actually motivated
by intuition about demand matrices, and these may not apply where the two differ substantially2.

Large-scale, real-time monitoring of traffic is intractable at present, thus limiting measurements to
the average traffic in a discrete time interval. Shorter time intervals i.e., small ∆t, benefit anomaly
detection applications, the tradeoff being a possibility of uncertainty from traffic burstiness at shorter
time scales combined with larger potential measurement or sampling errors3. Longer time intervals

2Many works make no distinction between the two types of matrices, leading to confusion. Here we shall try to keep
the two distinct.

3Traffic is typically sampled at the backbone network level to cope with the tremendous volumes of data that could
be collected.
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result in “smoother” traffic demands, averaging out measurement errors. However, this smooths out
real variability in the traffic as well, and can result in meaningless estimates in the presence of strong
non-stationarity. Hence, the choice of ∆t depends on the application and available measurements.
Common choices range from 5 minutes to an hour. Further discussion on the temporal properties of
traffic demands is found in §4.

There are two popular definitions of traffic matrices: the origin–destination (OD) matrix and the
ingress–egress (IE) matrix.

(i) OD traffic matrix: this matrix measures traffic from true source to destination, i.e., the point
that generates a packet to the point that receives it. In the Internet, it is perhaps most reasonably
defined in terms of Internet Protocol (IP) addresses. However, if Ω is defined over the entire IPv4
address space of 232 addresses (with even more for IPv6), this poses storage and computational
problems. Moreover, the matrix would be very sparse. What’s more, protocols such as NAT,
HTTP proxies and firewalls may obscure the true IP address mappings. One way to overcome
some of these deficiencies is to aggregate the traffic matrix into blocks of IP addresses, frequently
using routing prefixes.

(ii) IE traffic matrix: any single network operator sees only a small proportion of the Internet
OD matrix. Thus this matrix is not just unknown, but unmeasurable (by a single operator).
Instead, many operators find that using their edge routers (or even the edge links) as sources and
destinations results in a local traffic matrix of great use. We call this the IE traffic matrix as the
set Ω includes ingress, i.e., traffic going into the network, and egress, i.e., traffic flowing out of
the network, points as proxies for sources and destinations. A single ingress or egress “node” may
denote a router, a collection of physically co-located routers called a Point of Presence (PoP), or
some other abstract collection of traffic ingress/egress points depending on the level of coarseness
required in the modelling process. The PoP level convention is often adopted as it provides a
simple visualisation of the network to network designers and operations management.

IE traffic matrices can be obtained in a number of ways. They can be formed from OD traffic
matrices simply by mapping IP prefixes to ingress/egress locations in the network, but this assumes
knowledge of all flows traversing the ingress/egress nodes. Traffic at egress nodes may be inferred from
router data (see the next section) and measurements of ingress traffic, but typically, the converse is
difficult. Likewise, it is usually difficult to form an OD matrix from IE matrices.

Consequently, the IE traffic matrix is frequently adopted for network optimisation applications
as it is more practical to measure, and because in aggregating traffic the OD flows are “bundled”
together into locally meaningful groupings. A network may carry flows between billions of IP address
pairs and millions of prefix pairs, but only thousands of router pairs, and hundreds of PoP pairs.
In this way, the IE matrix is a more compact representation, but more importantly, the aggregation
of the traffic into larger bundles results has a smoothing effect of the data, reducing the number of
independent parameters that may have to be estimated. At the PoP level, the aggregation of flows
results in averaging out sampling error (similar to the choice of ∆t above). This is highly beneficial
for numerical iterative algorithms used to estimate the traffic matrices, as aggregation leads to better
conditioning of the traffic matrix. The trade-off, unfortunately, is the loss of fine grained data, as one
can no longer observe IP level flow data, or examine application profile data.

Another consideration worthy of concern in applying traffic matrices concerns invariance. A good
representation of the traffic has to be invariant to other network aspects, such as routing and the
network topology. For instance, if the traffic matrix for a network changes in response to changes in
link placement, then the matrix is not terribly useful for network design. IE matrices are subject, for
example, to large changes due to routing shifts, and this means that they are less useful to operators
compared to OD matrices. However, the practicalities of measurements mean that IE matrices may
be all that is measurable.

That leads naturally to our next topic: measurement of traffic matrices.
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3 Measurements

In theory it is possible to collect accurate data of Internet traffic from a network. In reality, however,
many issues confound such measurements. Budget constraints whether from an economic viewpoint or
from the massive data storage facilities required due to the sheer amount of data traversing a backbone
network limit what can be achieved, and even good measurements systems can suffer from errors and
missing data. Added to this, current operator practice rarely includes any significant calibration of
measurement apparatus, so often the degree of accuracy of the measurements in unknown.

There are several well known strategies for collecting traffic measurements. A packet trace is a
collection of packets headers (perhaps with some payload) and timestamps. A packet trace can be
collected through various means, for example, through hardware such as a splitter placed strategically
in optical fibre, adding a monitor port on a router or through software tools such as tcpdump, executed
on several hosts in a shared network. An OD traffic matrix can be constructed from such a trace by
simple consideration of the IP address in the packet headers (with the caveats mentioned earlier).

Such an approach is ideal in many respects: we have almost complete information, and the matrices
may be drawn at almost any time resolution. However, collecting packet traces is expensive due to
dedicated hardware, and the huge amount of storage required, with over a terabyte of data per hour
on OC48 links (2.5 Gbps) being possible. It is rare for any but the smallest network to be able to
completely instrument its network at this level of detail.

Fortunately, constructing a traffic matrix does not require such detailed information. Perhaps
the most common alternative is flow-level aggregation where packets are aggregated according to a
common flow key. One popular definition of the key is the 5-tuple comprised of the IP source and
destination address, TCP source and destination port numbers and protocol number. A series of
packets possessing a common key is called a flow, and we maintain simple statistics (byte and packet
counters, and start and stop times) for each flow. The aggregation of packets into flows reduces
the number of records needed to be stored by removing redundancies of data from a packet trace.
Flow-level collection is generally performed in 15 minute time bins4 and is often an in-built function
of a router. The only additional infrastructure required is the Network Management Station (NMS)
and flow records themselves are usually compressed by the router before being exported to the NMS.
Despite this reduction, flows arrive at a router at rapid rates and the formation and storage of flow
records at a router often burdens the router’s CPU.

To further reduce the number of flow records at a router, sampling methods are employed. The
most popular sampling method is packet sampling, where incoming packets to a router is sampled
based on predetermined sampling patterns, used, for instance by Cisco’s NetFlow [1]. Such pseudo-
random patterns have a similar effect to independently picking incoming packets given sufficient mixing
of traffic. The sampling rates can be adjusted depending on the capacity of the incoming links with
recommendations such as 1 in 256 packets for OC192 links (10 Gbps). Higher capacity links require
aggressive data reduction, and so lower sampling rates are used.

Packet sampling reduces the number of flows significantly by omitting many, but it is important
to realise that although it may select packets in an unbiased way, it is not unbiased with respect to
flows. Packet sampling has a strong bias towards long flows, since it is more likely to have sampled
packets from a long flow than a short one. Furthermore, the sampled flow size is not the true size of
the flow and there are several works [29, 30] proposing methods to sample and estimate the true size
of a sampled flow. While the strong bias may be a problem for some applications, there is usually no
problem in using sampled flows to form the IE traffic matrix, since the large volume of each entry and
aggregation with other flows averages out the bias from sampling.

In addition to packet sampling, we may also sample a set of flows, and these sampled flows can
then be used to create traffic matrices. The resulting reduction in intermediate storage and processing
can be substantial, particularly if the sampling is done in a clever way [29,30].

4The issue of timing of flows is actually somewhat more complicated, but readers should refer to detailed descriptions
of specific flow-capture protocols for information on their particular flow capture.
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It must be remembered that sampling is an inherently lossy process, regardless of the underlying
sampling method used. The loss of information translates into errors or noise in the data. The size
of these errors should, in best practice, be estimated for a given setup, but most operators do not
undertake such procedures due to the difficulties involved in obtaining ground-truth data with which
to compare the sampled data. In many cases it is simply assumed that these errors, once the data is
aggregated further into traffic matrices, are negligible, but this assumption is rarely justified by data.

A less costly alternative are easily obtainable link counts. A link count, or link load measurement,
gives the volume (in bytes or packets) of traffic on a link during a particular time interval. Link counts
are obtainable from measurement data by the Simple Network Management Protocol (SNMP) [19],
defined as part of the IETF standard and present on many Internet devices, including most routers.
SNMP data from a single router provides two measurements for each interface, the incoming and
outgoing byte counts. SNMP data is obtained by an NMS by periodically polling requests through an
interface, typically UDP port 161. The polling period varies from 1 minute to several minutes, but the
default seems to be 5 minutes. SNMP data is highly susceptible to error, due to the following factors:

(i) missing link observations: data is transmitted via unreliable UDP packets and there may be
errors when copying the data into the observer’s archive,

(ii) incorrect link observations: poor router vendor implementations causes inaccuracies, and

(iii) sampling coarseness: polling times are often inaccurate either due to poor NMS or SNMP
agent implementations, high loads, or network delays.

As with flow-level data, link count data should be calibrated, but rarely is. There is only one experiment
of which we are aware that does so [71]. The study showed that in one network, SNMP errors were
typically low (90% of measurements had an error of less than 1%), but a small number of measurements
were very large, some as large as 100%. This type of heavy-tailed distribution causes problems for
some estimation approaches and should be considered in context.

Another drawback of SNMP data is that it only provides aggregate link statistics, omitting details
such as types of traffic on the link and the traffic source and destination. Despite all these, SNMP
data is, at present, the easiest way to obtain large-scale traffic data.

The observed link counts provide some information about the traffic matrix, but only in an indirect
manner. Thus, the traffic matrix has to be inferred. Network tomography was first introduced by
Vardi [91], with the inspiration taken from inference techniques for medical tomography, as both
problems are similar in nature. Vardi’s work was subsequently expanded upon by Tebaldi and West [87]
and Cao et al. [18]. Various other works in network tomography measure other properties of the
network, such as link delays (see [20, 23] for an overview) via active packet probing, but for traffic
matrix estimation, we are only concerned with the link count observations from SNMP data.

Mapping traffic to links requires topological and routing data in the form of a routing matrix. The
routing matrix A is defined by

Ai,r =

{
Fi,r, if traffic for r traverses link i,

0, otherwise.

with Fi,r ∈ (0, 1] defining the fraction of traffic from source-destination pair r = (s, d) traversing link
i. Fractional values occur in cases when some form of load balancing on traffic is performed. It is
generally assumed, however, Fi,r = 1, resulting in Ai,r ∈ {0, 1}. The size of the routing matrix depends
on the network, and with N nodes and L links, the routing matrix has size L×N(N − 1) (traffic from
a node is assumed not rerouted to itself).

Information on the routing matrix can be obtained from several different sources (router configura-
tion files, traceroutes, or from the routing protocols themselves), but the collection of such information
is not the topic of the chapter, and will be considered elsewhere in this book. A common assumption
is that the routing matrix remains stable during the measurement interval, thus the temporal depen-
dence is dropped, i.e., A(t) = A for all t ∈ T . However, changes in routing may occur if there are
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link or router failures, necessitating traffic reroutes. Generally, it is assumed the measurement interval
is chosen over a period of time (minutes to hours) when A is stable enough to be considered static,
justified by observations in [63], however in at least one case it is proposed that the changes be created,
and exploited [83] for traffic matrix inference.
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(a) Link labels.
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(b) Traffic labels and routes.

Figure 2: A simplified network and traffic (the main simplifications are that we only consider a single router,
and only consider unidirectional traffic, not bidirectional as in real networks).

