Recent advances in transport protocols*

April 12, 2013

Abstract
Transport protocols play a critical role in today’s Internet. This chap-
ter first looks at the evolution of the Internet’s Transport Layer during the
past few decades. It discusses the impact of middleboxes on the evolvabil-
ity of these protocols. Two recent protocol extensions, Multipath TCP
and Minion, which were both designed to extend the current Transport
Layer in the Internet are then described.

1 Introduction

The first computer networks often used ad-hoc and proprietary protocols to in-
terconnect different hosts. During the 1970s and 1980s, the architecture of many
of these networks evolved towards a layered architecture. The two most popular
ones are the seven-layer OSI reference model [106] and the five-layer Internet
architecture [23]. In these architectures, the transport layer plays a key role. It
is the first layer that handles end-to-end communication by encapsulating data
in segments that are placed inside the packets that are transmitted through
routers at the network layer. A transport protocol can be characterized by the
service that it provides to the upper layer (usually the application). Several
transport services have been defined:

e a connectionless service

e a connection-oriented bytestream service

e a connection-oriented message-oriented service

e a message-oriented request-response service

e an unreliable delivery service for multimedia applications

The connectionless service is the simplest service that can be provided by a
transport layer protocol. The User Datagram Protocol (UDP) [77] is an example
of a protocol that provides this service.

*Parts of the text in this chapter have appeared in the following publications by the same
author(s): [11], [105], [86], [68] and [50].

Over the years, the connection-oriented bytestream service has proven to
be the most popular transport layer service used by most applications. This
service is currently provided by the Transmission Control Protocol (TCP) [80]
in the Internet. TCP is the dominant transport protocol in today’s Internet,
but other protocols have provided similar services. TP4 was designed for OSI
networks and is similar to TCP. The Stream Control Transmission Protocol
(SCTP) [94] also provides this service. The Xpress Transport Protocol (XTP)
[97] is another example of an alternative transport protocol. A detailed overview
of former transport protocols maybe be found in [49].

Several transport protocols have been designed to support multimedia appli-
cations. The Real-Time Transport protocol (RTP) [90], provides many features
required by multimedia applications. Some of the functions provided by RTP are
part of the transport layer while others correspond to the presentation layer of
the OSI reference model. The Datagram Congestion Control Protocol (DCCP)
[58] is another protocol that provides functions suitable for applications that do
not require a standard reliable service.

The rest of this chapter is organized as follows. We first describe the main
services provided by the transport layer in section 2. This will enable us to
look back at the evolution of the major Internet transport protocols during
the past three decades. Section 3 then describes the organization of today’s
Internet, the important role played by various types of middleboxes, and the
constraints that middleboxes impose of the evolution of transport protocols.
Finally, we describe the design of two recent evolutions for TCP, both of which
evolve the transport layer of the Internet while remaining backward compatible
with middleboxes. Multipath TCP, described in section 4, enables transmission
of data segments within a transport connection over multiple network paths.
Minion, described in section 5, extends TCP and SSL/TLS [29] to provide richer
services to the application—unordered message delivery and multi-streaming—
without changing the protocols’ wire-format.

2 Providing the transport service

As explained earlier, several services have been defined in the transport layer. In
this section, we first review the connectionless service. Then we present in more
detail how TCP and SCTP provide a connection-oriented service and highlight
the recent evolution of the key functions from these protocols. This section
concludes with a discussion of the request-response service.

2.1 Providing the connectionless service

To provide a connectionless service, the transport layer mainly needs to provide
some multiplexing on top of the underlying network layer. In UDP, this multi-
plexing is achieved by using port numbers. The 8 byte UDP header relies on the
source and destination port numbers to identify the applications that exchange
the messages on the two communicating hosts. In addition to these port num-

bers, the UDP header contains a checksum that optionally covers the payload,
the UDP header and a part of the IP header. When UDP is used above IPv4,
the checksum is optional [79]. The sender decides whether the UDP payload
will be protected by a checksum. If not, the checksum field is set to zero. When
UDP is used above IPv6, the checksum is mandatory and cannot be disabled
by the sender.

UDP has barely changed since the publication of [79]. The only significant
modification has been the UDP-lite protocol [61]. UDP-lite was designed for
applications that could benefit from the delivery of possibly corrupted data.
For this, UDP-lite allows the application to specify the part of the payload that
must be covered by a checksum. The UDP-lite header includes a checksum
coverage field that indicates the part of the payload that is covered by the
checksum. UDP-lite has been used in some wireless networks.

2.2 Providing the connection-oriented service

The connection-oriented service is both more complex and also more frequently
used. TCP and SCTP are examples of current Internet protocols that provide
this service. Older protocols like TP4 or XTP also provide a connection-oriented
service.

The connection-oriented service can be divided in three phases :

e the establishment of the connection
e the data transfer
e the release of the connection

Before looking into more details on how transport protocols solve these prob-
lems, it is useful to consider how data is exchanged between transport entities.
Most transport protocols use segments that contain a header composed of sev-
eral fields that are used to exchange information. For example, each TCP [80]
segment starts with a twenty bytes header. Each segment exchanged over a
TCP connection contains this header; some segments may also contain addi-
tional information inside TCP options.

The fixed-size TCP header is presented in figure 1. This figure will be used
to illustrate how the various mechanisms used by TCP rely on some of its fields
to exchange state information.

2.2.1 Connection establishment

The first objective of the transport layer is to multiplex connections initiated
by different applications. This requires the ability to unambiguously identify
different connections on the same host. TCP uses four fields that are present in
the TP and TCP headers to uniquely identify a connection:

e the source IP address

e the destination IP address

0 1 2 3
01234567890123456789012345678901
ottt —t—t—t bttt bbbttt bttt bttt -ttt —t—t—+
| Source Port | Destination Port |
T e S T St T S T s St T S S S
| Sequence Number |
e B S i S s ot B e
| Acknowledgment Number

ottt —t—t—t bttt ottt bbbttt bttt bttt —t—t—+
| Data | [UIAIPIRISIFI |
| Offset| Reserved |RICISISIYII]| Window

| | IGIKIHITININ| |
e B i St B B e e
| Checksum | Urgent Pointer |
Fot—t—t—t—t bttt bttt —t—t—t bttt bttt -ttt —t—t—+
| Options | Padding |
T T S R T St T s T S s Tt St S S
| data |
e B i S ot B O e

Figure 1: TCP header format

e the source port
e the destination port

The source and destination addresses are the network layer addresses (e.g.
IPv4 or IPv6 in the case of TCP) that have been allocated to the communicating
hosts. When a connection is established by a client, the destination port is
usually a well-known port number that is bound to the server application. On
the other hand, the source port is often chosen randomly by the client [60]. The
random selection of the source port by the client that establishes a connection
has some security implications as discussed in [4]. Since a TCP connection is
identified unambiguously by using this four-tuple, a client can establish multiple
connections to the same server by using different source ports on each of these
connections.

The classical way of establishing a connection between two transport enti-
ties is the three-way handshake which is used by TCP [80]. The TCP header
contains flags that specify the role of each segment. For example, the ACK flag
indicates that the segment contains a valid acknowledgment number while the
SYN flag is used during the establishment of a connection. To establish a con-
nection, the original TCP specification [80] requires the client to send a TCP
segment with the SYN flag sent, including an initial sequence number extracted
from a clock. According to [80], this clock had to be implemented by using a
32-bit counter that is incremented at least once every 4 microseconds and after
each TCP connection establishment attempt. While this solution was sufficient
to deal with random host crashes, it was not acceptable from a security view-

——— SYN,seq=1234
i -

o
SYN+ACK,ack=1235,5eq=5678

-
——— ACK,seq=1235,ack=5679
—_—

Figure 2: TCP three-way handshake

point. When a clock is used to generate the initial sequence number for each
TCP connection, an attacker that wishes to inject segments inside an estab-
lished connection could easily guess the sequence number to be used. To solve
this problem, current TCP implementations generate a random initial sequence
number [38].

An example of the TCP three-way handshake is presented in figure 2. The
client sends a segment with the SYN flag set (also called a SYN segment). The
server replies with a segment that has both the SYN and the ACK flags set (a
SYN+ACK segment). This SYN+ACK contains contains a random sequence number
chosen by the server and its acknowledgment number is set to the value of the
initial sequence number chosen by the client incremented by one!. The client
replies to the SYN+ACK segment with an ACK segment that acknowledges the
received SYN+ACK segment. This concludes the three-way handshake and the
TCP connection is established.

The duration of the three-way handshake has an influence on applications
that exchange small amount of data such as requests for small web objects.
This delay can become longer if losses occur because TCP can only rely on
its retransmission timer to recover from the loss of a SYN or SYN+ACK segment.
When a client sends a SYN segment to a server for the first time, it does not have
any information about the round-trip-time on this path?. It can only rely on the

ITCP’s acknowledgment number always contains the next expected sequence number and
theSYN flag consumes on number in the sequence number space.

2If the client has sent packets earlier to the same server, it might have stored some in-
formation from the previous connection [99] and use this information to bootstrap its initial

initial value of its retransmission timer. Most TCP /IP stacks have used an initial
retransmission timer set to 3 seconds [15]. This conservative value was chosen
in the 1980s and confirmed in the early 2000s [70]. However, this default implies
that on many TCP/IP stacks, the loss of any of the first two segments of a three-
way handshake will cause a delay of 3 seconds on a connection that may last
much less than that when there are no losses. Measurements conducted on large
web farms showed that this had a severe impact on the performance perceived
by the end users [21]. This convinced the IETF to decrease the recommended
initial value for the retransmission timer to 1 second [71].

Another utilization of the three-way handshake is to negotiate options that
are applicable for this connection. TCP was designed to be extensible. Although
it does not carry a version field, in contrast with IP for example, TCP supports
the utilization of options to both negotiate parameters and extend the protocol.
The first TCP option is the Maximum Segment Size (MSS) option. It can
appear in the SYN and SYN+ACK segment is used to negotiate the maximum size
of the segments. Each host uses the MSS option to indicate the largest segment
that it agrees to receive. If no MSS option is used, hosts should use a default of
536 bytes with TPv4 [81]. With IPv6, the minimum MTU is set at 1280 bytes
[27]. TCP/IP stacks are supposed to set the MSS to about 20 bytes less than
their default MTU [13] to benefit from Path MTU discovery [67].

TCP options in the SYN segment allow to negotiate the utilization of a par-
ticular TCP extension. Some TCP extensions modify the semantics of one field
in the TCP header: for instance, the large window extension defined in [14]
changes the window field in segments that do not carry the SYN flag. However,
most TCP extensions (like the timestamp option [51], the selective acknowledg-
ments option [65] or Multipath TCP [37]) use TCP options that can appear in
any segment to enable the client and the server to exchange additional state
information. To enable a particular extension, the client places the correspond-
ing option inside the SYN segment. If the server replies with a similar option
in the SYN+ACK segment, the extension is enabled. Otherwise, the extension is
disabled on this particular connection. This is illustrated in figure 3.

Each TCP option is encoded by using a Type-Length-Value (TLV) format,
which enables a receiver to silently discard the options that it does not under-
stand. Unfortunately, there is a limit to the maximum number of TCP options
that can be placed inside the TCP header. This limit comes from the Data
Offset field of the TCP header that indicates the position of the first byte of
the payload measured as an integer number of four bytes word starting from
the beginning of the TCP header. Since this field is encoded in four bits, the
TCP header cannot be longer than 64 bytes, including all options. This size
was considered to be large enough by the designers of the TCP protocol, but is
becoming a severe limitation to the extensibility of TCP.

A last point to note about the three-way handshake is that the first TCP
implementations maintained state upon reception of the SYN segment. Many of
these implementations also used a small queue to store the TCP connections

timer. Recent Linux TCP/IP stacks preserve some state variables between connections.

——— SYN,seq=1234, Option

j __—‘_‘_—_ﬁ)l
’ SYN+ACK,ack=1235,seq=5678, Option —

-
——— ACK,seq=1235,ack=5679
—_—

Figure 3: Negotiating TCP extensions during the three-way handshake

that had received a SYN segment but not yet the third ACK. For a normal TCP
connection, the delay between the reception of a SYN segment and the reception
of the third ACK is equivalent to a round-trip-time, usually much less than a
second. For this reason, most early TCP /IP implementations chose a small fixed
size for this queue. Once the queue was full, these implementations dropped all
incoming SYN segments. This fixed-sized queue was exploited by attackers to
produce a denial of service attack. They sent a stream of spoofed SYN segment?
to a server. Once the queue was full, the server stopped accepting SYN segments
from legitimate clients [31]. To solve this problem, recent TCP/IP stacks try to
avoid maintaining state upon reception of a SYN segment. This solution is often
called syn cookies.

The principles behind syn cookies are simple. To accept a TCP connection
without maintaining state upon reception of the SYN segment, the server must be
able to check the validity of the third ACK by using only the information stored
inside this ACK. A simple way to do this is to compute the initial sequence
number used by the server from a hash that includes the source and destination
addresses and ports and some random secret known only by the server. The
low order bits of this hash are then sent as the initial sequence number of the
returned SYN+ACK segment. When the third ACK comes back, the server can
check the validity of the acknowledgment number by recomputing its initial
sequence number by using the same hash [31]. Recent TCP /IP stacks use more

3An IP packet is said to be spoofed if it contains a source address which is different from
the IP address of the sending host. Several techniques can be used by network operators to
prevent such attacks [35], but measurements show that they are not always deployed [8].

0 1 2 3
01234567890123456789012345678901
S T T T S T T S e e §
| Source Port | Destination Port
T S R
| Verification Tag
s T e T s T s T T B e et o
| Checksum
e T et T T e T T s Tt ot T
| Chunk #1
S R
|
+
|
+

—t—t—t—t—t—t—t—t—t—t—t—t =ttt —t—t =ttt -ttt bt =t =ttt —t—t—

+— o+ — + — + — + — + —

—t—t—t—t—t—t—t—t—t—t—t—t =ttt —t—t =ttt —t— b=ttt ==ttt —t—+—

Figure 4: SCTP header format

complex techniques to deal notably with the options that are placed inside the
SYN and need to be recovered from the information contained in the third ACK.

At this stage, it is interesting to look at the connection establishment scheme
used by the SCTP protocol [94]. SCTP was designed more than two decades
after TCP and thus could benefit from several of the lessons learned from TCP.
A first difference between TCP and SCTP are the segments that these protocols
use. The SCTP header format is both simpler and more extensible than the
TCP header.

The first four fields of the SCTP header (figure 4) are present in all SCTP
segments and there is a variable number of chunks that can both contain state
information and user data. The source and destination ports play the same role
as in TCP. The verification tag is a random number chosen when the SCTP
connection is created and placed in all subsequent segments. This verification
tag is used to prevent some forms of packet spoofing attacks [94]. This is an
improvement compared to TCP where the validation of a received segment must
be performed by checking the sequence numbers, acknowledgment numbers and
other fields of the header [39]. The SCTP checksum is a 32 bits CRC that
provides stronger error detection properties than the Internet checksum used by
TCP [96]. Each SCTP segment can contain a variable number of chunks and
there is no apriori limit to the number of chunks that appear inside a segment,
except that a segment should not be longer than the maximum packet length
of the underlying network layer.

The SCTP connection establishment uses several of these chunks to specify
the values of some parameters that are exchanged. A detailed discussion of
these chunks is outside the scope of this document and may be found in [94].
The SCTP four-way handshake uses four segments as shown in figure 5. The
first segment contains the INIT chunk. To establish an SCTP connection with

a server, the client first creates some local state for this connection. The most
important parameter of the INIT chunk is the Initiation tag. This value is a
random number that is used to identify the connection on the client host for its
entire lifetime. This Initiation tag will be placed as the Verification tag in all
segments that will be sent by the server. This is an important change compared
to TCP where only the source and destination ports are used to identify a given
connection. The INIT chunk may also contain the addresses owned by the client.
The server responds by sending an INIT-ACK chunk. This chunk also contains an
Initiation tag chosen by the server and a copy of the Initiation tag chosen by the
client. The INIT and INIT-ACK chunks also contain an initial sequence number.
A key difference between TCP’s three-way handshake and SCTP’s four-way
handshake is that an SCTP server does not create any state when receiving an
INIT chunk. For this, the server places inside the INIT-ACK reply a State cookie
chunk. This State cookie is an opaque block of data that contains information
from the INIT and INIT-ACK chunks that the server would have had stored
locally, some lifetime information and a signature. The format of the State cookie
is flexible and the server could in theory place almost any information inside
this chunk. The only requirement is that the State cookie must be echoed back
by the client to confirm the establishment of the connection. Upon reception
of the COOKIE-ECHO chunk, the server verifies the signature of the State cookie.
The client may provide some user data and an initial sequence number inside
the COOKIE-ECHO chunk. The server then responds with a COOKIE-ACK chunk
that acknowledges the COOKIE-ECHO chunk. The SCTP connection between the
client and the server is now established. This four-way handshake is both more
secure and more flexible than the three-way handshake used by TCP.

2.2.2 Data transfer

Before looking at the techniques that are used by transport protocols to transfer
data, it is useful to look at their service models. TCP has the simplest service
model. Once a TCP connection has been established, two bytestreams are
available. The first bytestream allows the client to send data to the server and
the second bytestream provides data transfer in the opposite direction. TCP
guarantees the reliable delivery of the data during the lifetime of the TCP
connection provided that it is gracefully released.

ISO TP4 provides a slightly different service model. Once a TP4 connection
has been established, the communicating hosts can access two message streams,
one in each direction. A message stream is a stream of variable length messages.
Each message is composed of an integer number of bytes. The connection-
oriented service provided by TP4 preserves the message boundaries. This im-
plies that if an application sends a message of N bytes, the receiving application
will also receive it as a single message of N bytes. TCP does not preserve mes-
sage boundaries, while SCTP does. Furthermore, SCTP allows the applications
to use multiple streams to exchange data. The number of streams that are
supported on a given connection is negotiated during connection establishment.
When multiple streams have been negotiated, each application can send data

—— INIT, ftag=1234
—_—

‘ -
INIT-ACK,cookie, ITag=5678

o
—— COOKIE-ECHO, cookie, VTag=5678
i S N
COOKIE-ACK,VTag=1234 ——
P

Figure 5: The four-way handshake used by SCTP

over any of these streams and SCTP will deliver the data from the different
streams independently without any head-of-line blocking.

While most usages of SCTP may assume an in-order delivery of the data,
SCTP supports unordered delivery of messages at the receiver. Another exten-
sion to SCTP [95] supports partially-reliable delivery. With this extension, an
SCTP sender can be instructed to “expire” data based on one of several events,
such as a timeout, the sender can signal the SCTP receiver to move on without
waiting for the “expired” data. This partially reliable service could be useful to
provide timed delivery for example. With this service, there is an upper limit
in the time required to deliver a message to the receiver. If the transport layer
cannot deliver the data within the specified delay, the data is discarded by the
sender without causing any stall in the stream.

To provide a reliable delivery of the data, transport protocols rely on var-
ious mechanisms that have been well studied and discussed in the literature :
sequence numbers, acknowledgments, windows, checksums and retransmission
techniques. A detailed explanation of these techniques may be found in stan-
dard textbooks [10, 88, 73]. We assume that the reader is familiar with them
and discuss only some recent changes.

Any reliable transport protocol must rely on sequence numbers to reorder the
segments received out-of-sequence but also detect losses. As already explained,
TCP uses a 32-bits sequence number that appears in the TCP header and is
incremented for each transmitted byte. This implies that this sequence number
will wrap around after having transmitted 232 bytes of user data. Few TCP
connections transmit such as large amount of data, but for those connections, the

10

sequence number wrap around could be an issue since the same sequence number
will be used for different data. If two bytes having the same sequence number
are transmitted within less than MSL seconds, packet duplications might be
undetected. [51] provides a technique that uses timestamps placed inside TCP
options to detect prevent this problem. SCTP also uses a 32 bits sequence
number for each stream.

TCP tries to pack as much data as possible inside each segment [80]. Recent
TCP stacks combine this technique with Path MTU discovery to detect the
MTU to be used over a given path [64]. SCTP uses a more complex but also more
flexible strategy to build its segments. It also relies on Path MTU Discovery to
detect the MTU on each path. SCTP then places various chunks inside each
segment. The control chunks, that are required for the correct operation of
the protocol, are placed first. Data chunks are then added. SCTP supports a
large data which is divided in several chunks before transmission and also the
bundling of different data chunks inside the same segment.

Acknowledgments allow the receiver to inform the sender of the correct recep-
tion of data. TCP initially relied exclusively on cumulative acknowledgments.
Each TCP segment contains an acknowledgment number that indicates the next
sequence number that is expected by the receiver. Selective acknowledgments
were added later as an extension to TCP [65]. A selective acknowledgment
can be sent by a receiver when there are gaps in the received data. A selec-
tive acknowledgment is simply a sequence of pairs of sequence numbers, each
pair indicating the beginning and the end of a received block of data. SCTP
also supports cumulative and selective acknowledgments. Selective acknowl-
edgments are an integral part of SCTP and not an option which is negotiated
at the beginning of the connection. In SCTP, selective acknowledgments are
encoded as a control chunk that may be placed inside any segment. In TCP,
selective acknowledgments are encoded as TCP options. Unfortunately, given
the utilization of the TCP options (notably the timestamp option [51]) and the
limited space for options inside a TCP segment, a TCP segment cannot report
more than three blocks of data. This adds some complexity to the handling and
utilization of selective acknowledgments.

Current TCP and SCTP stacks try to detect segment losses as quickly as
possible. For this, they implement various heuristics that allow to retransmit a
segment once several duplicate acknowledgments have been received [34]. Selec-
tive acknowledgment also aid to improve the retransmission heuristics. If these
heuristics fail, both protocols rely on a retransmission timer whose value is fixed
in function of the round-trip time measured over the connection [71].

An orthogonal, but important issue which is also tackled by the transport
protocols on the Internet is the congestion control scheme. The original TCP
congestion control scheme was proposed in [52]. Since then, it has evolved and
various congestion control schemes have been proposed. Although the IETF
recommends a single congestion control scheme [3], recent TCP stacks support
various congestion control schemes and some allow the user to chose the most
appropriate one. A detailed discussion of the TCP congestion control schemes
may be found in [1]. SCTP’s congestion control scheme is largely similar to

11

seq=1234,"abcd"
—_—
——— FIN, seq=1238

ACK,ack=1239 >
P
i seq=345,"ijkI" V/]
PRSI ... %
FIN,seq=349 e —

e

—— FIN,ack=350
e

Figure 6: The four-way handshake used to close a TCP connection

TCP’s congestion control scheme.

Additional details about recent advances in SCTP may be found in [17]. [30]
lists recent IETF documents that are relevant for TCP. [34] contains a detailed
explanation of some of the recent changes to the TCP/IP protocol stack.

2.2.3 Connection release

This phase occurs when either both hosts have exchanged all the required data or
when one host needs to stop the connection for any reason (application request,
lack of resources, ...). TCP supports two mechanisms to release a connection.
The main one is the four-way handshake. This handshake uses the FIN flag in
the TCP header. Each TCP entity can release its own direction of data trans-
fer. When the application wishes to gracefully close a connection, it requests
the TCP entity to send a FIN segment. This segment marks the end of the data
transfer in the outgoing direction and the sequence number that corresponds to
the FIN flag (which consumes one sequence number) is the last one that will be
used over this connection. The outgoing stream is closed as soon as the sequence
number corresponding to the FIN flag is acknowledged. The remote TCP en-
tity can use the same technique to close the other direction [80]. This graceful
connection release has one advantage and one drawback. On the positive side,
TCP provides a reliable delivery of all the data provided that the connection
is gracefully closed. On the negative side, the utilization of the graceful release
forces the TCP entity that sent the last segment on a given connection to main-
tain state for some time. On busy servers such as web servers, a large number

12

——— SHUTDOWN
j -

SHUTDOWN-ACK

PR,
~——— SHUTDOWN-COMPLETE
—_—

Figure 7: The three-way handshake used to close an SCTP connection

of connections can remain for a long time [33]. To avoid maintaining such state
after a connection has been closed, web servers and some browsers send a RST
segment to close HTTP connections. In this case, the underlying TCP connec-
tion is closed once all the data has been transferred. The initial utilization of
the RST segment [80] was to deal with a lack of resources or to reject connection
requests. Compared with the four-way handshake, the main advantage of the
utilization of the RST segment is that the connection release is much faster and
neither the client nor the server need to maintain state. However, there is no
guarantee about the reliable delivery of the data.

SCTP uses a different approach to close the connection. When an applica-
tion requests a shutdown of a connection, SCTP will start a three-way hand-
shake to terminate it. This handshake uses the SHUTDOWN, SHUTDOWN-ACK and
SHUTDOWN-COMPLETE chunks. The SHUTDOWN chunk is sent once all outgoing
data has been acknowledged. It contains the last cumulative sequence number.
Upon reception of a SHUTDOWN chunk, an SCTP entity will inform its application
that it cannot accept anymore data over this connection. It will then ensure
that all outstanding data have been delivered correctly. At that point, it sends a
SHUTDOWN-ACK to confirm the reception of the SHUTDOWN segment. The three-way
handshake completes with the transmission of the SHUTDOWN-COMPLETE chunk.
Additional details are available in [94].