All the link counts may be grouped into an L × 1 vector y. Note that L is usually much smaller
than N(N − 1). Then, based on link observations in one measurement interval, the SNMP link counts
may be expressed as

y = Ax, (1)

where x is the N(N − 1)× 1 vectorised version of the traffic matrix X, with its columns stacked upon
one another.

Figure 2 presents an example of (1). It shows how the traffic on a single link y1, is built from the
sum of traffic routed across the link x1 + x2. We can see that by stacking each of these equations we
would get  y1

y2

y3

 =

 1 1 0
1 0 1
0 1 1

 x1

x2

x3

 (2)

which, written in matrix notation, is just (1). Note that in this case the routing matrix A is invertible,
so the problem of inferring the traffic matrix from link measurements is easy, but this is rarely the
case. Usually, the matrix is highly underconstrained.

There are two main assumptions implicit in this observation model. It assumes the traffic matrix is
stationary, i.e.,, its statistical properties remain stable throughout the measurement interval and there
are no errors in the measurement. Stationarity is preserved by choosing an appropriate measurement
interval, say 1 hour (see §4). Moreover, in reality, errors do occur and to account for it, the model is
extended to

y = Ax + z. (3)

The second model is a simple noise additive model often used to test the robustness of an inference
technique. Each element of the additive noise term z typically chosen to be independent and identically
distributed (i.i.d.) white Gaussian noise with mean zero and variance σ2. Often σ2 is kept small, as
large values would result in some elements of y violating the non-negativity constraint. It is for this
reason other distributions may be used, for example, log-normal or gamma distributions. Additionally,
due to the problem of missing link information due to poor SNMP implementation, some of the elements
of y may be missing. Finally, if the given routing matrix A is incorrect, the observations y would
significantly depart from the true SNMP link counts. However, most works assume an accurate A
because there are reliable methods for obtaining routing information [79].
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There are usually many less links than the total number of IE pairs, and so the inverse problem
above is highly underconstrained. Whether noise is present or not there may be an infinite number of
solutions x that fit the observations (1). Figure 3 shows a picture of such a network, where we only
measure at the bottleneck. Now, even in this very simple network the equations y1 = (1, 1)T (x1, x2)
are underconstrained. In order to make progress, some additional information needs to be assumed,
usually in the form of a traffic matrix model, and we shall consider some of these in the following
section.

1 1
y = x + x

2

2

43

1
route 1

route 2

Figure 3: A harder inference problem where we only have one measurement, but two traffic elements to
estimate. There is therefore a fundamental ambiguity in this problem.

There are other strategies for measurement. For instance, if MPLS is being used, this creates
a set of tables (in many implementations) that can almost be read directly to obtain the matrix
(e.g., see [10]). Alternatively, the network operator may have more accurate local traffic matrices,
obtained through specific functionality at the routers. It is, in principle, easy for a router to keep
counts of its decisions [92], essentially amounting to a table of the volumes of traffic between pairs
of interfaces. Locality here is defined in the sense of the matrix’s restriction to a single router – we
essentially see an IE traffic matrix of the single router’s interface. These local matrices from all routers
in the network can be used to improve the estimation of the IE traffic matrix; see §5. On some special
cases, such as a star network, a single local matrix would be equivalent to the traffic matrix, serving
to highlight the information gain from local traffic matrices. These matrices provide greater than a
two-fold increase in accuracy of the tomography estimation schemes by [56,97].

4 Models

In this section, several canonical as well as recently proposed models are presented. Modelling is divided
into three categories: purely temporal modelling, spatial modelling and spatio-temporal modelling.

4.1 Temporal Modelling

Purely temporal models only focus on the time series properties of the traffic matrix. A key application
of these models is in anomaly detection, so as to be able to pinpoint the time and location of the
anomalous event. This is especially vital in detecting attacks on the network or worm outbreaks.
However, temporal behaviour is also important in prediction, say for planning capacity of a future
network.

Before delving into the models, some basic issues regarding the temporal properties of OD flows
need to be understood. It is commonly agreed that IP data traffic is rising exponentially, and has been
for more than a decade [2,22,40,62]. There was much early controversy about such growth estimates,
because the growth rate was vastly overestimated based on a small sample of data. However, these days,
exponential growth is considered the common case (though with a much lower rate of growth), and
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Figure 4: Australian Internet traffic volumes from 2000-2012. The dashed line shows a linear fit to the data.
Note the log y-axis, so the plot shows quite a reasonable fit to exponential growth with a doubling period of 473
days. Over the same period the growth in broadband subscribers has been almost exactly linear (soon this trend
must decrease as a large proportion of Australia’s population are now connected), so most of the growth has
come from growth in the amount downloaded per customer.

is justified both by data, and as a consequence of increasing computational and networking speeds,
governed by Moore’s and Gilder’s laws respectively. As of the present, the introduction of mobile
devices and the rapid growth of traffic from these devices are set to further increase data traffic in the
years to come. Cisco (who admittedly have a vested interest in a high forecast) estimate that “Annual
global IP traffic will surpass the zettabyte threshold (1.3 zettabytes) by the end of 2016” [2].

Relatively few countries appear to monitor their national traffic, but Australia is an exception.
The Australian Bureau of Statistics have collected and published traffic statistics for many years [3].
Figure 4 shows the growth of traffic in Australia from 2000-2012.

Regardless of your belief about the rate of growth, and/or the best model (exponential is common,
but linear and logistic models may also be appropriate in many cases), any model of long-term traffic
needs to be able to incorporate such growth.

Second, most network traffic is human generated. Therefore, it stands to reason that traffic is
influenced by human activity in a 24 hour cycle. In fact, distinct diurnal patterns have been observed,
with peak traffic occurring around mid-day and throughs during the night. This can be seen in
Figure 5, where the traffic rate of a large ISP is plotted over the span of a week in May 2001 and
over a single day. Peak traffic rate is noticeably significantly less on the weekends. This correlates to
the daily schedule of an average human being, where mid-day traffic is generated for work or school
purposes, while the lack of traffic during the night correlates to sleeping periods. The regularity of this
behaviour can be quite strong as shown in Figure 5 where successive weeks’ data are overlaid so one
can see how closely they match. This degree of regularity is only seen in large aggregates of traffic (the
figure shows the traffic for a large PoP in North America), but most traffic measurements see some
measure of cyclic behaviour.
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(a) Traffic rate over the span of a single week starting
from the 7th of May 2001, with the traffic rate of the
following week overlaid.
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(b) Traffic rate of a single day, 8th of May 2001, on
the same ISP, with traffic on the 15th of May 2001
overlaid on top.

Figure 5: Observations of the cyclicality of the total traffic rate of a large PoP.

Third, and leading from the last point, the traffic volume itself is dependent on the measurement
period and the aggregation level of traffic. At very short scales, in milli-seconds or seconds, the
traffic distribution is highly variable, and shows strong dependencies, making use of such measures
statistically non-trivial, even if such measurements were easy to collect. A common paradigm is to
consider a measurement interval of minutes to an hour, where measurement is easy. Also important is
the fact that at these times scales stationarity5 of the traffic volume distribution is often a reasonable
assumption, though we can see the limits of this in Figure 5 (stationarity clearly doesn’t hold for more
than a couple of hours), however it was shown that cyclo-stationarity holds to a large extent [81].

Fourth, there are natural variations in traffic over time, and these are often modelled as a random
(or stochastic) process. This random process could have all sorts of features, but there are some basics
that should be observed by all reasonable models. For instance, Network operators aggregate traffic
from multiple sources, which is known as multiplexing. Multiplexing is used to boost the efficiency of
the links in a network by “smoothing” out variations in traffic. The apparent smoothness is a result
of decreases in the relative variance, as predicted by the central limit theorem [73]. The more OD
flows multiplexed on a link, the higher the efficiency and smoothing effect, provided the aggregated
bandwidth does not exceed link capacity. Thus, any model for the large traffic rates in a network must
be consistent under multiplexing, for example, when the number of flows being multiplexed is increased
the relative variance should decrease in a predictable manner. Furthermore, the statistical properties
of the aggregated traffic must also be consistent with the statistical assumptions of the traffic from a
single user.

Finally, although rare, sometimes there may be sudden “spikes” in traffic. Such a component may
arise from unusual traffic behaviour, such as DDoS attacks, worm propagation or BGP routing insta-
bility from misconfiguration. Flash crowds are also an example of this behaviour, which happens when
there is a significant jump in the number of clients to a particular web server or content distribution
network. Extreme unforeseen events, such as the September 11 attacks on the World Trade Centre in
2001 may instead cause a significant drop of traffic rates. In any case, a massive shift in traffic rates

5Stationarity refers to the concept that the statistics of the traffic (for instance the mean and variance, but in general
including all statistics) are constant with respect to the time at which they are measured. In Internet traffic data it is
only ever approximately true. Moreover, it is hard to test for stationarity when traffic has long-term correlations, and
so we can only ever talk about the degree of stationarity.
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would be of interest to a network operator.
One temporal model of OD flows traversing backbone routers was proposed by Roughan et al. [74]

by generalising the Noros model [59], originally used for modelling LAN traffic. Each OD flow is
assumed to be generated from an independent source. The model is characterised by the following
components (at time t):

(i) L(t), the long term traffic trend,

(ii) S(t), the seasonal (cyclical) component,

(iii) W (t), random fluctuations, and

(iv) I(t), the anomaly component.

These components correspond to the observations of traffic described earlier.
The long term trend, L(t), depends on the observed underlying traffic growth in the data. An

exponential growth model for instance, could be found by fitting L(t) = A exp(ct) to the data, with
the parameters A and c easily estimated via log-linear regression as in Figure 4. The cyclicality of
the seasonal component is S(t + kTs) = S(t) for all integers k, with a period Ts. The component
W (t) is assumed to be a stochastic process with zero mean and unit variance, capturing the spurious
components of the traffic. I(t) captures the large variability of traffic from anomalies. These events
were captured in an individual component to separate their influence from normal traffic.

Let x(t) denote the volume of an OD flow at time t. The model takes the following form,

x(t) = m(t) +
√
am(t)W (t) + I(t), (4)

where m(t) = S(t) ·L(t) is the mean of the OD flow, assumed to be a product of the seasonal and long
term trends, and a is the peakedness of the traffic. The average is modelled in such a way because as
large OD flows have a larger range of variation in the size of their cycles. The parameter a controls
the smoothness of the OD flow’s volume in a way that is consistent given multiplexing of aggregated
flows.

One nice feature is the preservation of the properties of the model through a linear combination,
advantageous when looking at the aggregated behaviour of the OD flows. Consider K aggregated OD
flows, then

xagg(t) =

K∑
i=1

mi(t) +

K∑
i=1

√
aimi(t)Wi(t) +

K∑
i=1

Ii(t).

The mean of xagg(t) is simply magg(t) =
∑K

i=1mi(t), and the peakedness is the weighted average of

the component peakedness, aagg = 1
magg(t)

∑K
i=1 aimi(t). The linearity properties allow xagg(t) to be

expressed in the same form as (4) with the new parameters magg(t) and aagg. The linearity property
enables the consistent computation of the variances of the aggregated traffic, which is useful for network
planning and analysis. Besides this, [74] demonstrated the ease of estimating the parameters of model
(4), via simple estimators and filtering.