SCTP also provides the equivalent to TCP’s RST segment. The ABORT chunk
can be used to refuse a connection, react to the reception of an invalid segment
or immediately close a connection (e.g. due to lack of resources).

13

2.3 Providing the request-response service

The request-response service has been a popular service since the 1980s. At that
time, many request-response applications were built above the connectionless
service, typically UDP [9]. A request-response application is very simple. The
client sends a request to a server and blocks waiting for the response. The server
processes the request and returns a response to the client. This paradigm is often
called Remote Procedure Call (RPC) since often the client calls a procedure
running on the server. Several standards have been defined to support RPC
[98].

The first implementations of RPC relied almost exclusively on UDP to trans-
mit the request and responses. In this case, the size of the requests and responses
was often restricted to one MTU. In the 1980s and the beginning of the 1990s,
UDP was a suitable protocol to transport RPCs because they were mainly used
in Ethernet LANs. Few users were considering the utilization of RPC over the
WAN. In such networks, CSMA /CD regulates the access to the LAN and there
were almost no losses. Over the years, the introduction of Ethernet bridges and
switches has both allowed Ethernet networks to grow in size but also implied a
growing number of packet losses. Unfortunately, RPC running over UDP does
not deal efficiently with packet losses because many implementation use large
timeouts to recover for packet losses. Several researchers proposed alternatives
[19] to UDP. TCP was, of course, the other alternative. Unfortunately, TCP
was costly for request-response applications. Before sending a request, the client
must first initiate the connection. This requires a three-way handshake and thus
“wastes” one round-trip-time. Then, TCP can transfer the request and receive
the response over the established connection. Eventually, it performs a graceful
shutdown of the connection. This connection release requires the exchange of
four (small) segments, but also forces the client to remain in the TIME_WAIT state
for a duration of 240 seconds, which limits the number of connections (and thus
RPCs) that it can establish with a given server [26].

TCP for Transactions or T/TCP [16] was a first attempt to enable TCP to
be used with request/response applications. T/TCP solved the above problem
by using three TCP options. These options were mainly used to allow each
host to maintain an additional state variable, Connection Count (CC) that is
incremented by one for every connection. This state variable is sent by the
client in the SYN segment and cached by the server. If a SYN received from a
client contains a CC that is larger than the cached one, the new connection
is immediately established and data can be exchanged directly (already in the
SYN). Otherwise, a normal three-way handshake is used. The use of this state
variable also allowed T/TCP to reduce the duration of the TIME_WAIT state.
T/TCP used SYN and FIN flags in the segment sent by the client and returned
by the server, which led to a two segment connection, the best solution from a
delay viewpoint for RPC applications. Unfortunately, T/TCP was vulnerable
to spoofing attacks [26]. An attacker could observe the Connection Count by
capturing packets. Since the server only checked that the value of the CC state
variable contained in a SYN segment was higher than the cached one, it was

14

——— SYN + TFO cookie req
S ——— i

. i
SYN+ACK + TFO cookie=xyz
e

j ~ SYN+TFO cookie=xyz + user data

SYN+ACK
JR—

%

Figure 8: TCP fast open

easy to inject new segments. Due to this security problem, T/TCP is now
deprecated.

Improving the performance of TCP for request/response applications con-
tinued to be a concern for several TCP designers. However, recently the focus of
the optimizations moved from the LANs that were typical for RPC applications
to the global Internet. The motivation for several of the recent changes to the
TCP protocol was the perceived performance of TCP with web search appli-
cations [21]. A typical web search is also a very short TCP connection during
which a small HTTP request and a small HTTP response are exchanged. A
first change to TCP was the increase of the initial congestion window [22]. For
many years, TCP used an initial window between 2 and 4 segments [2]. This
was smaller than the typical HTTP response from a web search engine [21].
Recent TCP stacks will use an initial congestion window of 10 segments [22].

Another change that has been motivated by web search applications is the
TCP fast open extension [83]. This extension can be considered as a replacement
for T/TCP. TCP fast open also enables a client to send data inside a SYN
segment. TCP fast open relies on state sharing between the client and the
server, but the state is more secure than the simple counter used by T/TCP.
To enable the utilization of TCP fast open, the client must first obtain a cookie
from the server. This is done by sending a SYN segment with the TFO cookie
request option. The server then generates a secure cookie by encrypting the
IP address of the client with a local secret [83]. The encrypted information
is returned inside a TFO cookie option in the SYN+ACK segment. The client
caches the cookie and associates it with the server’s IP address. The subsequent

15

ﬂ\

Lo g‘ |
Switch (';"/ 1

Application Application
Transport Tce Transport
Network Network Network
Datalink Datalink Datalink Datalink
Physical Physical Physical Physical

Figure 9: The Internet architecture

connections initiated by the client will benefit from TCP fast open. The client
will include the cached cookie and optional data inside its SYN segment. The
server can validate the segment by decrypting its cookie. If the cookie is valid,
the server acknowledges the SYN and the data that it contains. Otherwise, the
optional data is ignored and a normal TCP three-way handshake is used. This
is illustrated in figure 8.

3 Today’s Internet

The TCP/IP protocol suite was designed with the end-to-end principle in mind
[89]. TCP and SCTP are no exception to this rule. They both assume that
the transport protocol is only used on the hosts and that the network contains
relays that operate at the physical, datalink and network layers of the reference
models. For most networking students, figure 9 reflects the architecture of the
Internet.

This end-to-end principle has also influenced the design of the IPSec architec-
ture and the AH and ESP headers. IPSec, when used in transport mode, allows
communicating hosts to negotiate a security key, e.g. with the IKE protocol,
and authenticate and/or encrypt the content of the packets that are exchanged.
The Authentication Header, defined in [55] allows to authenticate the packets
that are exchanged by using cryptographic hashes and signatures. Basically,
AH adds an authentication header in front of the transport header and data.
For the computation of the cryptographic information that is placed in the au-

16

thentication header, [55] assumes that the following fields of the IP header® are
immutable (i.e. they are assumed to not change on the path between the source
and the destination hosts) : IP version number, Internet header length, Total
length, Identification, Protocol, Source address Destination address (without
routing options)® and Transport header and payload.

Only some fields of the IP header are assumed to be mutable, i.e. they can be
modified by normal routers on a path between a source and a destination. These
fields are : the Differentiated Services Code Point (DSCP) and the Explicit
Congestion Notification bits, the flags, the Fragment offset, the Time to Live
and the Header Checksum.

In such an end-to-end Internet, the content of an IP packet is never modified
inside the network and any transport protocol can be used above IPv4 or IPv6.
Today, this behavior corresponds to some islands in the Internet like research
backbones and some university networks. Measurements performed in enter-
prise, cellular and other types of commercial networks reveal that IP packets
are processed differently in deployed networks [47, 102].

In addition to the classical repeaters, switches and routers, currently de-
ployed networks contain various types of middleboxes. Middleboxes were not
part of the original TCP/IP architecture and they have evolved mainly dur-
ing the last decade. A recent survey in enterprise networks reveals that such
networks contain sometimes as many middleboxes as routers [92].

A detailed survey of all possible middleboxes is outside the scope of this
chapter, but it is useful to study the operation of some important types of mid-
dleboxes to understand their impact on transport protocols and how transport
protocols have to cope with them. A partial taxonomy of middleboxes was
presented in [18].

A first type of middlebox are the firewalls. Usually, firewalls perform checks
on the received packets and decide to accept or discard them based on config-
ured security policies. Firewalls play an important role in delimiting network
boundaries and controlling incoming and outgoing traffic in enterprise networks.
In theory, firewalls should not directly affect transport protocols, but in prac-
tice, they may block the deployment of new protocols or extensions to existing
ones. Firewalls can either filter packets on the basis of a white list, i.e. an
explicit list of allowed communication flows, or a black list, i.e. an explicit list
of all forbidden communication flows. Most enterprise firewalls use a white list
approach. The network administrator defines a set of allowed communication
flows, based on the high-level security policies of the enterprise and configures
the low-level filtering rules of the firewall to implement these policies. With such
a whitelist, all flows that have not been explicitly defined are forbidden and the
firewall will discard all packets that do not match an accepted communication
flow. This unfortunately implies that a packet that contains a different Protocol
than the classical TCP, ICMP and UDP protocols will not be accepted by such

4For simplicity, we only discuss the IPv4 header here. The IPv6 header also contains
mutable and immutable fields, see [55].

5The Destination address is considered to be mutable but predictable when loose or strict
source routing is used, but this is rarely the case in today’s Internet.

17

a firewall. This is a major hurdle for the deployment of new transport protocols
like SCTP.

Some firewalls can perform more detailed verification and maintain state for
each established TCP connection. Some of these stateful firewalls are capable of
verifying whether a packet that arrives for an accepted TCP connection contains
a valid sequence number. For this, the firewall maintains state for each TCP
connection that it accepts and when a new data packet arrives, it verifies that
it belongs to an established connection and that its sequence number fits inside
the advertised receive window. This verification is intended to protect the hosts
that reside behind the firewall from packet injection attacks despite the fact
that these hosts also need to perform the same verification.

Stateful firewalls may also limit the extensibility of protocols like TCP. To
understand the problem, let us consider the large windows extension defined
in [51]. This extension fixes one limitation of the original TCP specification.
To reduce the length of the TCP header, [80] uses a 16-bits field to encode
the receive window in the TCP header. A consequence of this choice is that
the standard TCP cannot support a receive window larger than 64 KBytes.
This is not large enough for high bandwidth networks. To allow hosts to use a
larger window, three TCP extensions could have been used. The first solution
could have been to completely change the TCP header and include a larger
receive window in the header. However, the TCP header does not include any
version number and changing the TCP header completely would have required
the utilization of a different Protocol field in the IP header to identify the new
TCP. This is similar to the introduction of SCTP and we’ve seen that many
firewalls block SCTP. Another option would have been to encode the receive
window inside a new TCP option. The utilization of this option could have
been negotiated during the three-way handshake and placed in all segments.
The IETF took a different approach. [51] changes the semantics of the receive
window field of the TCP header on a per-connection basis. [51] defines the
WScale TCP option that can only be used inside the SYN and SYN+ACK segments.
This option allows the communicating hosts to maintain their receive window as
a 32 bits field. The WScale option contains as parameter the number of bits that
will be used to shift the 32-bits window field before placing the lower 16 bits of
the receive window in the TCP header. This shift is used on a TCP connection
provided that both the client and the server have included the WScale option
in the SYN and SYN+ACK segments.

Unfortunately, a stateful firewall that does not understand the WScale op-
tion, may cause problems with [51]. Consider for example a client and a server
that use a very large window. During the three-way handshake, they indicate
with the WScale option that they will shift their window by 14 bits to the right
to be able to use the largest possible window during the connection. When
the connection starts, each host reserves 2'7 bytes of memory for its receive
window®. Given the negotiated shift, each host will send in the TCP header a

61t is common to start a TCP connection with a small receive window/buffer and auto-
matically increase the buffer size during the transfer [91].

18

window field set to 0000000000000100. If the stateful firewall does understand
the WScale option used in the SYN and SYN+ACK segments, it will assume a win-
dow of 4 bytes and will discard all received segments. Unfortunately, there are
still today stateful firewalls” that do not understand this TCP option defined
in 1992.

Stateful firewalls can perform more detailed verification of the packets ex-
changed during a TCP connection. For example, intrusion detection and intru-
sion prevention systems are often combined with traffic normalizers [101, 44].
A traffic normalizer is a middlebox that verifies that all packets obey with the
protocol specification. When used upstream of an intrusion detection system,
a traffic normalizer can for example buffer the packets that are received out-of-
order and forward them to the IDS once they are in-sequence.

A second, and widely deployed middlebox, is the Network Address Trans-
lator (NAT). The NAT was defined in [32] and various extensions have been
developed over the years. One of the initial motivation for NAT was to pre-
serve IP addresses and allow a set of users to share a single IP address. This
enabled the deployment of many networks that use so-called private addresses
[87] internally and rely on NATS to reach the global Internet. At some point,
it was expected that the deployment of IPv6 would render NAT obsolete. This
never happened and IPv6 deployment is still very slow [28]. Furthermore, some
network administrators have perceived several benefits with the deployment of
NATSs [41] including : some (false) sense of security, topology hiding, indepen-
dence from providers, ...Some of these perceived advantages have caused the
IETF to consider NAT for IPv6 as well, despite the available address space.
Furthermore, the IETF, vendors and operators are considering the deployment
of large scale Carrier Grade NATSs to continue to use IPv4 despite the depletion
of the addressing space [72] and also to ease the deployment of IPv6 [53]. NATs
will remain a key element of the deployed networks for the foreseeable future. It
is thus important to understand how these middleboxes influence the transport
protocols and our ability to extend transport protocols.

There are different types of NATs depending on the number of addresses that
they support and how they maintain state. In this chapter, we concentrate on a
simple but widely deployed NAT that serves a large number of users on a LAN
and uses a single public IP address. In this case, the NAT needs to map several
private IP addresses on a single public address. To perform this translation and
still allow several internal hosts to communicate simultaneously, the NAT must
understand the transport protocol that is used by the internal hosts. For TCP,
the NAT needs to maintain a pool of TCP port numbers and use one of the
available port as the source port for each new connection initiated by an internal
host. Upon reception of a packet, the NAT needs to update the source and
destination addresses, the source (or destination) port number and also the IP
and TCP checksums. The NAT performs this modification transparently in both
directions. It is important to note that a NAT can only change the header of the
transport protocol that it supports. Most deployed NATSs only support TCP

"See e.g. http://support.microsoft.com/kb/934430

19

[40], UDP [5] and ICMP [93]. Supporting another transport protocol on a NAT
requires software changes [45] and few NAT vendors implement those changes.
This often forces users of new transport protocol to tunnel their protocol on
top of UDP to traverse NATs and other middleboxes [75, 100]. This limits the
ability to innovate in the transport layer and is an unfortunate consequence of
the widespread utilization of middleboxes.

NAT can be used transparently by most Internet applications. Unfortu-
nately, some applications that cannot easily be used over NATSs [46]. The text-
book example of this problem is the File Transfer Protocol (FTP) [82]. An
FTP client uses two types of TCP connections : a control connection and data
connections. The control connection is used to send commands to the server.
One of these is the PORT command that allows to specify the IP address and the
port numbers that will be used for the data connection to transfer a file. The
parameters of the PORT command are sent using a special ASCII syntax [82].
To preserve the operation of the FTP protocol, a NAT needs to both translate
the IP addresses and ports that appear in the IP and TCP headers, but also as
parameters of the PORT command exchanged over the data connection. Many
deployed NATSs include Application Level Gateways (ALG) [46] that implement
part of the application level protocol and can modify the payload of segments
processed. For FTP, it should be noted that after translation a PORT command
may be longer or shorter than the original one. This implies that the FTP ALG
needs to maintain state and will have to modify the sequence/acknowledgment
number of all segments sent over a connection after having translated a PORT
command. This is “transparent” for the FTP application, but as we’ll explain
later this has an impact on the extensibility of TCP.

The last middlebox that we cover in this extension is the proxy. A proxy is
a middlebox that resides on a path and terminates TCP connections. A proxy
can be explicit or transparent. The SOCKS5 protocol [62] is an example of the
utilization of an explicit proxy. SOCKS5 proxies are often used in enterprise
network to authenticate the establishment of TCP connections. A classical ex-
ample of transparent proxies are the HT'TP proxies that are deployed in various
commercial networks to cache and speedup HTTP requests. In this case, some
routers in the network are configured to intercept the TCP connections and
redirect them to a proxy server [66]. This redirection is transparent for the ap-
plication, but from a transport viewpoint, the proxy acts as a relay between the
two communicating hosts and there are two different TCP connections®. The
first one is initiated by the client and terminates at the proxy. The second one
is initiated by the proxy and terminates at the server. The data exchanged over
the first connection is passed to the second one, but the TCP options are not
necessarily preserved. In some deployments, the proxy can use different options
than the client and/or the server.

8Some deployments use several proxies in cascade. This allows the utilization of com-
pression techniques and other non-standard TCP extensions on the connection between two
proxies.

20

Application Application
Transport TP | Transport «—| Transport
Network Network Network Network
Datalink Datalink Datalink Datalink
Physical Physical Physical Physical

Figure 10: A TCP proxy in the Internet architecture

3.1 How prevalent are middleboxes?

We've learnt that middleboxes of various kinds exist, but are they really de-
ployed in today’s networks? Answering this question can guide the right way
to develop new protocols and enhance existing ones.

Here we briefly review measurement studies that have attempted to paint an
accurate image of middlebox deployments in use. The conclusion is that middle-
boxes are widespread to the point where end-to-end paths without middleboxes
have become exceptions, rather than the norm.

There are two broad types of middlebox studies. The first type of study
uses ground-truth topology information from providers and other organizations.
While accurate, these studies may overestimate the influence of middleboxes
on end-to-end traffic because certain behavior is only triggered in rare, corner
cases (e.g. an intrusion prevention system may only affect traffic carrying known
worm signatures). These studies do not tell us exactly what operations are ap-
plied to packets by middleboxes. One recent survey study has found that the
57 enterprise networks surveyed deploy as many middleboxes as L3 routers or
L2 switches [92]. Deployed middleboxes include firewalls and intrusion detec-
tion/prevention systems, caches, WAN optimizers, proxies, etc.

Active measurements probe end-to-end paths to trigger “known” behav-
iors of middleboxes. Such measurements are very accurate, pinpointing exactly
what middleboxes do in certain scenarios. However, they offer a lower bound
of middlebox deployments, as they may pass through other middleboxes with-
out triggering them. Additionally, such studies are limited to probing a full

21

path (cannot probe path segments) thus cannot tell how many middleboxes are
deployed on a path exhibiting middlebox behavior. The data surveyed below
comes from such studies.

Network Address Translators are easy to test for: the traffic source needs to
compare its local source address with the source address of its packets reaching
an external site (e.g. what’s my IP). When the addresses differ, a NAT has been
deployed on path. Using this basic technique, existing studies have shown that
NATSs are deployed almost universally by (or for) end-users, be they home or
mobile:

e Most cellular providers use them to cope with address space shortage and
to provide some level of security. A study surveying 107 cellular networks
across the globe found that 82 of them used NATs [103].

e Home users receive a single public IP address (perhaps via DHCP) from
their access providers, and deploy NAT's to support multiple devices. The
typical middlebox here is the “wireless router”, an access point that ag-
gregates all home traffic onto the access link. A study using peer-to-peer
clients found that only 12% of the peers have a public IP address [25].

Testing for stateless firewalls is equally simple: the client generates traffic
using different transport protocols and port numbers, and the server acks it
back. As long as some tests work, the client knows the endpoint is reachable,
and that the failed tests are most likely due to firewall behavior. There is a
chance that the failed tests are due to the stochastic packet loss inherent in the
Internet; that is why tests are interleaved and run multiple times.

Firewalls are equally widespread in the Internet, being deployed by most
cellular operators [103]. Home routers often act as firewalls, blocking new pro-
tocols and even existing ones (e.g. UDP) [25]. Most servers also deploy firewalls
to restrict in-bound traffic [92]. Additionally, many modern operating systems
come with “default-on” firewalls. For instance, the Windows 7 firewall explicitly
asks users to allow incoming connections and to whitelist applications allowed
to make outgoing connections.

Testing for explicit proxies can be done by comparing the segments that
leave the source with the ones arriving at the destination. A proxy will change
sequence numbers, perhaps segment packets differently, modify the receive win-
dow, and so forth. Volunteers from various parts of the globe ran TCPExposure,
a tool that aims to detect such proxies and other middlebox behavior [47]. The
tests cover 142 access networks (including cellular, DSL, public hotspots and
offices) in 24 countries. Proxying behavior was seen on 10% of paths.

Beyond basic reachability, middleboxes such as traffic normalizers and state-
ful firewalls expect strict TCP semantics from the packets they see: what exactly
do these middleboxes do, and how widespread are they? The same study sheds
some light into this matter:

e Middlebox behavior depends on the ports used. Most middleboxes are
active on port 80 (HTTP traffic).

22

e A third of paths keep TCP flow state and use it to actively correct acknowl-
edgments for data the middlebox has not seen. To probe this behavior,
TCPExposure sends a few TCP segments leaving a gap in the sequence
number, while the server acknowledgment also covers the gap.

e 14% of paths remove unknown options from SYN packets. These paths
will not allow TCP extensions to be deployed.

e 18% of paths modify sequence numbers; of these, a third seem to be prox-
ies, and the other are most likely firewalls than randomize the initial se-
quence number to protect vulnerable end hosts against in-window injection
attacks.

3.2 The Internet is Ossified

Deploying a new IP protocol requires a lot of investment to change all the
deployed hardware. Experience with IPv6 after many years since it has been
standardized paints a bleak picture: a minute fraction of the Internet has mi-
grated to v6, and there are no signs of it becoming “the Internet” anytime
soon.

Changing IPv4 itself is in theory possible with IP options. Unfortunately,
it has been known for a while now that “IP options are not an option” [36].
This is because existing routers implement forwarding in hardware for efficiency
reasons; packets carrying unknown IP options are treated as exceptions that
are processed in software. To avoid a denial-of-service on routers’ CPU’s, such
packets are dropped by most routers.

In a nutshell, we can’t really touch IP - but have we also lost our ability
to change transport protocols as well? The high level picture emerging from
existing middlebox studies is that of a network that is highly tailored to to-
day’s traffic to the point it is ossified: changing existing transport protocols is
challenging as it needs to carefully consider middlebox interactions. Further,
deploying new transport protocols natively is almost impossible.

Luckily, changing transport protocols is still possible, albeit great care must
be taken when doing so. Firewalls will block any traffic they do not understand,
so deploying new protocols must necessarily use existing ones just to get through
the network. This observation has recently lead to the development of Minion,
a container protocol that enables basic connectivity above TCP while avoiding
its in-order, reliable bytestream semantics at the expense of slightly increased
bandwidth usage. We discuss Minion in Section 5.

Even changing TCP is very difficult. The semantics of TCP are embedded
in the network fabric, and new extensions must function within the confines
of these semantics, or they will fail. In section 4 we discuss Multipath TCP,
another recent extension to TCP, that was designed explicitly to be middlebox
compatible.

23

4 Multipath TCP

Today’s networks are multipath: mobile devices have multiple wireless inter-
faces, datacenters have many redundant paths between servers and multi-homing
has become the norm for big server farms. Meanwhile, TCP is essentially a sin-
gle path protocol: when a TCP connection is established, it is bound to the IP
addresses of the two communicating hosts. If one of these addresses changes,
for whatever reason, the connection fails. In fact a TCP connection cannot even
be load-balanced across more than one path within the network, because this
results in packet reordering and TCP misinterprets this reordering as congestion
and slows down.

This mismatch between today’s multipath networks and TCP’s single-path
design creates tangible problems. For instance, if a smartphone’s WiF1i interface
loses signal, the TCP connections associated with it stall - there is no way to mi-
grate them to other working interfaces, such as 3G. This makes mobility a frus-
trating experience for users. Modern datacenters are another example: many
paths are available between two endpoints, and equal cost multipath routing
randomly picks one for a particular TCP connection. This can cause collisions
where multiple flows get placed on the same link, hurting throughput - to such
an extent that average throughput is halved in some scenarios.

Multipath TCP (MPTCP) [7] is a major modification to TCP that allows
multiple paths to be used simultaneously by a single connection. Multipath TCP
circumvents the issues above and several others that affect TCP. Changing TCP
to use multiple paths is not a new idea: it was originally proposed more than
fifteen years ago by Christian Huitema in the Internet Engineering Task Force
(IETF) [48], and there have been a half-dozen more proposals since then to
similar effect. Multipath TCP draws on the experience gathered in previous
work, and goes further to solve issues of fairness when competing with regular
TCP and deployment issues due to middleboxes in today’s Internet.

4.1 Overview of Multipath TCP

The design of Multipath TCP has been influenced by many requirements, but
there are two that stand out: application compatibility and network compati-
bility. Application compatibility implies that applications that today run over
TCP should work without any change over Multipath TCP. Next, Multipath
TCP must operate over any Internet path where the TCP protocol operates.

As explained earlier, many paths on today’s Internet include middleboxes
that, unlike routers, know about the TCP connections they forward, and affect
them in special ways. Designing TCP extensions that can safely traverse all
these middleboxes has proven to be challenging.

Multipath TCP allows multiple ”subflows” to be combined to form a single
MPTCP session. An MPTCP session starts with an initial subflow which is very
similar to a regular TCP connection, with a three way handshake. After the first
MPTCP subflow is set up, additional subflows can be established. Each subflow
also looks very similar to a regular TCP connection, complete with three-way

24

handshake and graceful tear-down, but rather than being a separate connection
it is bound into an existing MPTCP session. Data for the connection can then
be sent over any of the active subflows that has the capacity to take it.