The cyclical nature of the aggregated OD flows is also amenable to Fourier analysis. The Fourier
transform decomposes a periodic signal into a weighted sum of sinusoids with distinct frequencies and
phases. It would be reasonable to assume the observed cycle can be represented by a small number
of Fourier coefficients, since the cycle is close to the shape of a sinusoid (see Figure 5 for instance).
Indeed, it has been demonstrated this is the case with the traffic volumes [31, 82], where as little
as just 5 Fourier coefficients were needed to achieve low error in fitting large OD flows of a Tier 1
network, demonstrating the relatively few significant frequencies present in a diurnal cycle of the OD
flows. Figure 6 shows a similar analysis of Abilene data. It shows a simple example of the excellent
degree of approximation to traffic we can obtain using only a very small number of Fourier coefficients
corresponding to daily periods. The figure shows the important components of the power-spectrum
of two weeks of Abilene data, clearly highlighting the importance of the daily and weekly cycles.
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Figure 6a shows two weeks of data, and Figure 6b shows a zoom in of the important region of the
Discrete Fourier Transform (DFT). We can see that only a few peaks (with frequencies of 1, 2, 7, and
14 cycles per week, corresponding to daily and weekly cycles and their harmonics) are large enough to
matter for gross features. The approximation curve in Figure 6c is generated using only the largest 13
of these terms.
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Figure 6: Fourier analysis of Abilene data.

The choice of time interval to use in Fourier analysis/approximation is interesting. A longer interval
provides more data, and hence better estimates if the data is truly cyclostationary6. However, as we
earlier discussed, there are noticible trends in the overall volume, and so it is reasonable to assume
that there will sometimes be significant shifts in the pattern (with respect to time of day or time
of week). In these cases, extending the length of the dataset can confuse the statistical variability
with non-stationary affects, resulting in biased estimates. The best tradeoff appears to depend on the
dataset, but periods of perhaps a month seem to work reasonably well for estimating weekly cycles.

Principal components analysis (PCA) has also been employed to quantify the temporal correlations
of the traffic matrix. If X is a matrix where the rows represent a measurement (for instance a OD flow)
and columns represented traffic volumes at time t, then temporal PCA decomposes the matrix XTX
into its corresponding components of eigenvalues and eigenvectors. Often, each column is centred,
simply by subtracting the mean vector x̄, the average of all columns, from each column in X . In what
follows, X is assumed to be centred.

The matrix XTX is positive semidefinite. Visualising this geometrically, if the columns of the
matrix is reinterpreted as a set of points, then they trace out an ellipsoid. Alternatively, XTX may
be viewed as the empirical covariance matrix of the columns of X , in effect computing temporal
correlations in traffic.

PCA is used to find the directions of greatest variance of XTX by decomposing XTX = WDWT,
where W is an orthonormal matrix containing the eigenvectors of XTX and D the diagonal matrix
containing the eigenvalues of XTX . The eigenvectors are known collectively as principal axes. Thus,
every column of X can be expressed as xk = aT

k W, i.e., a linear combination of a coefficient vector
ak, called the principal components. Here, W is equivalent to a linear transform, post-multiplied to
the data. Intuitively, if the size of the set of principal axes with large principal components are small,
then this is evidence there are high temporal correlations between the traffic flows.

As an aside, PCA may be performed on XXT, in effect computing the spatial correlations of X
instead. Here, we have XXT = VD̃VT, with each column xk = Vãk, equivalent to V pre-multiplied
with the data. Spatial PCA was used in the context of anomaly detection [47–49] but there are
problems with this approach. These discussions are deferred to §5.

6A cyclostationary process can be thought of as one who component processes formed from times embedded at
multiples of the fundamental period form stationary sequences.
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Figure 7: Principal components analysis of the empirical covariance matrix of a two dimensional data matrix
of 1000 centred points X . Here, “PC 1” and “PC 2” are the principal components. Note the elliptical shape
of the contours of the density with semi-major and semi-minor axis given by the first and second principle
components, respectively.

Figure 7 demonstrates an example of PCA performed on the covariance matrix of 1000 two dimen-
sional data points with zero mean, i.e., X has 2 rows and 1000 columns. The matrix XTX formed
by the data points vaguely resembles an ellipse. Here, there are two principal components, denoted
by “PC 1” and “PC 2”, with the higher variance captured by PC 1. This is clear from the way the
points on the figure are distributed. The key point to takeaway is that both components captures the
direction of highest variance and are orthogonal to each other. Moreover, the principal components
matrix W has PC 1 and PC 2 as its first and second columns respectively. Each data point can be
expressed as linear combination of these two components. The concept is easily extended beyond two
dimensions to the larger dimensions typically encountered with traffic matrices.

PCA was performed by Lakhina et al. on empirical data from two backbone networks show that
OD flows are a combination of no more than 35 “eigenflows” (the principal axes), and in fact, fewer
than this in general [50]. These eigenflows belonged to one of three categories, depending on their
properties:

(i) deterministic or d-eigenflow: generally the significant diurnal component of the largest OD
flows. Although present in smaller OD flows, these eigenflows are less significant. These eigen-
flows have a cyclo-stationary property and suggests that these eigenflows may be approximated
by a small number of Fourier coefficients. These eigenflows account for the majority of the total
traffic of the OD flow.

(ii) spike or s-eigenflow: medium sized eigenflows with a spikiness behaviour in time, with val-
ues ranging up to 5 standard deviations from the mean of the OD flow. This suggests these
contributions come from bursty processes and may be modelled by a wideband Fourier process.

(iii) noise or n-eigenflow: small eigenflows behaving like stationary additive white Gaussian noise.
These eigenflows have small energy and their contribution to overall traffic is negligible. The
majority of eigenflows from Lakhina et al.’s datasets belong to this category.

There are several eigenflows belonging to two or more categories, but these eigenflows are rare [50]. For
the most part, these categories are very distinct for almost all eigenflows. The low number of eigenflows
compared to the dimension of the traffic matrices under study suggests low intrinsic dimensionality of
traffic matrices. In many senses PCA confirms the previous analysis and modelling, but it is interesting
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because its approach simply looks for correlations across different sets of measurements, and uses a
different set of assumptions from, for instance, Fourier analysis which can be performed on a single
time series.

Finally, it is important to note that the full data needs to be available (no missing entries in X ) in
order to perform PCA. Furthermore, PCA is not a robust method, since it is an entirely data driven
method and is therefore sensitive to outliers. Robust variants have been proposed but they necessarily
complicate the basic version of PCA presented here, since these modifications entail constructing
methods to identify and exclude outliers. Despite these disadvantages, in its purest form, PCA is a
useful tool to learn the temporal structure of traffic flows.

4.2 Spatial Modelling

Spatial models only focus on the properties of traffic between source and destination pairs, typically
within a single measurement interval, without regard to how the traffic changes in time. The major
models presented here are the gravity model and its generalisation, the discrete choices model, the
independent connections model and low rank spatial models, but we shall start with the simplest test
models. For ease of exposition in this section, the set of sources and destinations are assumed to be
sets of PoP ingress and egress nodes, denoted by I and E respectively. The set Ω represents the set of
all nodes in the network, i.e., Ω = I ∪ E .

4.2.1 Simple test models

We must remember that the purpose of models is not always to “realistically” represent a network’s
traffic. Their purpose is to provide inputs to other tasks. One common task is to assess the sensitivity
of a network to different types of traffic, and to that end, engineers can consider the affect of various
artificial test models.

Three such are the uniform traffic model, peak load model, and focussed overload model. They are
extremely simple:

uniform this simple model simply assigns the same value to all traffic matrix elements. It is used to
provide a base load in some experiments, or to see the behaviour of a network under one extreme
(the most uniform extreme) of traffic.

peak load this model is equally simple, and equally extreme. It has zero for all loads except one OD
flow. It simulates the opposite extreme where the aim is to see the affect of one dominant flow.

focussed overload this type of TM simulates the affect of a focussed overload, of flash crowd7, where
many users become interested in one location or resource and the traffic to this single location
from all other sources is the dominant affect in the network. As a result, the focussed over can be
represented by a matrix with all elements zero, except for one row. We can likewise represent a
focussed traffic load arise from a single point (say as response traffic to a focussed set of queries)
by a matrix with a single non-zero column.

The advantage of each of the models lies in its simplicity. The simplicity means that the affect of
the traffic is easy to interpret, and thus gain insights from these models where a more complex model
would perhaps confound us with multiple potential causes for some results. For instance, in each of
the above models we can gradually increase the traffic to see when capacity bounds are reached, and
where those bounds would be reached in order to identify potential bottlenecks in a network.

4.2.2 Gravity model

The gravity model is perhaps the next simplest type of model, but it has a great deal to offer. In
its simplest form it assumes, for any given packet, the source and destination nodes are independent.

7See also the slashdot effect.
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Depending on context, this could be the origin and destination, or ingress and egress nodes respectively.
Consequently, the traffic between two nodes is proportional to the total traffic from the source node
to the destination node. The gravity model is amongst one of the most well-studied models and is
considered a canonical first generation model.

The name of the model derives from Newton’s model of gravitation, where the gravitational force is
proportional to the product of the mass of two objects divided by the distance between them squared.
The general formulation of the gravity model is defined by two forces: the repulsive force (factor) Ri,
associated with “leaving” from i and the attractive force (factor) Aj , associated with “going” into j.
Its general form is described by the following equation:

Xi,j =
Ri ·Aj

fi,j
, (5)

where fi,j represents the friction factor, which describes the weakening of the forces (akin to distance
in Newton’s model), depending on the physical structure of the modelled phenomenon. The model
has been used extensively in various fields, for instance the modelling of street traffic [64].

In the context of Internet traffic matrix modelling, the friction factors have typically been taken to
be constant. That is, distance is assumed to have little effect on network traffic. That certainly seemed
to be true even at a fairly large scale in the past, but it is unknown to what extent the deployment of
CDNs (Content Distribution Networks) over the last few years has changed distance dependence, or
how inter-country matrices are affected by distance (for instance through language barriers). Where
distance is ignored, equation (5) becomes

Xi,j =
X in

i ·Xout
j

Xtotal
, (6)

where X in
i is the total traffic entering the network through i, Xout

j is the total traffic exiting the

network through j and Xtotal is the total traffic across the network [97]. The model can be expressed
succinctly as the single rank matrix

X =
xin · xout T

Xtotal
. (7)

The popularity of the model stems from the ease of estimating the X in
i and Xout

j for each node pair
(i, j), and especially at the PoP or backbone level, since the level of traffic aggregation mitigates errors
in the estimation of these quantities from sampled traffic.

The gravity model only captures the spatial structure of the traffic. The key assumption of the
gravity model is the independence between each source i and destination j. Coupled with the as-
sumption that none of the nodes act as a source or sink of traffic (i.e., that traffic is conserved in
the network) Xtotal =

∑
k∈I X

in
k =

∑
`∈E X

out
` . Under normal operating conditions in most backbone

routers, where congestion is kept to a minimum, the conservation assumption appears reasonable.
With this assumption,

Xi,j = Xtotalpin
i p

out
j , (8)

where

pin
i =

X in
i∑

k∈I X
in
k

, pout
j =

Xout
j∑

`∈E X
out
`

,

are the proportions of traffic entering the ingress and exiting the egress nodes respectively, called
fanouts. The formulation (8) is known as the fanout formulation because it describes how a packet
entering via node i is distributed to several nodes j ∈ E . Fanout has been demonstrated to be close
to a constant over several measurement intervals, compared to the traffic matrix [56], suggesting the
fanout may be a better alternative to measure and use in, for instance, anomaly detection, than the
raw traffic volumes.

Observe the implication of independence between the source and destination in (8): Pr(I, E) =
pin
I p

out
E . An immediate consequence is Pr(E | I) = Pd(E), where Pd(E) is the marginal distribution
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of the traffic demand distribution at the destinations. The assumption of independence between the
source and destination leads to two important properties of the gravity model making it well suited to
traffic matrix modelling.

Theorem 1 (Independence). Independence between the source and destination holds for any randomly
chosen submatrix of the model.

Proof. The independence property implies Pr(s, d) = pin
s p

out
d , holding for every s ∈ I and d ∈ E . This

condition would also hold for a subsample of locations in I and E .

Theorem 2 (Aggregation). An aggregate of the gravity model is itself also a gravity model.

Proof. Let all nodes be partitioned into N subsets {S1,S2, · · · ,SN}, with Si ∩ Sj = ∅ for i 6= j and
∪Ni=1Si = Ω. The aggregated traffic matrix is defined as

XSi,Sj =
∑
i∈Si

∑
j∈Sj

Xi,j . (9)

The independence condition implies

Xi,j =
Xi,Ω ·XΩ,j

Xtotal
. (10)

Substituting (10) into (9),

XSi,Sj =
∑
i∈Si

∑
j∈Sj

Xi,Ω ·XΩ,j

Xtotal

=
1

Xtotal

∑
i∈Si

Xi,Ω

∑
j∈Sj

XΩ,j

=
XSi,Ω ·XΩ,Sj

Xtotal
.

which is also a gravity model.

These are not just theoretical results. Any model should be consistent in the sense that if the data
to which it applies is viewed in a different way (for instance by sampling or aggregation) then the model
should still apply (though its parameter values may change). It seems like an obvious requirement,
and yet there are many model to which it does not apply.

The utility of the gravity model is not just restricted to network measurement. It is used in various
areas: teletraffic modelling [45,51], economy and trade [65,90], epidemiology [36,57,95], sociology [85],
the retail industry, specifically Reilly’s law of retail gravitation [24, 43, 67], and in vehicular traffic
modelling [32]. More advanced discussion on the gravity model (albeit with an economics flavour) is
found in [78].

The gravity model can be interpreted in terms of the principle of maximum entropy. Entropy
here is the Shannon entropy from information theory parlance [25]. The principle is closely related to
Occam’s Razor, essentially choosing the most parsimonious explanation of the data amongst competing
explanations. With little information regarding the traffic matrix besides the total traffic information,
it turns out that the best one can do, according to the principle, is to describe the observations with
a model promoting independence and symmetry, consistent with known constraints. In this way, the
model enjoys robustness compared to other models, as the gravity model seeks to minimise deviation
from what has already been observed.

The model, however, is not without its drawbacks. The main critique against the gravity model is
in its main assumption: the independence of the ingress and egress nodes8. It has been pointed out
in several papers [33] that this assumption does not hold true. Most traffic between node pairs are

8The difference between OD and IE traffic matrices becomes critical here.
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Figure 8: Traffic flow between two ASes, one in Perth and the other in Sydney. Note the asymmetry in traffic:
due to the action of hot potato routing, the path taken by a traffic flow from Perth to Sydney differs from the
reverse path, since the closest router is always chosen.

determined by connections, for example TCP initiated sessions, so there exist dependencies between
node pairs. The second is the violation of the conservation of traffic assumption, for e.g., when there
is high congestion, causing packets to be dropped from router queues.

Actual traffic matrices are generally asymmetric, violating gravity models. For example, forward
traffic volumes of a source-destination pair of nodes do not typically match up with the volume of
reverse traffic. Even if the OD traffic matrix matches the gravity model well, the corresponding
IE traffic matrix may be distorted by hot potato routing [63], where the egress point closest to the
ingress point is chosen to route the traffic, in effect causing asymmetric traffic and distance dependency
between ingress and egress points [6]. In short, hot potato routing aims to dump traffic off the network
as quick as possible, so to speak. An example of hot potato routing is in Figure 8. Here, there is a
clear asymmetry since the paths taken by traffic flows from Perth to Sydney differ from Sydney to
Perth. The shortest path computed depends on the closest router to the source and destination.

Thus, although the source-destination independence assumption may hold for OD traffic matrices,
it may not necessarily hold for IE traffic matrices, due to distortion by inter-domain routing. Consider
a simple toy example of a network in Figure 9 (originally from [6]). The ASes A, B and C are assumed
to be connected, with A having three routers: 1, 2 and 3. The inter-domain routing protocol between
these ASes uses hot potato routing, seeking the shortest path between these ASes.

Suppose Xtotal = 9. Consider an OD traffic matrix with the form of a gravity model, with even
spread of traffic over each internal router 1, 2 and 3, with xin = xout = x. The OD traffic matrix has
form XOD = xxT/Xtotal, with x = (1, 1, 1, 3, 3)T, and written explicitly as

XOD =

1 2 3 B C
1
2
3
B
C


1/9 1/9 1/9 1/3 1/3
1/9 1/9 1/9 1/3 1/3
1/9 1/9 1/9 1/3 1/3
1/3 1/3 1/3 1 1
1/3 1/3 1/3 1 1

 . (11)

By Theorem 2, the gravity model for the aggregated OD matrix, comprising OD traffic volumes between
ASes A, B and C, is given by

X′OD =

A B C
A
B
C

 1 1 1
1 1 1
1 1 1

 , (12)

simply by summing the traffic in the internal nodes. In this case, X′OD = xxT/Xtotal, with x =
(3, 3, 3)T, still a gravity model.

In order to construct the IE traffic matrix, the ingress and egress points of the network in A needs
to be determined. The following assumptions are made:
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Figure 9: Example toy network with three ASes: A, B and C are all assumed to be peers. The routers 1, 2
and 3 are internal to A.
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(a) Internal traffic within A.
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(b) Incoming traffic to A.
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(c) Outgoing traffic from A.
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(d) Traffic external of A, between B and C.

Figure 10: Traffic flows within the network of Figure 9, classified into four components.
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(i) A, B and C are peers,

(ii) the shortest AS path protocol is used for inter-domain routing,

(iii) hot potato routing is used internally by A, and

(iv) the Interior Gateway Protocol (IGP) weights are all equal.

Suppose ingress and egress points are defined by the following routing table (∗ represents a wildcard
character)

Origin router Destination Egress router
1 B 2
1 C 3
2 * 2
3 * 3

The path for each traffic flow in the network, therefore, differs depending on its source and destination.
All traffic flows between the PoPs may be decomposed into four components: internal traffic within

A, traffic departing A, traffic coming into A and traffic external to A, shown in Figure 10. The internal
traffic of A (Figure 10a) is just the top-left 3× 3 submatrix of XOD, which is

Xinternal =

1 2 3
1
2
3

 1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

 (13)

Traffic bound for A, as seen in Figure 10b to be specifically for router 1 in this instance, from its peers
has entry points controlled by B and C, given the above routing table. Hence, from A’s point of view,
the traffic behaves as if the traffic randomly distributed across ingress links. Assuming the traffic is
evenly spread, the traffic matrix is

Xarriving =

1 2 3
1
2
3

 0 0 0
1/3 1/3 1/3
1/3 1/3 1/3

 (14)

Traffic departing from A, seen in Figure 10c as originating from router 1, and routed by hot potato
routing, is described by

Xdeparting =

1 2 3
1
2
3

 0 1/3 1/3
0 2/3 0
0 0 2/3

 (15)

Since A does not provide transit for B and C, traffic external to A, i.e., between B and C, should not
appear on A, the traffic will remain unseen by A (Figure 10d). Thus, the total IE traffic matrix is the
sum of the component traffic above, so that the entry and exit points match, and is given by

XIE =

 1/9 4/9 4/9
4/9 10/9 4/9
4/9 4/9 10/9

 . (16)

The matrix XIE is not X′OD in (12), simply due to traffic asymmetry resulting from hot potato routing.
Moreover, the assumption of the conservation of traffic no longer holds, since the total traffic of X′IE
is not equal to Xtotal. The diagonal terms, for example, are much larger than in X′OD. This example
demonstrates that even if the OD traffic matrix is generated from the gravity model, the IE traffic
matrix not necessarily has a structure that conforms to the gravity model.
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Assumptions on the gravity model are more likely to hold for large backbone networks where large
aggregates of traffic are being observed. On smaller, local area networks, its effectiveness is limited.
Finally, the friction factor fi,j may not necessarily be constant in actual traffic matrices, possibly due
to different time zones [72], especially for a global spanning network, language barriers, or the increased
deployment of CDNs.

The gravity model by itself incurs significant estimation error as the estimates obtained typically
do not match the observed link counts. Due to violations of these assumptions, the gravity model
turns out to be inaccurate when used in traffic matrix estimation. For example, it was reported to
have ±39% accuracy when used in estimating traffic matrices [70].

Despite the flaws mentioned, the gravity model was reported to be a good initial estimate to more
sophisticated methods. The model was paired with SNMP link measurements to develop the so-called
tomogravity technique [97]. The gravity model is also surprisingly useful in the synthesis of traffic
matrices. When proposed as a method for synthesising traffic matrices by Roughan [70], the gravity
model serves as an excellent first order model for generating the cumulative distribution function of the
traffic demands, closely mimicking the statistical properties of actual traffic matrices. While the basic
gravity model may not necessarily be an optimal model, it is a simple and good first order model for
estimation and synthesis purposes, and it can be improved to take into account the factors described
above.

4.2.3 Generalised gravity model

In order to improve the efficacy of the basic gravity model and to address its deficiencies, a generalisa-
tion of the gravity model was developed [98,99]. In a nutshell, the assumption of independent ingress
and egress nodes was relaxed by dividing traffic into several classes of ingress and egress nodes, evident
from the example in the previous section. Independence only applies to traffic belonging within a
certain class, effectively enforcing a conditional independence criterion. Such an assumption is closer
to actual conditions between ingress-egress pairs in a network.

In particular, the model now accounts for asymmetry of the IE traffic matrix. To account for
the effect from hot potato routing, traffic is separated into classes based on peering and access links.
Consider again the network in Figure 9. From the figure, two classes can be defined: internal and
external classes. There are then four types of source-destination links (see Figure 10): internal to
internal, internal to external, external to internal and external to external.

In the generalised gravity model, independence between nodes are only assumed between the in-
ternal to internal class and the external to external class. Thus, routers 1,2 and 3 in ASes A are
independent to each other, and so are ASes A, B and C to one another, but not traffic from 2 to B,
for instance.

Thus, in the generalised gravity model, a modification is made by ensuring the independence
assumption still holds, but only when conditioned within each traffic class. In terms of probabilities,
traffic is conditionally independent, as formulated below for the joint fanout distribution of the sets of
access nodes of the network of interest A and and peering nodes P respectively:

pS,D(s, d) =


pS(s)
pS(A)

pD(d)
pD(A) (1− pS(P)− pD(P)), for s ∈ A, d ∈ A,

pS(s) pD(d)
pD(A) , for s ∈ P, d ∈ A,

pS(s)
pS(A)pD(d), for s ∈ A, d ∈ P,
0, for s ∈ P, d ∈ P.

(17)

The four probabilities corresponds to the four cases in Figure 10. In particular, as per intuition, peering
traffic is set to zero, since this class does not transit the network of interest.

The stratification of traffic into several classes results in an improved model. Its performance in
the traffic matrix estimation results is significantly better than the basic gravity model [98]. Further
stratification beyond separating peering and access nodes is possible. For example, the origin of the
traffic, whether from a fixed location or mobile device, or the destination of the traffic, depending on
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application profiles, may be defined as new classes in the model. However, further classification in this
manner is only possible with more side information available.

The generalised gravity model is superior to the basic model, but gravity models in general have
been somewhat tarnished by the same brush. Most works benchmarking the performance of various
models, for instance for estimation, compare against only the simple gravity model, but make confusing
statements that could lead one to believe that all such models are faulty. In fact, the generalised gravity
model is vastly superior, but rarely used outside of the company at which it was first developed —
AT&T. The chief reason is that the model requires additional topological and routing data, and for
the external traffic flows to be mapped using this data. This is a non-trivial task. In addition, in many
external studies researchers have not have access to, in particular, knowledge on access and peering
links in the network under study network. Network operators are not open to releasing information
on their networks to the public, however, the Abilene dataset used in [99] is publicly available, and
contains enough information to make such comparisons.