To examine Multipath TCP in more detail, let us consider a very simple
scenario with a smartphone client and a single-homed server. The smartphone
has two network interfaces: a WiFi interface and a 3G interface; each has its
own IP address. The server, being single-homed, has a single IP address. In this
environment, Multipath TCP would allow an application on the smartphone to
use a single MPTCP session that can use both the WiFi and the 3G interfaces
to communicate with the server. The application opens a regular TCP socket,
and the kernel enables MPTCP by default if the remote end supports it, using
both paths. The application does not need to concern itself with which radio
interface is working best at any instant; MPTCP handles that for it. In fact,
Multipath TCP can work when both endpoints are multihomed (in this case
subflows are opened between all pairs of ”compatible” IP addresses), or even in
the case when both endpoints are single homed (in this case different subflows
will use different port numbers, and can be routed differently by multipath
routing in the network).

Connection Setup. Let us walk through the establishment of an MPTCP
connection. Assume that the smartphone chooses its 3G interface to open the
connection. It first sends a SYN segment to the server. This segment contains
the MP_CAPABLE TCP option indicating that the smartphone supports Multipath
TCP. This option also contains a key which is chosen by the smartphone. The
server replies with a SYN+ACK segment containing the MP_CAPABLE option and
the key chosen by the server. The smartphone completes the handshake by
sending an ACK segment.

The initial MPTCP connection setup is shown graphically in the top part
of Figure 11, where the segments are regular TCP segments carrying new mul-
tipath TCP-related options (shown in green).

At this point the Multipath TCP connection is established and the client and
server can exchange TCP segments via the 3G path. How could the smartphone
also send data through this Multipath TCP session over its WiFi interface?

Naively, it could simply send some of the segments over the WiFi interface.
However most ISPs will drop these packets, as they would have the source ad-
dress of the 3G interface. Perhaps the client could tell the server the IP address
of the WiFi interface, and use that when it sends over WiFi? Unfortunately this
will rarely work: firewalls and similar stateful middleboxes on the WiFi path
expect to see a SYN segment before they see data segment. The only solution
that will work reliably is to perform a regular three-way handshake on the WiFi
path before sending any packets that way, so this is what Multipath TCP does.
This handshake carries the MP_JOIN TCP option, providing information to the
server that can securely identify the correct connection to associate this addi-
tional subflow with. The server replies with MP_JOIN in the SYN+ACK, and the
new subflow is established (this is shown in the bottom part of Figure 11).

25

SYN.MP_CAPABLE (x)

” SYN+ACK, MP_CAPABLE (Y)

ACK, DATA_ACK l

SYN,MP_JOIN (v)

o)))

SYN+ACK, MP_JOIN o

w

Figure 11: Multipath TCP handshake: multiple subflows can be added and
removed after the initial connection is setup and connection identifiers are ex-
changed.

An important point about Multipath TCP, especially in the context of
smartphones, is that the set of subflows that are associated to a Multipath
TCP connection is not fixed. Subflows can be dynamically added and removed
from a Multipath TCP connection throughout its lifetime, without affecting the
bytestream transported on behalf of the application. If the smartphone moves
to another WiFi network, it will receive a new IP address. At that time, it will
open a new subflow using its newly allocated address and tell the server that its
old address is not usable anymore. The server will now send data towards the
new address. These options allow smartphones to easily move through different
wireless connections without breaking their Multipath TCP connections [69].

Multipath TCP also implements mechanisms that allows to inform the re-
mote host of the addition/removal of addresses even when an endpoint operates
behind a NAT, or when a subflow using a different address family is needed (e.g.
IPv6). Endpoints can send an ADD_ADDR option that contains an address identi-
fier together with an address. The address identifier is unique at the sender, and
allows it to identify its addresses even when it is behind a NAT. Upon receiving
an advertisement, the endpoint may initiate a new subflow to the new address.
An address withdrawal mechanism is also provided via the REMOVE_ADDR option
that also carries an address identifier.

Data Transfer. Assume now that two subflows have been established over
WiFi and 3G: the smartphone can send and receive data segments over both.
Just like TCP, Multipath TCP provides a bytestream service to the application.

26

In fact, standard applications can function over MPTCP without being aware
of it - MPTCP provides the same socket interface as TCP.

Since the two paths will often have different delay characteristics, the data
segments sent over the two subflows will not be received in order. Regular TCP
uses the sequence number in the TCP header to put data back into the original
order. A simple solution for Multipath TCP would be to just reuse this sequence
number as is.

Unfortunately, this simple solution would create problems with some existing
middleboxes such as firewalls. On each path, a middlebox would only see half
of the packets, so it would observe many gaps in the TCP sequence space.
Measurements indicate that some middleboxes react in strange ways when faced
with gaps in TCP sequence numbers [47]. Some discard the out-of-sequence
segments while others try to update the TCP acknowledgments in order to
"recover” some of these gaps. With such middleboxes on a path, Multipath
TCP cannot safely send TCP segments with gaps in the TCP sequence number
space. On the other hand, Multipath TCP also cannot send every data segment
over all subflows: that would be a waste of resources.

To deal with this problem, Multipath TCP uses its own sequence numbering
space. Each segment sent by Multipath TCP contains two sequence numbers:
the subflow sequence number inside the regular TCP header and an additional
Data Sequence Number (DSN).

This solution ensures that the segments sent on any given subflow have
consecutive sequence numbers and do not upset middleboxes. Multipath TCP
can then send some data sequence numbers on one path and the remainder on
the other path; the DSN will be used by the Multipath TCP receiver to reorder
the bytestream before it is given to the receiving application.

Before we explain the way the Data Sequence Number is encoded, we first
need to discuss two other key parts of Multipath TCP that are affected by the
additional sequence number space—flow control and acknowledgements.

Flow Control. TCP’s receive window indicates the number of bytes beyond
the sequence number from the acknowledgment field that the receiver can buffer.
The sender is not permitted to send more than this amount of additional data.
Multipath TCP also needs to implement flow control, although segments can
arrive over multiple subflows. If we inherit TCP’s interpretation of receive win-
dow, this would imply an MPTCP receiver maintains a pool of buffering per
subflow, with receive window indicating per-subflow buffer occupancy. Unfor-
tunately such an interpretation can lead to deadlocks:

1. The next segment that needs to be passed to the application was sent on
subflow 1, but was lost.

2. In the meantime subflow 2 continues delivering data, and fills its receive
window.

3. Subflow 1 fails silently.

27

4. The missing data needs to be re-sent on subflow 2, but there is no space
left in the receive window, resulting in a deadlock.

The correct solution is to generalize TCP’s receive window semantics to
MPTCP. For each connection a single receive buffer pool should be shared be-
tween all subflows. The receive window then indicates the maximum data se-
quence number that can be sent rather than the maximum subflow sequence
number. As a segment resent on a different subflow always occupies the same
data sequence space, deadlocks cannot occur.

The problem for an MPTCP sender is that to calculate the highest data
sequence number that can be sent, the receive window needs to be added to
the highest data sequence number acknowledged. However the ACK field in the
TCP header of an MPTCP subflow must, by necessity, indicate only subflow
sequence numbers to cope with middleboxes. Does MPTCP need to add an extra
data acknowledgment field for the receive window to be interpreted correctly?

Acknowledgments. The answer is positive: MPTCP needs and uses explicit
connection-level acknowledgments or DATA_ACKs. The alternative is to infer
connection-level acknowledgments from subflow acknowledgments, by using a
scoreboard maintained by the sender that maps subflow sequence numbers to
data sequence numbers. Unfortunately, MPTCP segments and their associated
ACKs will be reordered as they travel on different paths, making it impossible
to correctly infer the connection-level acknowledgments from subflow-level ones
[86].

Encoding. We have seen that in the forward path we need to encode a map-
ping of subflow bytes into the data sequence space, and in the reverse path we
need to encode cumulative data acknowledgments. There are two viable choices
for encoding this additional data:

e Send the additional data in TCP options.

e Carry the additional data within the TCP payload, using a chunked or
escaped encoding to separate control data from payload data.

For the forward path there aren’t compelling arguments either way, but
the reverse path is a different matter. Consider a hypothetical encoding that
divides the payload into chunks where each chunk has a TLV (type-length-value)
header. A data acknowledgment can then be embedded into the payload using
its own chunk type. Under most circumstances this works fine. However, unlike
TCP’s pure ACK, anything embedded in the payload must be treated as data.
In particular:

e It must be subject to flow control because the receiver must buffer data
to decode the TLV encoding.

e If lost, it must be retransmitted consistently, so that middleboxes can
track sequence state correctly?

9TCP proxies re-send the original content they see a “retransmission” with different data.

28

Client (C) Server (S)

rev_buf=[, .,] SEQ: Subflow 1000, Data 10 | o put=[1.2.34

rcv_buf=[10, , ,] Data ACK 5,wnd 0

Cannot send Data A

11, w
Data ACK nd3

Data 10

SEQ: Subflow 1000, ---timeout---

Data ACK 5,wnd 0

\J

Figure 12: Flow Control on the path from C to S inadvertently stops the data
flow from S to C

o If packets before it are lost, it might be necessary to wait for retransmis-
sions before the data can be parsed - causing head-of-line blocking.

Flow control presents the most obvious problem for the chunked payload
encoding. Figure 12 provides an example. Client C is pipelining requests to
server S; meanwhile S’s application is busy sending the large response to the
first request so it isn’t yet ready to read the subsequent requests. At this point,
S’s receive buffer fills up.

S sends segment 10, C receives it and wants to send the DATA_ACK, but
cannot: flow control imposed by S’s receive window stops him. Because no
DATA_ACKs are received from C, S cannot free his send buffer, so this fills up and
blocks the sending application on S. S’s application will only read when it has
finished sending data to C, but it cannot do so because its send buffer is full.
The send buffer can only empty when S receives the DATA_ACK from C, but C
cannot send this until S’s application reads. This is a classic deadlock cycle. As
no DATA_ACK is received, S will eventually time out the data it sent to C and
will retransmit it; after many retransmits the whole connection will time out.

The conclusion is that DATA_ACKs cannot be safely encoded in the payload.
The only real alternative is to encode them in TCP options which (on a pure
ACK packet) are not subject to flow control.

The Data Sequence Mapping. If MPTCP must use options to encode
DATA_ACKs, it is simplest to also encode the mapping from subflow sequence
numbers to data sequence numbers in a TCP option. This is the data sequence
mapping or DSM.

At first glance it seems the DSM option simply needs to carry the data
sequence number corresponding to the start of the MPTCP segment. Unfortu-

29

nately middleboxes and interfaces that implement TSO or LRO make this far
from simple.

Middleboxes that re-segment data would cause a problem. TCP Segmen-
tation Offload (TSO) hardware in the network interface card (NIC) also re-
segments data and is commonly used to improve performance. The basic idea
is that the OS sends large segments and the NIC re-segments them to match
the receiver’s MSS. What does TSO do with TCP options? A test of 12 NICs
supporting TSO from four different vendors showed that all of them copy a TCP
option sent by the OS on a large segment into all the split segments [86].

If MPTCP’s DSM option only listed the data sequence number, TSO would
copy the same DSM to more than one segment, breaking the mapping. Instead
the DSM option must say precisely which subflow bytes map to which data
sequence numbers. But this is further complicated by middleboxes that modify
the initial sequence number of TCP connections and consequently rewrite all
sequence numbers (many firewalls behave like this). Instead, the DSM option
must map the offset from the subflow’s initial sequence number to the data
sequence number, as the offset is unaffected by sequence number rewriting. The
option must also contain the length of the mapping. This is robust - as long
as the option is received, it does not greatly matter which packet carries it, so
duplicate mappings caused by TSO are not a problem.

Dealing with Content-Modifying Middleboxes. Multipath TCP and content-
modifying middleboxes (such as application-level NATS, e.g. for FTP) have the
potential to interact badly. In particular, due to FTP’s ASCII encoding, re-
writing an IP address in the payload can necessitate changing the length of
the payload. Subsequent sequence and ACK numbers are then fixed up by the
middlebox so they are consistent from the point of view of the end systems.

Such length changes break the DSM option mapping - subflow bytes can be
mapped to the wrong place in the data stream. They also break every other
possible mapping mechanism, including chunked payloads. There is no easy way
to handle such middleboxes.