4.2.4 Discrete choice models

Another proposed model is the choice model, introduced by Medina et al. [56]. The basis of the Discrete
Choice Model (DCM) is the theory of choice models for decision behaviour, originally developed in
psychology, and later expanded upon by researchers in other fields, more recently in economics, by
Daniel McFadden, for which he won the Nobel Prize in Economics in 2000 (see for example, [54]).

Choice models are popular in econometric applications as the model is used to describe a simplified
underlying mechanism of rational decision behaviour. It has been used for transportation analysis,
econometrics, marketing and consumer theory. The main inspiration for its use in Internet modelling
comes from [86], where a choice model is used in the context of modelling the behaviour of travellers
between the cities of Maceio and Sao Paulo, two cities in Brazil, as it parallels traffic traversing PoPs.

The choice model is defined by four elements:

(i) the decision makers,

(ii) the set of alternatives (choices),

(iii) the attributes of the decision maker and the set of alternatives, and

(iv) the decision rules.

All these elements play a key role in ultimately determining the decision process. The decision makers
represent the agents making the decisions on which choices to go for. The set of alternatives characterise
the set of possible actions the agents can choose. Each decision maker executes several choices based
on its own inherent properties, or attributes, as well as the attributes of the set of alternatives. These
attributes predispose a decision maker to certain alternatives. Finally, the decision rules determine
how choices are made. How good a choice is, is measured by a standard based on a set of criteria. The
rules establish constraints on the choices of the decision makers, enforcing consistency in the entire
system. All four elements of the model aim to capture how agents would naturally decide on several
differing choices in a system, in a rational and consistent way, based on a set of rules.

In the context of network traffic modelling, there are two interdependent factors influencing choices.
First, the network users’ behaviour determine much of how traffic flows are generated, as discussed
§4.1. Second, the network design and configuration plays a very important role in how traffic flows are
delivered on the network. Routing protocols, policies, QoS as determined by the network operator and
the geographical local of routers and PoPs determine how traffic is transported within the network
and between networks. One could visualise this as a two level process: users generate the traffic flows,
determining the source and destination of each flow, whereupon it is routed through the network based
on its design and the policies imposed on it.

All four elements have direct analogies in the context of network traffic modelling. The decision
makers are the set of ingress nodes, which aggregates all information about user behaviour and network
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design and policies. The set of alternatives are the set of egress nodes, which aggregates the information
about the users connected to these nodes. Thus, each decision maker i has a choice set C ⊆ E . Each
node i, a decision maker, is modelled by the equation, for all j ∈ C,

U i
j = V i

j + εij , (18)

where U i
j denotes the utility between the node pair i and j, V i

j aggregates the information from the

user behaviour and network design, which is deterministic, and εij is a random component to account

for missing information from unknown factors. The term V i
j can be thought of accounting for the

level of attractivity of a destination node j. In [56], the authors proposed M -attributes per decision
maker-choice pair, such that

V i
j =

M∑
m=1

µmω
i
j(m) + γj , (19)

where ωi
j(m) denotes the m-th attribute, µm are weights to account for the relative importance of the

m-th attribute, and γj is a scaling term for other factors for attractivity, besides all M attributes. An
attribute ωi

j(m) could be the size of the destination node PoP, since a large egress PoP is more likely
to have traffic exiting from it, or the number of peering links the destination node j has.

Based on the above, the work [56] proposed a traffic matrix model that assumes the decomposition

Xi,j = Oiαi,j . (20)

The parameters Oi and αi,j , ∀j denote the total outgoing traffic volume from node i and the fanout
of node i respectively. For each i,

∑
j αi,j = 1. The total traffic from a node Oi is known from

SNMP data. Observe that the traffic matrix is now parameterised by the fanout distribution which
has a direct analogy in the gravity model. In inference applications, it is the fanout distribution
being estimated, thus indirectly inferring the traffic matrix, rather than directly estimating the traffic
demands. Fanouts have been shown to be generally stable over a measurement period (several hours),
compared to traffic demands [42], which is advantageous in traffic matrix estimation, since the stability
contributes to more accurate inference.

The fanout distribution is determined by a decision rule. In [56], a utility maximisation criterion
was used,

αi,j = Pr(U i
j = max

k∈C
{U i

k}). (21)

Now, αi,j is a random quantity as it depends on εi,j , as observed from equation (18). A natural starting
point is to assume εij is i.i.d. Gaussian distributed with mean 0 and variance 1. This transforms (21) to
the well-known multiple normal probability unit or m-probit model [53]. However, there is no closed
form for (21) under this assumption. Instead, by assuming εij is i.i.d. distributed following the Gumbel
distribution, the m-probit model can be approximated, with (21) now having a closed form. This
model is popularly called the multiple logistic probability unit or m-logit model [53]. The closed form
is simply

αi,j =
exp(V i

j )∑
k∈C exp(V i

k )
, (22)

implying that

Xi,j = Oi

exp(V i
j )∑

k∈C exp(V i
k )
. (23)

The difficulty lies in determining what attributes should be included. The authors considered two
models which they empirically validated:

(i) V i
j = µ1ωj(1) + γj , where ωj(1) denotes the total incoming bytes to an egress PoP j, and

(ii) V i
j = µ1ωj(1) +µ2ω

i(2) + γj , where in addition, ωi(2) denotes the total bytes leaving the ingress
PoP i.
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In general, the second model is more accurate, owing to the additional attribute, it is not know if it is
just a case of overfitting or the new parameter is truly useful.

The choice model is a variation of the gravity model. In particular, looking back at equation (20),
the total traffic outflowing from ingress i may be regarded as the repulsion factor, while the parameters
αi,j combining both the attractiveness factor and the friction factor. A quick comparison of the choice
model to (8) will show the strong link between both models. The choice model, however, has a larger
number of parameters to account for the attributes of the decision maker and set of alternatives.

4.2.5 Independent connections model

The independent connections model (ICM) was introduced in [33, 34]. Unlike the gravity model, this
model discards the assumption of independence between the ingress and egress nodes, and instead fo-
cuses on the connections between nodes. More specifically, the model differentiates between initiators,
nodes that initiate a traffic connection, such as a TCP connection, and responders, the nodes that
accept these connections. The independence assumption comes in by assuming that each initiator and
responder are independent, in effect, resulting in independent connections.

The inspiration for the ICM comes from traffic characterisation studies, specifically on TCP be-
haviour. TCP creates two-way connections in response to a SYN packet. Although it is common for
the majority of traffic to flow in one direction, there is also a smaller reverse flow. Common examples
include an HTTP query, which involves query packets flowing in one direction, and a much larger set
of data flowing in the other as a response, or an FTP transaction which may involve mainly data flow
in one direction, but the forward packets require acknowledgement packets in the reverse direction.
Therefore, the model uses the notion of a connection: a two-way exchange of packets between an
initiator and a responder, corresponding to the ingress and egress nodes.

Three parameters were defined as a product of these studies. The first parameter, the forward
traffic proportion fi,j is the normalised proportion of forward traffic from a connection between ingress
i to egress j, measured in packets or bytes and 0 ≤ fi,j ≤ 1, ∀i ∈ I and j ∈ E . The second parameter
Ai describes the activity level of the users at i (the A stands for ‘activity’). Finally, some nodes may be
chosen for connection more than others, and thus, Pj (stands for ‘preference’) denotes the preference
for node j.

The main assumption of the model is that the probability that a connection responder belongs to
node j depends on j only. The values of Pj for j ∈ E are unnormalised. They are divided by the sum∑

k∈Ω Pk in order to treat them as the probability a node j is a connection responder. The parameters
Ai and Pj were shown to be uncorrelated on empirical data, providing some evidence these parameters
describe two very different underlying quantities.

The model is expressed by

Xi,j =
fi,j ·Ai · Pj∑

k∈Ω Pk
+

(1− fj,i) ·Aj · Pi∑
k∈Ω Pk

. (24)

The first term captures the forward traffic of the connection between initiator i and responder j while
the second term its reverse traffic, generated by the users from i and j respectively. The model may
be viewed as a weighted sum of two gravity models, with one gravity model characterising the forward
traffic, while the other the reverse traffic. Thus potential asymmetries in traffic can be accounted for.

The model is sufficiently flexible to accommodate variations. For example, the simple IC model
modifies one parameter of model (24) by setting fi,j = f , where f is a constant as it has been
observed that f is fairly stable from week to week (at least on the Abilene dataset [34]) simplifying
the model considerably. Another variation, the time-varying IC model includes temporal variation of
the parameters, i.e.,

Xi,j(t) =
f(t) ·Ai(t) · Pj(t)∑

k∈Ω Pk(t)
+

(1− f(t)) ·Aj(t) · Pi(t)∑
k∈Ω Pk(t)

,
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and the stable-fP IC model removes the time dependency of f and the preferences {Pj}j∈I , while
the stable-f IC model only removes the temporal dependence of f . These variations allows trade-offs
between the degrees of freedom of the model and computational complexity, especially when used for
the synthesis or inference of traffic matrices. With less parameters, which was shown to be less than
the basic gravity model, the model is easier to compute.

The parameters {Ai}i∈I and {Pj}j∈E were validated on actual data. Activity levels {Ai}i∈Ω possess
diurnal patterns, corresponding to user access patterns, and a periodic pattern on a weekly timescale.
In particular, activity levels are higher on weekdays compared to the weekend, matching observations
such as Figure 5. There is also a more prominent periodic pattern when considering larger nodes, as
this effect is due to aggregation, as it captures the users with higher activity levels. These observations
are consistent with the temporal properties discussed of traffic matrices discussed in §2. The model
was shown to be effective in estimating traffic matrices, improving over the basic gravity model by
20%− 25% for the GÉANT dataset and almost 10% for the Totem dataset [33,34]. These results and
observations show that average user behaviour is largely stable and predictable, a great boon to traffic
modelling development.

In some ways, the ICM is similar to the DCM, in that both models include parameters to describe
the underlying user behaviour, unlike the basic gravity model. For example, both models have a
parameter to quantify the level of attractiveness of one node (connection) to another. The DCM is
also able to incorporate features of the ICM as well. The differences end there, however. For one,
the ICM has a slightly richer description of the flow connections between nodes, such as the forward
and reverse traffic flows between nodes, whereas the DCM aggregates the information in a single
parameter. The ICM seeks to capture the behaviour of each connection made, rather than merely
model the relationship between nodes, emphasising a different focus compared to the DCM. Thus, the
ICM may account for hot potato routing and other asymmetries in traffic flow.

4.2.6 Low-rank spatial models

The very noticeable feature of both DCM and ICMs is that they can better represent traffic matrices,
but are more highly parameterised. It is, in general, possible to fit a data set more accurately when
more parameters are available, but this presents a difficulty – does one accept the more complex, more
highly parameterised model, or the simpler, perhaps more robust model?

In the previous cases, this was an “all or none” decision (at least we had to decide on the type of
model we used, of not the exact number of choices involved), whereas the gravity model is fixed in its
parameterisation. However, there are concepts that easily extend the gravity model.

The low-rank model somewhat new, made popular by its use in matrix completion problems [14,15,
17,66]. Low rank models assume the traffic matrix is well-represented by the low rank approximation

Xr =

r∑
i=1

σ2
i uiv

T
i , (25)

where σi denotes the i-th singular value, with all singular values arranged in order of descending order,
i.e., σi ≥ σ2 ≥ · · · ≥ σr. The famous Eckhart-Young theorem [84, Theorem 4.32, p. 70] states this is the
best rank-r approximation, in the sense of the Frobenius norm9, of a matrix A given by retaining the
largest r singular values of its Singular Value Decomposition (SVD). The theorem, however, assumes
that the target matrix for approximation is already known. In low-rank matrix recovery, however, the
target matrix is unknown.

In the context of traffic matrix modelling, low-rank models are a relatively recent introduction,
beginning with work in [100]. However, the choice is strongly suggested by the earlier results of PCA
applied to the data, for instance in [50,96]

In essence, we can see (26) as expressing a traffic matrix as a weighted sum of gravity models,
i.e., each single rank component looks exactly the same as that expressed in (7). It seems a logical

9The Frobenius norm is the Euclidean norm applied to matrices i.e., ‖X‖F =
√∑

i,j x
2
i,j .
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approach simply because the Internet is not a homogenous entity. In particular there are many types
of applications running across the network: from interactive session, to voice, to HTTP, to streamed
video. We might imagine that a class of traffic, say streaming video, satisfies the gravity law, but
with different row and column sums to, say, voice traffic. Given this, it seems that a weighted sum of
gravity matrices is a natural extension.

Previous models actually turn out to be special cases of this low-rank model. The gravity and
discrete choice model are spatial rank-1 models. The generalised gravity model and the ICM are
spatial rank-2 models, the latter of which can be observed from the summation of the forward and
reverse traffic contributions in equation (24). The low-rank model may be viewed as a general model
for providing a fundamental framework for further model development. We shall consider this idea in
more detail below in the context of spatio-temporal modelling.

4.3 Spatio-Temporal modelling

Spatio-temporal models aim to describe spatial and temporal structure jointly. Considering the rich
structure traffic matrices have both spatially and temporally, these models would be more sophisticated
than their purely temporal or spatial counterparts. There has been relatively little work performed on
this type of modelling as yet, but there is considerable suggestion that it will be fruitful in the future.

4.3.1 Low-rank spatio-temporal models

The main idea in spatio-temporal modelling of traffic matrices so far has been to exploit the low-rank
models mentioned above, but in this context to apply it to the stacked representation of a series of
traffic matrices denoted here by X .

Low-rank models assume the traffic matrix is well-represented by the low-rank approximation

X r =

r∑
i=1

σ2
i uiv

T
i , (26)

where σi denotes the i-th singular value, with all singular values arranged in order of descending order,
i.e., σi ≥ σ2 ≥ · · · ≥ σr. As before, the Eckhart-Young theorem [84, Theorem 4.32, p. 70] applies. The
theorem, however, assumes that the target matrix for approximation is already known. In low-rank
matrix recovery, the target matrix is unknown.

In the context of traffic matrix modelling, low-rank models are a relatively recent introduction,
beginning with work in [100]. Besides spatial correlations (exploited by the models proposed previ-
ously), traffic matrices are known to exhibit temporal correlations, resulting in a low-rank structure
both spatially and temporally, justifying the rationale behind the model. The objective of the work is
to approximate the time series of traffic matrices X by a rank-r model X r. The model proposed here
is spatio-temporal, in contrast to the models discussed previously, which are only spatial in nature.

Simply insisting on low rank, however, is missing another important point, which is that matrices
also exhibit locality, i.e., elements that are close in time (where this might mean time of day, not
absolute time), or space exhibit strong correlation. It turns out that the model (26) is greatly enhanced
with additional simple constraints on the temporal and spatial structure to reflect the smoothness
property of Internet traffic, under normal operating conditions.

The low-rank construction also proved relatively easy to use in practical applications such as matrix
completion, and [100] showed that it could be used to do matrix inference from link data, impute
missing data (from as little as a few percent of extant values), or be used to predict matrices into the
future.

Despite the demonstration of its effectiveness in traffic matrix estimation, low-rank models are still
not well understood. Unlike the previous models, where the parameters are, by design, quantitative
measures of an underlying network property, low rankedness (in spatio-temporal matrices) does not
correspond to any particular network aspect, such as user behaviour. It is just a measure of the spatio-
temporal correlation between traffic flows. It does, however, hint that OD traffic flows are clustered,
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if one considers the allocation of IP prefixes. A better interpretation is necessary to understand the
properties of the model, and work in [9, 50] may provide clues in the right direction.

Furthermore, in the recovery of traffic matrices using the low-rank model, theoretical work on the
minimum number of measurements required for recovery under structured losses of rows and columns
of X , which occurs frequently in the networking context, is left open. At present, the current focus
is on random erasures of the elements of X [14, 15, 17, 66]. Overcoming structured losses is far more
important than random erasures, as such a scenario is frequently encountered in real networks. For
example, a router failure may result in missing data for an entire row of the traffic matrix. The results
of [100] show much promise, as the method is largely immune to structured losses. The challenge now
is to construct a theory as to why this is so and as to what extent structured losses may be recovered.

Low-rank models hold much promise for the development of more sophisticated models. More
work is required to understand the spatio-temporal properties of the traffic matrix, but as preliminary
results indicate, there is a potentially rich structure to exploit.

4.3.2 Tensors and hyper-matrices

A time series of purely spatial traffic matrices is simply a 3-dimensional array, which is sometimes
also called a hyper-matrix. Such a representation would be a more natural representation as it would
theoretically preserve spatio-temporal properties better than the stacked matrix, as well as track the
evolution of the traffic demands throughout the measurement interval. A tensor representation of traffic
is much better as it is invariant to changes of basis, unlike hyper-matrices. The difficulty, however,
is identifying the type of decomposition of the tensor that would produce low-rank structures, or a
beneficial, exploitable structure. There are many proposed methods for tensor decomposition, but the
two most popular are the Canonical Polyadic (CP) or PARAFAC decomposition and the Tucker or
multilinear decomposition [44]. Tensor decomposition requires a large number of computations, which
may be an obstacle to its adoption in traffic matrix recovery. At present the one work exploiting the
tensor structure of network traffic to impute missing entries of network traffic tensor is found in [4].

5 Applications

5.1 Traffic Matrix Recovery

As noted earlier it may be difficult to measure traffic matrices directly, but we need to recover traffic
matrices from measurements before they can be used. The technique will obviously depend on the
available measurements, but there is a glut of works on the recovery of traffic matrices, whether at the
OD level, IE level or AS level. Amongst these traffic matrices, IE traffic matrices are relatively easier
to recover, as measurements of these matrices are available through SNMP link counts. Recovery of
OD level traffic matrices are fraught with challenges because at any point in time, only a subset of
IP traffic is seen by a network. There is no way to know what goes on in the entire IPv4 address
range, unless all measurements of the global network were combined, but even so, the data from such
an endeavour would be massive and computationally intractable to analyse. Similarly, for AS level
traffic matrices, the lack of measurements as well as error prone measurement tools lead to inaccurate
recovery of these matrices.

The major challenge in recovering the IE traffic matrix from SNMP measurements is that the
problem is highly underconstrained. The set of linear equations (1) is under-determined, i.e., there
are many solutions to the observations. Moreover, the measurements themselves are subject to error
possibly due to poor data collection methods and poor vendor implementation of SNMP polling. They
are also not fine-grained since polling of the measurements is performed every five minutes (and the
polling intervals may not be exactly synchronised across a whole network). Clearly, any inference
method is required to be robust against these errors and uncertainties.

The underconstrainedness of the problem may be mitigated by active measures. One is direct
measurement, using dedicated monitors or in-built measurement software on routers such as NetFlow
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[1]. Direct measurements at even a single point of ingress results in measurement of an entire row
of the traffic matrix, drastically reducing the number of missing matrix entries. Another interesting
proposal is to change the IGP (Interior Gateway Protocol) link weights over several snapshots within
the measurement interval to provide fresh sets of observations, thereby resulting in a system of linear
equations with a unique solution (full rank) out of the SNMP measurements [60]. Both these techniques
may be impractical, either being too costly in the case of direct measurements, or requiring direct
intervention by the network operator for IGP weight changes. Most proposals simply avoid these by
settling on a passive approach of inferring the traffic matrix straight from SNMP data.

There are two main approaches to traffic matrix inference. The first is the deterministic approach,
where y is assumed to provide hard constraints, rather than statistical data. Goldschmidt [39] formu-
lated this as a Linear Program (LP) where the objective was designed to push the to find bounds on
traffic matrix elements. In simple terms, the LP finds the traffic matrix with the worst case upper and
lower bound on the traffic demand subject to constraints. Recall the vectorised traffic matrix x has
size N(N − 1). For the upper bound, the LP model is defined with the objective function

max
x

N(N−1)∑
j=1

ωjxj , (27)

where ωj is a weight for an OD pair j, also called the coefficient of demand. There are three constraints
to satisfy, namely,

(i) observation constraints:

N(N−1)∑
j=1

Aijxj ≤ yi, i = 1, 2, · · · , L, (28)

(ii) flow conservation constraints:

∑
`1=i,`2=j,

`1 6=`2

y`1A`2k −
∑

`1=j,`2=i,
`1 6=`2

y`1A`2k =


xk, if j is the source of k,

−xk, if j is the destination of k,

0, otherwise.

(29)

(iii) positivity constraints: xj ≥ 0, j = 1, 2, · · · , N(N − 1).

Similarly, the lower bound is found by substituting the maximisation operation in (27) with a minimi-
sation operation. The LP only produces a nontrivial solution if the lower bound and upper bound on
the traffic demand is greater than zero and less than the observed total link count, i.e.,

∑
j yj .

Unfortunately, the utility of the LP is only restricted to small toy problems. First, two linear
programs have to be solved each time to obtain the upper and lower bounds on traffic demands, which
is computationally expensive for large n. Second, the LP was shown to have terrible performance
when tested on several types of traffic matrices [56]. Estimates of some traffic matrix entries were in
excess of 200%, with most in excess of 100% error, proving that while the LP may useful for certain
small topologies, in general it is not considered a practical estimation method. The reason for this is
because the LP sets many estimated values to zero, resulting in overcompensation for the rest of the
estimated values in order to meet the total traffic constraints. Third, there is a high sensitivity of the
solution to weight choices, which implies that different solutions will be obtained depending on the
chosen weights.

Instead, a more successful alternative is the use of statistical models and regularisation, i.e., treating
the traffic matrix as a realisation of a random process generated from a model. Regularisation refers
to the inference technique of imposing additional structural assumptions on the problem to reduce
underconstrainedness. Regularisation methods are defined by four components:
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(i) a prior solution, generated from a model,

(ii) a model deviation measure, used to compute the deviation of a feasible solution from the
model,

(iii) a distortion measure, used to compare the deviation of the model with the observations, and

(iv) an adjustment step, to ensure the constraints on the total traffic entering and exiting all ingress
and egress nodes respectively, as well as non-negativity constraints, are satisfied.

In terms of an optimisation procedure, solving the tomography problem is equivalent to

x? = argmin
x∈RN(N−1)

R(x,y) + λd(x,M), (30)

where R(·, ·) denotes the distortion measure, d(·, ·) denotes the model deviation measure and λ ≥ 0 is
the penalty constant that amplifies the penalisation of a feasible solution which strays too far away
from the model10. Typically, R(x,y) = ‖y−Ax‖2. Regularisation techniques are biased to a particular
prior model. Thus, if the model is inconsistent, then the estimator (30) would be inconsistent as well.
However, if the prior model chosen describes the final solution somewhat accurately, then it is expected
that the final estimate would be fairly accurate.

As an example, suppose the prior model, x(0), used is the gravity model, which can be derived from
link measurements by calculating the ingress and egress traffic volumes (by summing link measures on
the edge-links of the network). One proposed penalty [99] is defined as

d(x̂,x(0)) = H(x̂) +H(x(0))−H(x̂,x(0)), (31)

where

H(x) = −
N(N−1)∑

j=1

xj∑N(N−1)
k=1 xk

log
xj∑N(N−1)

k=1 xk
, (32)

is the empirical entropy, while

H(x,x(0)) =

N(N−1)∑
j=1

xj∑N(N−1)
k=1 xk

log(
xj∑N(N−1)

k=1 xk

/ x
(0)
j∑N(N−1)

k=1 x
(0)
k

), (33)

is the joint empirical entropy, between the estimate and the prior model. The penalty function (31)
measures the uncertainty between the quantities x and x(0), and is commonly known as the mutual
information [25]. The joint entropy term H(x,x(0)) quantifies the uncertainty between x and x(0). If
H(x,x(0)) = 0, then x is statistically independent of x(0).