That is why MPTCP includes an optional checksum in the DSM mapping
to detect such content changes. If an MPTCP host receives a segment with
an invalid DSM checksum, it rejects the segment and triggers a fallback pro-
cess: if any other subflows exists, MPTCP terminates the subflow on which the
modification occurred; if no other subflow exists, MPTCP drops back to regular
TCP behavior for the remainder of the connection, allowing the middlebox to
perform rewriting as it wishes. This fallback mechanism preserves connectivity
in the presence of middleboxes.

For efficiency reasons, MPTCP uses the same 16-bit ones complement check-
sum used in the TCP header. This allows the checksum over the payload to
be calculated only once. The payload checksum is added to a checksum of an
MPTCP pseudo header covering the DSM mapping values and then inserted
into the DSM option. The same payload checksum is added to the checksum
of the TCP pseudo-header and then used in the TCP checksum field. MPTCP

30

1 2 3
012345678901234567890123456789¢01

e e o o +
| Kind | Length |Subtype| (reserved) |F|m|M|alAl
Fmmm o o e +
| Data ACK (4 or 8 octets, depending on flags) |
ettt +

o +
| Subflow Sequence Number (4 octets) |
o o +
| Data-level Length (2 octets) | Checksum (2 octets) |
et et e e e e +

Figure 13: The Data Sequence Signal option in MPTCP that carries the Data
Sequence Mapping information, the Data ACK, the Data FIN and connection-
fall-back options.

allows checksums to be disabled for high performance environments such as
data-centers where there is no chance of encountering such an application-level
gateway.

The fall-back-to-TCP process, triggered by a checksum failure, can also be
triggered in other circumstances. For example, if a routing change moves an
MPTCP subflow to a path where a middlebox removes DSM options, this also
triggers the fall-back procedure.

Connection Release. Multipath TCP must allow a connection to survive
even though its subflows are coming and going. Subflows in MPTCP can be
torn down by means of a four-way handshake as regular TCP flows—this ensures
MPTCP plays nice with existing middleboxes, allowing them to clear their state
when a subflow is not used anymore.

MPTCP uses an explicit four-way handshake for connection tear-down in-
dicated by a DATA_FIN option. The DATA_FIN is MPTCP’s equivalent to TCP’s
FIN, and it occupies one byte in the data-sequence space. A DATA_ACK will be
used to acknowledge the receipt of the DATA_FIN. MPTCP requires that the
segment(s) carrying a DATA_FIN must also have the FIN flag set - this ensures
all subflows are also closed when the MPTCP connection is being closed.

For reference, we show the wire format of the option used by MPTCP for
data exchange in Figure 13. This option encodes the Data Sequence Mapping,
Data ACK, Data FIN and the fall-back options. The flags specify which parts
of the option are valid, and help reduce option space usage.

31

4.2 Congestion Control

One of the most important components in TCP is its congestion controller
which enables it to adapt its throughput dynamically in response to changing
network conditions. To perform this functionality, each TCP sender maintains
a congestion window w which governs the amount of packets that the sender
can send without waiting for an acknowledgment. The congestion window is
updated dynamically according to the following rules:

e On each ACK, increase the window w by 1/w.

e Each loss decrease the window w by w/2.

TCP congestion control ensures fairness: when multiple connections utilize
the same congested link each of them will independently converge to the same
average value of the congestion window.

What is the equivalent of TCP congestion control for multipath transport?
The obvious question to ask is why not just run regular TCP congestion control
on each subflow? Consider the scenario in Fig. 14. If multipath TCP ran regular
TCP congestion control on both paths, then the multipath flow would obtain
twice as much throughput as the single path flow (assuming all RT'Ts are equal).
This is unfair. To solve this problem, one solution is to try and detect shared
bottlenecks but that is unreliable; a better solution is be less aggressive on
each subflow (i.e. increase window slower) such that in aggregate the MPTCP
connection is no more aggressive than a single regular TCP connection.

Before we describe solutions to MPTCP congestion control, let’s discuss the
three goals that multipath congestion control must obey [105]:

Fairness If several subflows of the same MPTCP connection share a bottleneck
link with other TCP connections, MPTCP should not get more through-
put than TCP.

Deployability The performance of all the Multipath TCP subflows together
should be at least that of regular TCP on any of the paths used by a
Multipath TCP connection. This ensures that there is an incentive to
deploy Multipath TCP.

Efficiency A final, most important goal is that Multipath TCP should prefer
efficient paths, which means it should send more of its traffic on paths
experiencing less congestion.

Intuitively, this last goal ensures wide-area load balancing of traffic: when a
multipath connection is using two paths loaded unevenly (such as Figure 15),
the multipath transport will prefer the unloaded path and push most of its
traffic there; this will decrease the load on the congested link and increase it on
the less congested one.

If a large enough fraction of flows are multipath, congestion will spread
out evenly across collections of links, creating "resource pools”: links that act

32

A
Figure 14: A scenario which shows the importance of weighting the aggressive-
ness of subflows.

«
&
\\\ //’
Y
‘ ___________
-

Figure 15: Two links each with capacity 20 pkts/s. The top link is used by a
single TCP connection, and the bottom link is used by two TCP connections. A
Multipath TCP connection uses both links. Multipath TCP pushes most of its
traffic onto less congested top link, making the two links behave like a resource
pool of capacity 40 pkts/s. Capacity is divided equally, with each flow having
throughput 10 pkts/s.

together as if they are a single, larger capacity link shared by all flows. This effect
is called resource pooling [104]. Resource pooling brings two major benefits,
discussed in the paragraphs below.

Increased Fairness. Consider the example shown in Figure 15: congestion
balancing ensures that all flows have the same throughput, making the two
links of 20 pkt/s act like a single pooled link with capacity 40 pkt/s shared fairly
by the four flows. If more MPTCP flows would be added, the two links would
still behave as a pool, sharing capacity fairly among all flows. Conversely, if
we remove the Multipath TCP flow, the links no longer form a pool, and the
throughput allocation is unfair as the TCP connection using the top path gets
twice as much throughput as the TCP connections using the bottom path.

Increased Throughput. Consider the somewhat contrived scenario in Fig.16,
and suppose that the three links each have capacity 12Mb/s. If each flow split

33

>
_. \
. >
Figure 16: A scenario to illustrate the importance of choosing the less-congested
path.

its traffic evenly across its two paths subflow would get 4Mb/s hence each flow
would get 8Mb/s. But if each flow used only the one-hop shortest path, it could
get 12Mb/s: this is because two-hop paths consume double the resources of one-
hop paths, and in a congested network it makes sense to only use the one-hop
paths.

In an idle network, however, using all available paths is much better: consider
the case when only the blue connection is using the links. In this case this
connection would get 24Mb/s throughput; using the one hop path alone would
only provide 12Mb/s.

In summary, the endpoints need to be able to dynamically decide which
paths to use based on conditions in the network. A solution has been devised
in the theoretical literature on congestion control, independently by Kelly and
Voice [54] and Han et al. [42]. The core idea is that a multipath flow should
shift all its traffic onto the least-congested path. In a situation like Fig. 16
the two-hop paths will have higher drop probability than the one-hop paths, so
applying the core idea will yield the efficient allocation. Surprisingly it turns out
that this can be achieved by doing independent congestion control at endpoints.

Multipath TCP Congestion Control. The theoretical work on multipath
congestion control assumes a rate-based protocol, with exponential increases
of the rate. TCP, in contrast, is a packet-based protocol, sending w packets
every round-trip time (i.e. the rate is w/RTT); a new packet is sent only when
an acknowledgment is received, confirming that an existing packet has left the
network. This property is called ACK-clocking and is nice because it has good
stability properties: when congestion occurs round-trip times increase (due to
buffering), which automatically reduces the effective rate [52].

Converting a theoretical rate-based exponential protocol to a practical packet-
based protocol fair to TCP turned out to be more difficult than expected. There
are two problems that appear [105]:

e When loss rates are equal on all paths, the theoretical algorithm will place
all of the window on one path or the other, not on both—this effect was
termed “flappiness” and it appears because of the discrete (stochastic)
nature of packet losses which are not captured by the differential equations
used in theory.

34

e The ideal algorithm always prefers paths with lower loss rate, but in prac-
tice these may have poor performance. Consider a mobile phone with
WiFi and 3G links: 3G links have very low loss rates and huge round-trip
times, resulting in poor throughput. WiFi is lossy, has shorter round-trip
times and typically offers much better throughput. In this common case,
a “perfect” controller would place all traffic on the 3G path, violating the
second goal (deployability).

The pragmatic choice is to sacrifice some load-balancing ability to ensure
greater stability and to offer incentives for deployment. This is what Multipath
TCP congestion control does.

Multipath TCP congestion control is a series of simple changes to the stan-
dard TCP congestion control mechanism. Each subflow has its own congestion
window, that is halved when packets are lost, as in standard TCP [105].

Congestion balancing is implemented in the increase phase of congestion
control: here Multipath TCP will allow less congested subflows to increase pro-
portionally more than congested ones. Finally, the total increase of Multipath
TCP across all of its subflows is dynamically chosen in such a way that it
achieves the first and second goals above.

The exact algorithm is described below and it satisfies the goals we’ve dis-
cussed:

e Upon ACK on subflow r, increase the window w, by min(a/wsotar), 1/w;).
e Upon loss on subflow r, decrease the window w, by w, /2.

Here
max, w, /RTT?

(S, w,/RTT,)2 @

w,- 18 the current window size on subflow r and wyeee; is the sum of windows
across all subflows.

The algorithm biases the increase towards uncongested paths: these will
receive more ACKs and will increase accordingly. However, MPTCP does keep
some traffic even on the highly congested paths; this ensures stability and allows
it to quickly detect when path conditions improve.

a is a term that is computed dynamically upon each packet drop. Its purpose
is to make sure that MPTCP gets at least as much throughput as TCP on the
best path. To achieve this goal, a is computed by estimating how much TCP
would get on each MPTCP path (this is easy, as round-trip time and loss-rates
estimates are known) and ensuring that MPTCP in stable state gets at least that
much. A detailed discussion on the design of the MPTCP congestion control
algorithm is provided in [105].

For example, in the three-path example above, the flow will put 45% of its
weight on each of the less congested path and 10% on the more congested path.
This is intermediate between regular TCP (33% on each path) and a perfect
load balancing algorithm (0% on the more congested path) that is impossible
to implement in practice.

a = Wtotal

35

[Wi-Fi Tosg Full-MPTCP

o Application Handover
6| B
s A

=10 -0

5 00 _ 05 10 15 2.0 25
Relative Time w.r.t the Wi-Fi loss [seconds]

Figure 17: (Mobility) A mobile device is using both its WiFi and 3G interfaces,
and then the WiFi interface fails. We plot the instantaneous throughputs of
Multipath TCP and application-layer handover.

The window increase is capped at 1/w,, which ensures that the multipath
flow can take no more capacity on either path than a single-path TCP flow
would.

Alternative Congestion Controllers for Multipath TCP. The standard-
ized Multipath TCP congestion control algorithm chooses a trade-off between
load balancing, stability and the ability to quickly detect available capacity. The
biggest contribution of this work is the clearly defined goals for what multipath
congestion control should do, and an instantiation that achieves (most of) the
stated goals in practice.

This research area is relatively new, and it is likely that more work will
lead to better algorithms—if not generally applicable, then at least tailored to
some practical use-cases. A new and interesting congestion controller called
Opportunistic Linked Increases Algorithm (OLIA) has already been proposed
[56] that offers better load balancing with seemingly few drawbacks.

We expect this area to be very active in the near future; of particular inter-
est are designing multipath versions of high-speed congestion control variants
deployed in practice, such as Cubic or Compound TCP.

4.3 Implementation and performance

We now briefly cover two of the most compelling use cases for Multipath TCP
by showing a few evaluation results. We focus on mobile devices and datacenters
but note that Multipath TCP can also help in other scenarios. For example,
multi-homed web-servers can perform fine-grained load-balancing across their
uplinks, while dual-stack hosts can use both IPv4 and IPv6 within a single
Multipath TCP connection.

The full Multipath TCP protocol has been implemented in the Linux ker-
nel; its congestion controller has also been implemented in the ns2 and htsim
network simulators. The results presented in here are from the Linux kernel
implementation [86].

36

1000 [MPTCP, 4 subflows
900 - MPTCP, 2 subflows -----
800

700 |
600 -
500 |-
400 [o RIS
300 I
200 p*
100

Throughput (Mb/s)

0 500 1000 1500 2000 2500 3000
Flow Rank

Figure 18: (Datacenter load-balancing) This graph compares standard TCP
with MPTCP with two and four flows, when tested on an EC2 testbed with
40 instances. Each host uses iperf sequentially to all other hosts. We plot the
performance of all flows (Y axis) in increasing order of their throughputs (X
axis).