The approach is highly flexible: it can deal with the generalised gravity model simply by using a
new prior model and constraints (17) are added to account for the different traffic classes (access and
peering traffic).

The penalty can be rewritten and thought of as the Kullback-Leibler distance [25] between the
estimate x̂ and the prior model x(0), implying that the estimation objective is seeks to preserve as
much prior information from x(0) as possible, while minimising R(x,y). This can be used directly, or
approximated, for instance as a weighted quadratic [97,98].

Using suitable models, most of the existing inference methods can be described in this framework
(see [99] for details). Or, other penalties can be used, such as the nuclear norm, given by

d(X) = ‖X‖∗ =
r∑

i=1

σi (34)

10Technically, x comprises non-negative integers, but a relaxation to real numbers is used as it is easier to compute,
especially when considering large traffic matrices.
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for low rank model recovery.
The solution of the optimisation procedure is often adjusted after regularisation using Iterative

Proportional Fitting (IPF) [27], so as to satisfy the observed total traffic constraints and non-negativity
constraints (those that weren’t included in the regularisation for computational reasons). In practice,
the IPF is a very simple algorithm, performing fast even on large traffic matrices.

decentralizedcentralized distributed

Figure 11: Three example topologies where local traffic matrices provide benefits (motivated by the seminal
figure in [7]). Left: centralised, or star, topology, Centre: decentralised topology, Right: distributed topology.

Additional information can also be used, for instance, if some rows of the matrix are known from
measurements, then this eases the number of variables to be estimated, making the problem a little
simpler. Another source of potential data is the collection of local traffic matrices [92], providing
information on traffic between interfaces of routers. We can see why this is useful by considering the
three network topologies in Figure 11, with a centralised or star, a decentralised and a distributed
topology. If the network has a star topology, then the entire traffic matrix is known if the local traffic
matrix of the router right in the centre is obtained. For the other two topologies, collection of local
traffic matrices in strategic places of the topology is likely to reduce the underconstrainedness of the
original inference problem, though less (relative) information is provided the more distributed the
topology. Local traffic matrices have been demonstrated to provide a significant information boost
in [98], especially if the interfaces are well-connected, and that is highly dependent on the underlying
network topology. If direct flow measurements from dedicated monitors are available, they provide a
huge boon as an entire row of an IE traffic matrix would be revealed. In practice, however, these are
generally not available as they are deemed expensive. The advantage of the regularisation method is
that these additional information may be incorporated easily via constraints.

Another issue is their computational tractability. Speed is an issue for these algorithms, since traffic
matrices are often large. Most model deviation and distortion measures are chosen to be convex, with
linear constraints. In this way, problem (30) is a convex optimisation problem, where many fast and
efficient algorithms have been developed to solve such problems [11].

The discussions here only consider point-to-point traffic matrices. For IE matrices, the point-to-
multipoint matrix may be more useful instead. Recall from the above that an ideal traffic matrix is
invariant to other network aspects to be useful for network design. Unlike the point-to-point traffic
matrix, the point-to-multipoint matrix contains records on the amount of traffic from one ingress point
to a set of egress points. These sets are chosen to preserve invariance under changes in the egress point,
a property much more useful for network planning. Inference of the point-to-multipoint traffic matrices
may be done in a similar fashion to point-to-point IE matrices [98].
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5.2 Network Optimisation

An Internet Service Provider (ISP) of a backbone network must ensure each link in the network
has adequate capacity. The consequences of failure to provide such capacity is congestion, and a
resulting loss of quality service, which in severe cases would result in loss of customers. However,
over-provisioning can be wasteful, and so optimisation is used to strike the right balance between cost
and capacity.

Network optimisation involves several tasks with varying planning horizons. Assuming node loca-
tions are fixed, in the long term, we plan a network by considering the link locations, and capacity.
We refer to this as network planning. It may be categorised into two common scenarios: incremental
planning on existing networks, or green-fields planning [72]. In the former, the planning takes an
evolutionary route, since the network designer is constrained by the current existing network. Any
upgrades to the network are deliberately incremental, so as not to disrupt current operations. Green-
fields planning, as the name suggests, begins from scratch: the entire network is designed from ground
up. Shorter-term network optimisation tasks include traffic engineering [75] and some potential routing
schemes.

In all of these tasks, one of the key ingredients is the traffic matrix. The reason these matrices are
so useful comes down to invariance. The traffic on a particular link obviously varies as the links in the
network change. However, an ideal traffic matrix is invariant to other aspects of the network such as the
network topology and underlying routing protocols. Invariance allows the design to be varied without
the inputs to the process changing. To a certain extent, the IE traffic matrix satisfies the invariance
property, but it is far from perfect for some tasks, most notably is highly sensitive to external routing
changes, and some internal changes [88,89]. The OD matrix is in some sense preferable [6], but harder
to measure in most cases. The point-to-multipoint IE matrix (discussed in the previous section) is a
useful compromise.

Furthermore, a network operator would require a prediction of the traffic matrix out to the level of
the planning horizon for a task. Any forecast depends on the time scale involved and the underlying
model used. At short time scales, say minutes stationarity may be a reasonable approximation, and
there are therefore many time series approaches the problem. On time scales of hours to days to weeks,
the cyclostationarity nature of the data must be included. The temporal models presented earlier can
provide such predictions. For instance, with the model (4), we can estimate the mean traffic at some
time in the future by simply extrapolating the mean. Longer-term prediction often focusses purely on
the large-scale trend L(t), which is often captured using a simple growth model (linear or exponential)
and regression. In all cases, historical data is needed, usually several times as long as the prediction
interval.

In addition, whenever performing prediction we should provide estimate variances, or confidence
intervals, though this component of the problem has not been well-studied in the specific context of
traffic matrices.

5.3 Reliability Analysis

Traffic matrices may also be used to conduct reliability analyses, where the affect (on traffic) or network
failures is considered. A basic task in most network design is to create redundant paths to carry traffic
in case of failure, but if high reliability is required, then an operator should also ensure that there is
sufficient capacity in the network to carry this traffic along its alternate paths. For more details of
this task see [72].

5.4 Anomaly Detection

Unfortunately, in reality, not all incoming traffic to a network is legitimate. Various attacks may be
launched on a network: DDoS attacks or worm outbreaks such as the Nimda worm. Non-malicious,
but equally violent spikes in traffic may be caused by a flash crowd or implementation bugs. We call
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these surges anomalies, and if they catch a network operator by surprise they can congest networks,
causing untold damage to daily network activities. Other types of anomalies may cause drops in traffic,
again resulting in performance problems.

All these anomalies may be rare, but the potential damage can be tremendous. It is for these
reasons network operators strife to detect anomalies, with the hope of protecting their networks from
these harmful effects.

Although network equipment vendors do provide some form of fast detection and diagnosis mech-
anisms, these features are generally not adequate for the problems listed above. Consequently, meth-
ods were developed to counter anomalies. One approach is to use detailed (packet level) traces and
signature-based detection to detect known attacks, but this does not help if the attack is unknown
(in advance) or if the necessary measurements are not available. Other techniques infer statistical
anomalies from the traffic flow data or SNMP measurements. Traffic matrices play an important role
in this respect, since these matrices record traffic volumes across a whole network.

The basic principle of anomaly detection is to define a baseline operating condition of the network,
by establishing normal conditions of the traffic. The baseline could be from a model, say a gravity
model, for example. There are many approaches, such as entropy-based methods [12, 41], as network
anomaly detection itself is a vast topic, but here, the focus is on the direct use of traffic matrices for
anomaly detection.

Deviations from the baseline predictions of the traffic are quantified with a chosen norm, and one
is flagged as an anomaly if it exceeds a predefined threshold. There are two sources of error: false
positives, when normal traffic is flagged as an anomaly, and false negatives, when a detector does not
flag an anomaly. The latter type of error, where we miss a potential anomaly, are apparently a more
serious problem (given the serious nature of anomalies). However, if too many false positives occur,
then operators can be overwhelmed, and will typically ignore the alarm system. The false positive
problem is exacerbated if the number of tests is large, and in traffic matrix analysis (where we might
conduct one test per traffic matrix element, per time interval) that number can be very large, requiring
a very low false positive rate.

We consider the tradeoff between the two in a ROC (Receiver Operating Characteristic) curve which
shows the two types of errors plotted against each other as a function of the chosen threshold (or other
suitable tuning parameter). However, proper assessment of an approach requires ground-truth data,
which is, by the nature of anomalies, hard to obtain in the volumes required.

Models themselves can be modified to account for anomalous traffic. In §4.1, the model (4) itself
has a term to account for sudden spikes in traffic, which was demonstrated empirically to be useful in
detecting large shifts in traffic. Low rank models [100] were shown to be highly effective in detecting
anomalies as well.

Many anomaly detection proposals may be broadly classified as methods to preprocess measurement
data via a linear transformation, in order to separate normal traffic from anomalous traffic. This was
observed in [96]. Their anomography (a portmanteau of “anomaly” and “tomography”) framework is
easy to understand and is aimed at providing a framework for discussing these types of techniques.
It proceeds as follows: start by assuming the routing matrix is static in the entire duration of the
measurements. Given a series of SNMP measurements, Y = AX , a new inference problem is obtained
by multiplying Y with a linear transform T to obtain Ỹ = AX̃ , which are the anomalous link loads.
Whether the focus is on spatial or temporal anomalies depends on whether Y is pre- or post-multiplied
with T:

(i) spatial anomography : pre-multiplication, i.e., Ỹ = TY, uses the spatial relationships between
traffic at particular points in time to find traffic that is unusual with respect to other flows at
the same time; and

(ii) temporal anomography : post-multiplication, i.e., Ỹ = YT; uses the relationships between traffic
at different times to determine if traffic is unusual for its point in time.

The two have been combined to create spatio-temporal anomaly detection [100], though the full details
of this go beyond the scope of this article.
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The above assumes the routing matrix is static over the series of measurements. The models
themselves have to be modified to account for possible route changes. Some models are less amenable to
modification, requiring a high number of constraints that scale with the number of measurements [96],
which makes them undesirable for practitioners.

Anomaly detection employing SNMP data took off with a series of papers [47–49,52], where the low
intrinsic spatial dimensionality of traffic matrices was exploited via a PCA-based anomaly detector. In
the spatial PCA-based method, the principal components and axes of Y are computed from its columns
and ordered from most to least significant component, to obtain a subspace P = [v1 v2 · · ·vm]. The
traffic space is then divided to a normal subspace and an anomalous subspace. The traffic time series
is then projected on each principal axes, starting from v1 and so forth, and the projection magnitude
is compared to a simple hard threshold of three standard deviations from the mean. Once there exists
a projection exceeding this threshold, say at some vK , this component and subsequent components
are classified as belonging the anomalous subspace PA = [vK vK+1 · · · vm]. The anomalous traffic is
identified by projecting the time series onto the anomalous subspace and projecting the traffic back to
obtain Ỹ.

Lakhina’s spatial PCA method fits in the framework since the last step of extracting the anomalous
traffic involves the projection Ỹ = (PT

APA)Y so the linear transformation is T = (PT
APA). However,

its shortcomings have been the subject of scrutiny. Implementation of spatial PCA to network traffic
is likely to be ineffective due to several drawbacks [68, 96]. Spatial PCA can be contaminated with
a large anomaly11, rendering it unable to detect the anomaly. In fact, PCA has been known to flag
an entire measurement interval although there is only one anomaly present [96]. Additionally, PCA
is very sensitive to the underlying data: adequate measurements are required and there must be a
sufficient level of traffic aggregation before underlying trends can be detected by PCA. It is not robust
enough in practice, requiring much fine tuning. Finally, there is a high computational cost involved in
computing the principal components of a traffic matrix.

Other alternatives exist: wavelet transformations [8], Fourier transformations, autoregressive inte-
grated moving average or ARIMA [96], and temporal PCA [96], where PCA is applied to the rows of
Y (the temporal dimension) instead. In all these techniques, the baseline traffic flows are assumed
to follow the prescribed model. In the Fourier model, baseline traffic is assumed to be composed
of low frequencies. High frequencies may potentially indicated the presence of anomalies since these
correspond to sudden changes in the traffic. Thus, the transformation filters out low frequencies and
examines the remaining high frequencies to determine if any of these frequencies exceed a predeter-
mined threshold. A similar rationale holds for the wavelet transform model. The ARIMA model [13]
is very well-known in time series analysis, providing flexibility in the choice of parameters. The model
generalises popular models such as the Holt-Winters model, the random walk model and exponentially
weighted moving average models. It also allows memory and long range dependency [93] to be built
into the model via fractional ARIMA, as evidenced and used to great effect in [76]12.

After Ỹ is obtained, the anomalous traffic X̃ has to be recovered. The choice of a particular
inference algorithm would depend on the model. The spatial PCA method uses a greedy algorithm
to find the largest anomaly in each time bin [47]. Other methods include the use of `1 regularisation,
inspired by compressive sensing [16, 28], which was shown, when coupled with the ARIMA model,
outperforms other methods, including PCA and wavelet-based anomaly detection [96].

The bottom-line is that the model of the traffic matrix matters in anomaly detection. It serves as
a baseline. However, it also needs to consistently allow for anomalies. One problem with approaches
such as PCA is the models implied by the approach are often left unstated (implicit) and do not allow
the anomalies to be separated as part of estimation (thus they can pollute the estimation process).
Good techniques, going on into the future, need to be able to perform such separation consistently.

11Though in fact this is a problem in general for anomaly detection, and has not received the attention it deserves.
12See [13] for a good introduction to time series analysis.
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5.5 Traffic Matrix Synthesis

Synthesis of the traffic matrix is an important area, motivated by the lack of real world traffic matrices
available, due to the proprietary nature of most traffic data. Publicly available data is often obtained
from networks operated and maintained by research institutions and universities, such as GÉANT [26]
and Abilene [58], which may be limited in scope and is certainly biased towards educational and
research networks.

Thus, network operations stand to gain much from artificially synthesised traffic matrices, provided
a good model is available. Artificial traffic matrices may be used in capacity planning to stress test
network topologies to see if they stand up to heavy loads without ending up with congestion. Monte
Carlo-type simulations may be used to produce estimates of the behaviour of networks. Synthesised
traffic matrices provide an avenue to explore the limitations of a protocol in a controlled environment
before running it on an actual network. A good model simplifies these simulations, as parameters of
the model can be tuned to generate a variety of scenarios for testing protocols.

Unfortunately, there is a dearth of work on traffic matrix synthesis, apart from [61,70] and a brief
mention regarding synthesis of matrices from the independent connections model [33,34]. The problem
of synthesising traffic matrices is the inverse of the inference problem. In synthesis, the topology of
the network matters, as the generated entries of the artificial traffic matrix must not exceed the link
capacity it is mapped to. Some models, such as the gravity model, automatically satisfies bandwidth
constraints naturally [70]. However, if the generated entries do not conform to these constraints, there
are algorithms to solve these problems [61]. Computational complexity of the model is the other
important issue, dependent on the number of parameters. Hence, there is an inherent tradeoff between
the descriptive power of the model and the ease of synthesising traffic matrices. A guideline is to
preferably choose the model with as little parameters as possible but enough proven descriptive power,
measured via an information criterion, such as the AIC [5].

We here describe the simple approach of [70] motived by works such as [37], in order to provide
a starting point for future work on such synthesis. We start by taking xin and xout to be vectors of
N i.i.d. exponential random variables with mean one. The TM is then generated using (7). We can
then adjust the total traffic to match the desired total by simple scaling. This method is extremely
simple (an exponential distribution has only one parameter to estimate), and we need generate only
2N random variables. Yet it matches observed statistics for both Abilene and GÉANT data extremely
well [6].

6 Future

There are some interesting tasks left for traffic matrix research. The various algorithms and techniques
described here could be improved, though in many cases the improvements may be relatively incre-
mental given the success of existing approaches. More interest may be found in extending the ideas
and techniques used here to new domains, and to evolving Internet traffic.

There are a few obvious cases (and no doubt many less obvious cases that we have not thought
of), for instance: multicast traffic has not, to our knowledge, been studied in this way. Multicast is
interesting because it violates the traffic conservation assumption that lies underneath many techniques
for estimation and modelling of traffic matrices. We could image modelling it by considering the “flow”
to be the traffic on a multicast group, from say one source, to a set of destinations, and then stacking a
vector with these. The routing matrices now include elements for every link used (no longer following a
single path). The traffic “matrix” could then be the a column vector of the traffic on each of these flows.
So the idea of multicast traffic can fit into the structure we have talked about here, but appropriate
models for performing tasks such as inference do not seem to exist.

It would also be very interesting to understand the way that CDNs are affecting network traffic. A
CDN’s typical goal is to bring content closer to the user, thereby reducing network traffic. However,
that explicitly violates the “friction free” assumption in most gravity models, and introduces distance
as something to be modelled.
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That leads naturally to consideration of global traffic. Almost all studies of traffic have concentrated
on a single network no larger than the national scale. That may still be very large – for instance
several studies looked at Tier 1 providers in the USA, which for some time dominated Internet traffic.
However, although large, it was still relatively homogeneous traffic between people speaking much the
same language(s) from place to place in the network. When we consider the Internet globally, we may
see that there are language or cultural clusters where large groupings of traffic a focussed by these
issues.

On a large scale, time zones also play a significant role. Traffic patterns show strong cyclic behaviour
based on user activity, but such activity is strongly dependent on the local time zone. If traffic is flowing
from user to user, then this can result in strong apparent locality effects, simply because people in the
same time zone are more likely to be awake at the same time [38].

Language and cultural focussing may be geographic in nature, but it might also be considered per
network, and that leads to another topic of some interest. Very few papers have tried to consider
inter-AS (also known as inter-domain) traffic in any detail. Exceptions are Chang et al. [21] (which
presents suggestions for estimating traffic based on models of business models and resulting usage);
Bharti et al. [9] (which considered inference of hidden elements of this matrix using a subset of data),
Feldman et al. [35] (which aimed to estimate a global traffic matrix, but only in the limited domain
of WWW traffic), and Labovitz et al. [46] (which looked at inter-domain traffic from 110 network
operators over a two-year period, though not in the form of a matrix). Study of the Internet’s global
traffic matrix is made difficult by the sheer scale of the project: Labovitz et al. studied 110 network
operators over a two-year period13 and to do so, collected over 200 Exabytes of data. Many network
operators do not collect or store data of the type required for such a study, and many more regard it
as proprietary or covered by privacy legislation with provisions such that no researcher is ever likely
to see it. So we can see that study of the inter-domain matrix is likely to be a long-term, and rather
challenging project.

In addition, we know that the traffic profile (or mix of applications) has changed fairly rapidly over
time. It is likely this trend will continue, and there are bound to be effects on traffic patterns as a
result. Peer-2-peer traffic significantly altered traffic patterns when it appeared because it was more
symmetric than traditional (at the time) WWW traffic. However, in addition, peer-2-peer applications
have the potential to exploit locality information to download from sources closer to the destination.
This could potentially change the “no friction” assumption in much the same way that CDNs can,
though in the early days it did not appear to be the case [38]. An example traffic matrix (drawn
from [38]) showing normalised14 traffic between regions in a cable-network operator is given in Table 1.
The major deviation, in this data, from a pure gravity model seemed to be based more on time-zone
differences than other aspects of locality.

From/To R1 R2 R3 R4 R5 R6 R7 R8
R1 - 0.180 0.140 0.126 0.174 0.128 0.124 0.127
R2 0.172 - 0.141 0.126 0.190 0.132 0.118 0.120
R3 0.132 0.120 - 0.189 0.135 0.145 0.139 0.140
R4 0.107 0.111 0.182 - 0.124 0.163 0.155 0.158
R5 0.161 0.180 0.136 0.132 - 0.135 0.127 0.129
R6 0.107 0.108 0.145 0.155 0.125 - 0.187 0.173
R7 0.107 0.106 0.137 0.157 0.127 0.182 - 0.184
R8 0.109 0.111 0.127 0.161 0.128 0.178 0.185 -

Table 1: Normalised inter-regional traffic matrix from [38].

Other applications may equally change traffic matrices in the future, so there are lots of new, or

13To put this in context, there are tens of thousands of ASes in the Internet.
14The elements have been normalised by dividing each row by the row-sum, so that each element actually represents

the probability that a packet enters the network at a given region i will departs the network at region j.

36



changing traffic classes to consider in modelling Internet traffic matrices. On the other side, the tasks of
interest, the work on anomaly detection is likely to continue due to its immediate benefit to operators,
but the most overlooked task is traffic matrix synthesis.

Synthesis means generating artificial traffic matrices, typically for use in simulations. There are
only, to our knowledge, two papers [61, 70] on synthesising Internet traffic matrices, but there are
already quite a few where synthetic traffic matrices were used, and this demand for such matrices will
continue.

Synthesis is not demanding in some ways. Traffic matrices are usually relatively small (compared
to other types of traffic data), when measured at a reasonable level of aggregation and time scale.
However, in other ways these matrices are quite challenging. For instance:

• we have few sets of traffic matrix data, and even fewer that are public, and somehow need to use
these to estimate properties of these complex, high-dimensional objects;

• there is a real relationship between topology and traffic (although we would like a traffic matrix
to be invariant to the topology, there are clear cases where, particularly IE matrices are not);

• traffic matrices come in a wide variety of types (at different levels of aggregation, for particular
applications and so on) and it is unlikely that one model fits all; and

• there are a number of conflicting goals in synthesis, e.g., to generate variability, but well “matched”
to real traffic matrices.

However, there is considerable hope that progress can be made in terms of generating synthetic ma-
trices, both for green-fields network design [45], and for simulation in general.

The major use of synthesis is in simulation. In many cases a traffic matrix is enough for a simulation,
but in others, we need to translate this into packets (or at least connections). The analogue in
transportation modelling is often called a micro-simulation model. Here, the problem becomes one
of taking a demand matrix (remember, most of the work here is related to traffic, not demand), and
translating this into carried load. We know how to do that (using simulation tools such as ns) but
doing it efficiently is difficult. One paper [80] starts to tackle this problem, but as in the work of
transportation modelling, there is considerable scope for advanced scalable micro-simulation of traffic.

Another use for synthetic traffic matrices is in the further task of synthetic topology generation,
but we shall leave discussion of this topic to another section of this book.

7 Conclusion

This chapter has been aimed at introducing the reader to the state-of-the-art in Internet traffic matrix
modelling and applications. It is not a complete survey of all research into Internet traffic matrix
modelling as such a survey would necessarily consume a much larger amount of space, and be less
digestible, and we apologise to those whose work has not been referenced.

The chapter has also aimed to clarify a set of common terminology in a field which has occasionally
been confounded by ambiguous or confusing terms. It is our aim to also provide, as an adjunct to this
chapter, links to the most commonly used datasets in this domain, and code to perform some of the
commonest tasks. In this way, we hope to provide a firm foundation for future work in the area, and
to help those who just want to use traffic matrices in their research.
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