The mobile measurements focus on a typical mode of operation where the
device is connected to WiFi, the connection goes down and the phone switches
to using 3G. The setup uses a Linux laptop connected to a WiFi and a 3G
network, downloading a file using HTTP. We compare Multipath TCP with
application-layer handover, where the application detects the loss of the inter-
face, creates a new connection and uses the HTTP range header to resume
the download. Figure 17 shows the instantaneous throughputs for Multipath
TCP and TCP with app-layer handover. The figure shows a smooth handover
with Multipath TCP, as data keeps flowing despite the interface change. With
application-layer handover there is a downtime of 4 seconds where the transfer
stops-this is because it takes time for the application to detect the interface
down event, and it takes time for 3G to ramp up. In summary, Multipath TCP
enables unmodified mobile applications to survive interface changes with little
disruption. A more detailed discussion of the utilization of Multipath TCP in
WiFi/3G environments may be found in [69].

Next, we show results from running Multipath TCP in the Amazon EC2
datacenter. Like most datacenters today, EC2 uses a redundant network topol-
ogy where many paths are available between any pair of endpoints, and where
connections are placed randomly onto available paths. In EC2, 40 machines (or
instances) ran the Multipath TCP kernel. A simple experiment was run where
every machine measured the throughput sequentially to every other machine
using first TCP, then Multipath TCP with two and with four subflows. Figure
18 shows the sorted throughputs measured over 12 hours. The results show
that Multipath TCP brings significant improvements compared to TCP in this
scenario. Because the EC2 network is essentially a black-box , it is difficult to
pinpoint the root cause for the improvements; however, a detailed analysis of
the cases where Multipath TCP can help and why in is presented in [85].

37

5 Minion

TCP [80] was originally designed to offer applications a convenient, high-level
communication abstraction with semantics emulating Unix file I/O or pipes: a
reliable, ordered bytestream, through an end-to-end channel (or connection).
As the Internet has evolved, however, applications needed better abstractions
from the transport, which led to the development of richer services offered by
new transport protocols, such as SCTP [94] and DCCP [58].

However, due to the difficulty of deploying new transports today, applica-
tions rarely utilize these new transports. UDP [77] is a popular substrate, but
is still not universally supported in the Internet, leading even delay-sensitive
applications such as the Skype telephony system to fall back on TCP despite
its drawbacks. Even when using UDP as a substrate, building a new transport
protocol atop UDP often involves substantial work in recreating much of TCP
atop UDP, especially when making the implementation perform as well as TCP
does under different network conditions.

As a result, TCP’s original role of offering an abstraction has gradually
been supplanted with a new role of providing a substrate for transport-like,
application-level protocols such as SSL/TLS [29], OMQ, SPDY, and WebSock-
ets. In this new substrate role, TCP’s in-order delivery offers little value since
application libraries are equally capable of implementing convenient abstrac-
tions. TCP’s strict in-order delivery, however, prevents applications from con-
trolling the framing of their communications, and incurs a “latency tax” on
content whose delivery must wait for the retransmission of a single lost TCP
segment.

Recognizing that TCP’s use as a substrate is likely to continue and expand,
we discuss Minion, a novel architecture for efficient but backward-compatible
unordered delivery in TCP. Minion consists of uTCP, a small OS extension
adding basic unordered delivery primitives to TCP, and two application-level
protocols implementing datagram-oriented delivery services that function on
either uTCP or unmodified TCP stacks.

While building a new transport on UDP is a perfectly reasonable design ap-
proach, Minion offers an alternative option where the TCP protocol is adequate,
but the socket API is not; where a new transport service can be offered using
TCP’s bits on the wire.

5.1 Minion Architecture Overview

Minion is an architecture and protocol suite designed to meet the needs of to-
day’s applications for efficient unordered delivery built atop either TCP or UDP.
Minion itself offers no high-level abstractions: its goal is to serve applications
and higher application-level transports, by acting as a “packhorse” carrying
raw datagrams as reliably and efficiently as possible across today’s diverse and
change-averse Internet.
Figure 19 illustrates Minion’s architecture. Applications and higher application-

level transports link in and use Minion in the same way as they already use

38

‘ Application ‘

higher application-level
Minion API: transports (optional)

unordered —m
datagram Minion Protocol|Suite
delivery
uCOBS uTLS | [shim] [shim]
OS APl —, - 1

1 7
| TcP orutcp | | upP | | DCcr |
uTer)

Optional Minion extensions to TCP

Figure 19: Minion architecture

existing application-level transport libraries. Minion effectively offers true un-
ordered delivery atop TCP and offers relief from TCP’s latency tax: the loss
of one TCP segment in the network no longer prevents datagrams embedded in
subsequent TCP segments from being delivered promptly to the application.

Minion consists of several application-level transport protocols, together
with a set of optional enhancements to end hosts’ OS-level TCP implemen-
tations.

Minion’s enhanced OS-level TCP stack, called wTCP (“unordered TCP”),
includes sender- and receiver-side API features supporting unordered delivery
and prioritization, detailed in Section 5.2. These enhancements affect only the
OS API through which application-level transports such as Minion interact with
the TCP stack, and make no changes to TCP’s wire protocol.

Minion’s application-level protocol suite currently consists of the following
main components:

e yCOBS is a protocol that implements a minimal unordered datagram de-
livery service atop either unmodified TCP or ©TCP, using COBS encoding
to facilitate out-of-order datagram delimiting and prioritized delivery, as
described later in Section 5.3.

e uTLS is a modification of the traditionally stream-oriented TLS [29], of-
fering a secure, unordered datagram delivery service atop TCP or uTCP.
The wire-encoding of «TLS streams is designed to be indistinguishable in
the network from conventional, encrypted TLS-over-TCP streams (e.g.,
HTTPS), offering a maximally conservative design point that makes no
network-visible changes “below the yellow line” in Figure 19. Section 5.3
describes uTLS.

e Minion adds shim layers atop OS-level datagram transports, such as UDP
and DCCP, to offer applications a consistent API for unordered delivery
across multiple OS-level transports. Since these shims are merely wrappers
for OS transports already offering unordered delivery, this paper does not
discuss them in detail.

39

Minion’s deployability rests on the fact that it can, when necessary, avoid
relying on changes either “below the red line” in the end hosts (the OS API in
Figure 19), or “below the yellow line” in the network (the end-to-end security
layer in Figure 19). Minion currently leaves to the application the decision
of which protocol to use for a given connection: e.g., uCOBS or uTLS atop
TCP/uTCP, or OS-level UDP or DCCP via Minion’s shims.

5.2 uTCP

Minion enhances the OS’s TCP stack with API enhancements supporting un-
ordered delivery in both TCP’s send and receive paths, enabling applications
to reduce transmission latency at both the sender- and receiver-side end hosts
when both endpoints support ©TCP. Since uTCP makes no change to TCP’s
wire protocol, two endpoints need not “agree” on whether to use uTCP: one
endpoint gains latency benefits from 4 TCP even if the other endpoint does not
support it. Further, an OS may choose independently whether to support the
sender- and receiver-side enhancements, and when available, applications can
activate them independently.

uTCP does not seek to offer “convenient” or “clean” unordered delivery
abstractions directly at the OS API. Instead, uTCP’s design is motivated by
the goals of maintaining exact compatibility with TCP’s existing wire-visible
protocol and behavior, and facilitating deployability by minimizing the extent
and complexity of changes to the OS’s TCP stack.

In this Section, we describe uTCP’s API enhancements in terms of the BSD
sockets API, although wTCP’s design contains nothing inherently specific to
this APL.

5.2.1 Receiver-Side Modifications

A conventional TCP receiver delivers data in-order to the receiving application,
holding back any data that is received out of order. wTCP modifies the TCP
receive path, enabling a receiving application to request immediate delivery of
data that is received by «TCP, both in order and out of order.

uTCP makes two modifications to a conventional TCP receiver. First,
whereas a conventional TCP stack delivers received data to the application only
when prior gaps in the TCP sequence space are filled, the uTCP receiver makes
data segments available to the application immediately upon receipt, skipping
TCP’s usual reordering queue. The data the uTCP stack delivers to the ap-
plication in successive application reads may skip forward and backward in the
transmitted byte stream, and «TCP may even deliver portions of the transmit-
ted stream multiple times. uTCP guarantees only that the data returned by
each application read corresponds to some contiguous sequence of bytes in the
sender’s transmitted stream.

Second, when servicing an application’s read, the uTCP receiver also delivers
the logical offset of the first returned byte in the sender’s original byte stream—
information that a TCP receiver must maintain to arrange received segments in

40

order.

(a) Delivery in standard TCP =~ """ """ "ommm o oo ommmmm oo mnmmmmmmmmmmmmnes

application receive buffer (delayed data delivered)

delayed
Application X v

TCP Stack

read() 2 read() 3 read()

Out-of- % _(delivered) : [301] | G;p- < (delivered) [] [301] |

Order CumAck = 201 % Out-of-Order | - Filling CumAck =201 ¥ Out-of-Order

Arrival Queue Arrival Queue
o] 201]

(b) Delivery in uTCP "~ " """ o m e e e e

application fragment buffer
level
stream reassembly)

sequence t-of-orde sequence
namber (101] poisiad ECI I Boinsit namber (201]
Application
read() T?:pp Sk 2 read() 3 read()
- tacl . . . : -
Out-of- % (delivered) [301] | Gap- i (delivered) [] [301] |

Order
Arrival

£ -

CumAck = 201

Out-of-Order | Filling CumAck = 201 Out-of-Order
Queue Arrival Queue
1]

Figure 20: Delivery behavior of (a) standard TCP, and (b) «TCP, upon receipt
of in-order and out-of-order segments.

Figure 20 illustrates uTCP’s receive-side behavior, in a simple scenario where
three TCP segments arrive in succession: first an in-order segment, then an
out-of-order segment, and finally a segment filling the gap between the first
two. With «TCP, the application receives each segment as soon as it arrives,
along with the sequence number information it needs to reconstruct a complete
internal view of whichever fragments of the TCP stream have arrived.

5.2.2 Sender-Side Modifications

While «TCP’s receiver-side enhancements address the “latency tax” on seg-
ments waiting in TCP’s reordering buffer, TCP’s sender-side queue can also
introduce latency, as segments the application has already written to a TCP
socket—and hence “committed” to the network—wait until TCP’s flow and
congestion control allow their transmission. Many applications can benefit from
the ability to “late-bind” their decision on what to send until the last possible
moment, and also from being able to transmit a message of higher priority that
bypasses any lower priority messages in the sender-side queue.

A uTCP sender allows a sending application to specify a tag with each
application write, which the wTCP sender currently interprets as a priority
level. Instead of unconditionally placing the newly-written data at the tail of
the send queue as TCP normally would, uTCP inserts the newly-written data
into the send queue just before any lower-priority data in the send queue not
yet transmitted.

With these modifications to a TCP stack, none of which require changes
to the TCP wire-format, uTCP offers an interface which, while not convenient
for applications, is powerful. In the next Section, we discuss how we build a
userspace library that uses this interface that provides a simple unordered de-

41

livery service, unordered delivery of encrypted messages, and logically separate
data streams within a single «TCP connection.

5.3 Datagrams and Multistreaming on «TCP

Applications built on datagram substrates such as UDP generally assume the
underlying layer preserves datagram boundaries. TCP’s stream-oriented seman-
tics do not preserve any application-relevant frame boundaries within a stream,
however. Both the TCP sender and network middleboxes can and do coalesce
TCP segments or re-segment TCP streams in unpredictable ways [47].

Atop uTCP, a userspace library can reconstruct contiguous fragments in
the received data stream using the metadata sequence number information
that uTCP passes along at the receiver. However, providing unordered mes-
sage delivery service atop uTCP requires delimiting application messages in the
bytestream. While record delimiting is commonly done by application protocols
such as HT'TP, SIP, and many others, a key property that we require to provide
a true unordered delivery service is that a receiver must be able to extract a
given message independently of other messages. That is, as soon as a complete
message is received, the message delimiting mechanism must allow for extraction
of the message from the bytestream fragment, without relying on the receipt of
earlier messages.

We can implement self-delimiting messages in two ways:

1. To encode application datagrams efficiently, the userspace library employs
Consistent-Overhead Byte Stuffing, or COBS [20] to delimit and extract
messages. COBS is a binary encoding which eliminates ezactly one byte
value from a record’s encoding with minimal bandwidth overhead. To
encode an application record, COBS first scans the record for runs of
contiguous marker-free data followed by exactly one marker byte. COBS
then removes the trailing marker, instead prepending a non-marker byte
indicating the run length. A special run-length value indicates a run of
254 bytes not followed by a marker in the original data, enabling COBS
to divide arbitrary-length runs into 254-byte runs encoded into 255 bytes
each, yielding a worst-case expansion of only 0.4%.

2. The userspace library coaxes out-of-order delivery from the existing TCP-
oriented TLS wire format, producing an encrypted datagram substrate
indistinguishable on the wire from standard TLS connections. TLS [29]
already breaks its communication into records, encrypts and authenticates
each record, and prepends a header for transmission on the underlying
TCP stream. TLS was designed to decrypt records strictly in-order, how-
ever, creating challenges which the userspace library overcomes [68]. Run
on port 443, our encrypted stream atop uTCP is indistinguishable from
HTTPS—regardless of whether the application actually uses HTTP head-
ers, since the HTTP portion of HTTPS streams are TLS-encrypted any-
way. Deployed this way, Minion effectively offers an end-to-end protected
substrate in the “HTTP as the new narrow waist” philosophy [76].

42

Finally, we explore building concurrency using Minion’s unordered message
delivery service; we build a multistreaming abstraction that provides multiple
independent and ordered message streams within a single ©TCP connection.
While both the need for and the benefits of concurrency at the transport layer
have been well known, Minion can be used to provide true multistreaming to ap-
plications while retaining wire-compatibility with TCP. A simple multistreamed
userspace transport breaks application data from multiple data streams into
multiplexable units (called chunks in SCTP), embeds a small header to help
the receiving userspace transport deliver the chunk in the correct order in the
correct stream, encodes chunks as Minion messages so that chunks from differ-
ent streams can be delivered independently of each other. To understand how
multistreaming can be implemented atop Minion it is sufficient to note that mul-
tistreaming provides partial-ordering of messages. Building partial-order atop
Minion’s unordered message delivery service is left as an exercise to the reader.

6 Conclusion

The Transport Layer in the Internet evolved for nearly two decades, but it has
been stuck for over a decade now. A proliferation of middleboxes in the In-
ternet, devices in the network that look past the IP header, has shifted the
waist of the Internet hourglass upward from IP to include UDP and TCP, the
legacy workhorses of the Internet. While popular for many different reasons,
middleboxes thus deviate from the Internets end-to-end design, creating large
deployment black-holes—singularities where legacy transports get through, but
any new transport technology or protocol fails, severely limiting transport pro-
tocol evolution. The fallout of this ossification is that new transport protocols,
such as SCTP and DCCP, that were developed to offer much needed richer end-
to-end services to applications, have had trouble getting deployed since they
require changes to extant middleboxes.

Multipath TCP is perhaps the most significant change to TCP in the past
twenty years. It allows existing TCP applications to achieve better performance
and robustness over today’s networks, and it has been standardized at the IETF.
The Linux kernel implementation shows that these benefits can be obtained
in practice. However, as with any change to TCP, the deployment bar for
Multipath TCP is very high: only time will tell whether the benefits it brings
will outweigh the added complexity it brings in the end-host stacks.

The design of Multipath TCP has been a lengthy, painful process that took
around five years. Most of the difficulty came from the need to support existing
middlebox behaviors, while offering the exact same service to applications as
TCP. Although the design space seemed wide open in the beginning, in the end
we were just able to evolve TCP this way: for many of the design choices there
was only one viable option that could be used. When the next major TCP
extension is designed in a network with even more middleboxes, will we, as a
community, be as lucky?

A pragmatic answer to the inability to deploy new transport protocols is Min-

43

ion. It allows deploying new transport services by being backward compatible
with middleboxes by encapsulating new protocols inside TCP. Minion demon-
strates that it is possible to obtain unordered delivery and multistreaming from
wire-compatible TCP and TLS streams with surprisingly small changes to TCP
stacks and application-level code. Minion offers a path toward the performance
benefits of unordered delivery, which we expect to be useful to applications that
use TCP for a variety of pragmatic reasons.

Early in the Internet’s history, all IP packets could travel freely through
the Internet, as IP was the narrow waist of the protocol stack. Eventually,
apps started using UDP and TCP exclusively, and some, such as Skype, used
them adaptively, perhaps due to security concerns, in addition to the increasing
proliferation of middleboxes that allowed only UDP and TCP through. (We’ll
note that HTTP has also recently been suggested as the new waist [76].) We
observe that whatever the new narrow waist is, middleboxes will embrace it
and optimize for it: if MPTCP and/or Minion become popular, it is likely that
middleboxes will be devised that understand these protocols to optimize for
the most successful use-case of these protocols, and to help protect any vul-
nerable applications using them. One immediate answer from an application
would be to use encrypted communication proposed in Minion—but actively
hiding information from a network operator can potentially encourage the net-
work operator to embed middleboxes that intercept TLS connections, effectively
mounting man-in-the-middle attacks to control traffic over their network, as is
already being done in several current corporate firewalls [63]. To bypass these
middleboxes, new applications may encapsulate their data even deeper, leading
to a vicious circle that resembles an “arms race” for control over network use.

This “arms race” is a symptom of a fundamental tussle between end-hosts
and the network: end-hosts will always want to deploy new applications and
services, while the network will always want to allow and optimize only existing
ones [24]. We propose that to break out of this vicious circle. end-hosts and
the network must co-operate, and that they must build cooperation into their
protocols. Designing and providing protocols and incentives for this coopera-
tion may hold the key to creating a truly evolvable transport (and Internet)
architecture.

References

[1] Alexander Afanasyev, Neil Tilley, Peter Reiher, and Leonard Kleinrock.
Host-to-Host Congestion Control for TCP. IEEE Communications Sur-
veys & Tutorials, 12(3):304-342, 2012.

[2] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s Initial Window.
RFC 3390 (Proposed Standard), October 2002.

[3] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC
5681 (Draft Standard), September 2009.

44

[4]

[5]

Mark Allman. Comments on selecting ephemeral ports. SIGCOMM Com-
put. Commaun. Rev., 39(2):13-19, March 2009.

F. Audet and C. Jennings. Network Address Translation (NAT) Behav-
ioral Requirements for Unicast UDP. RFC 4787 (Best Current Practice),
January 2007.

F. Baker. Requirements for IP Version 4 Routers. RFC 1812 (Proposed
Standard), June 1995. Updated by RFCs 2644, 6633.

A. Begen, D. Wing, and T. Van Caenegem. Port Mapping between Unicast
and Multicast RTP Sessions. RFC 6284 (Proposed Standard), June 2011.

Robert Beverly, Arthur Berger, Young Hyun, and k claffy. Understanding
the efficacy of deployed internet source address validation filtering. In Pro-
ceedings of the 9th ACM SIGCOMM conference on Internet measurement
conference, IMC ’09, pages 356-369, New York, NY, USA, 2009. ACM.

Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure
calls. ACM Trans. Comput. Syst., 2(1):39-59, February 1984.

Olivier Bonaventure. Computer Networking : Principles, Protocols and
Practice. Saylor foundation, 2012. Available from http://inl.info.ucl.
ac.be/cnp3.

Olivier Bonaventure, Mark Handley, and Costin Raiciu. An Overview of
Multipath TCP. Useniz ;login: magazine, 37(5), October 2012.

R. Bonica, D. Gan, D. Tappan, and C. Pignataro. Extended ICMP to Sup-
port Multi-Part Messages. RFC 4884 (Proposed Standard), April 2007.

D. Borman. TCP Options and Maximum Segment Size (MSS). RFC 6691
(Informational), July 2012.

R. Braden. Requirements for Internet Hosts - Application and Support.
RFC 1123 (INTERNET STANDARD), October 1989. Updated by RFCs
1349, 2181, 5321, 5966.

R. Braden. Requirements for Internet Hosts - Communication Layers.
RFC 1122 (INTERNET STANDARD), October 1989. Updated by RFCs
1349, 4379, 5884, 6093, 6298, 6633.

R. Braden. T/TCP — TCP Extensions for Transactions Functional Spec-
ification. RFC 1644 (Historic), July 1994. Obsoleted by RFC 6247.

Lukasz Budzisz, Johan Garcia, Anna Brunstrom, and Ramon Ferris.
A taxonomy and survey of SCTP research. ACM Computing Surveys,
44(4):1-36, August 2012.

B. Carpenter and S. Brim. Middleboxes: Taxonomy and Issues. RFC
3234 (Informational), February 2002.

45

[19]

[25]

[26]

[27]

28]

[30]

[31]

D Cheriton. VMTP: a transport protocol for the next generation of com-
munication systems. In SIGCOMM’86, New York, New York, USA, Au-
gust 1986. ACM.

Stuart Cheshire and Mary Baker. Consistent Overhead Byte Stuffing. In
ACM SIGCOMM, September 1997.

J. Chu. Tuning tcp parameters for the 21st century. Presented at IETF75.

J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis. Increasing tcp’s ini-
tial window. Internet draft, draft-ietf-tcpm-initcwnd, work in progress,
February 2013.

David Clark. The design philosophy of the darpa internet protocols. ACM
SIGCOMM Computer Communication Review, 18(4):106-114, 1988.

David D. Clark, John Wroclawski, Karen R. Sollins, and Robert Braden.
Tussle in cyberspace: defining tomorrow’s internet. In Proceedings of the
2002 conference on Applications, technologies, architectures, and protocols
for computer communications, SIGCOMM ’02, pages 347-356, New York,
NY, USA, 2002. ACM.

L. D’Acunto, J.A. Pouwelse, and H.J. Sips. A measurement of nat and
firewall characteristics in peer-to-peer systems. In Proceedings of the ASCI
Conference, 2009.

Marco de Vivo, Gabriela O. de Vivo, Roberto Koeneke, and Germinal
Isern. Internet vulnerabilities related to tcp/ip and t/tcp. SIGCOMM
Comput. Commun. Rev., 29(1):81-85, January 1999.

S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specifi-
cation. RFC 2460 (Draft Standard), December 1998. Updated by RFCs
0095, 5722, 5871, 6437, 6564.

Amogh Dhamdhere, Matthew Luckie, Bradley Huffaker, kc claffy, Ahmed
Elmokashfi, and Emile Aben. Measuring the deployment of ipv6: topology,
routing and performance. In Proceedings of the 2012 ACM conference on

Internet measurement conference, IMC ’12, pages 537-550, New York,
NY, USA, 2012. ACM.

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard), August 2008. Updated by
RFCs 5746, 5878, 6176.

M. Duke, R. Braden, W. Eddy, and E. Blanton. A Roadmap for Trans-
mission Control Protocol (TCP) Specification Documents. RFC 4614 (In-
formational), September 2006. Updated by RFC 6247.

W. Eddy. TCP SYN Flooding Attacks and Common Mitigations. RFC
4987 (Informational), August 2007.

46

[32]

[33]

K. Egevang and P. Francis. The IP Network Address Translator (NAT).
RFC 1631 (Informational), May 1994. Obsoleted by RFC 3022.

Theodore Faber, Joe Touch, and Wei Yue. The time-wait state in tcp
and its effect on busy servers. In INFOCOM’99. FEighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Pro-

ceedings. IFEFE, volume 3, pages 1573-1583. IEEE, 1999.

Kevin R Fall and W Richard Stevens. TCP/IP Illustrated, Volume 1: The
Protocols, volume 1. Addison-Wesley Professional, 2011.

P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial
of Service Attacks which employ IP Source Address Spoofing. RFC 2827
(Best Current Practice), May 2000. Updated by RFC 3704.

Rodrigo Fonseca, George Porter, R Katz, Scott Shenker, and Ion Stoica.
Ip options are not an option. Technical Report UCB/EECS-2005-24, UC
Berkeley, Berkeley, CA, 2005. http://www.eecs.berkeley.edu/Pubs/
TechRpts/2005/EECS-2005-24 .html.

A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions for
Multipath Operation with Multiple Addresses. RFC 6824 (Experimental),
January 2013.

F. Gont and S. Bellovin. Defending against Sequence Number Attacks.
RFC 6528 (Proposed Standard), February 2012.

Fernando Gont. Survey of security hardening methods for transmission
control protocol (tcp) implementations. Internet draft, draft-ietf-tcpm-
tep-security, work in progress, March 2012.

S. Guha, K. Biswas, B. Ford, S. Sivakumar, and P. Srisuresh. NAT Behav-
ioral Requirements for TCP. RFC 5382 (Best Current Practice), October
2008.

T. Hain. Architectural Implications of NAT. RFC 2993 (Informational),
November 2000.

Huaizhong Han, Srnivas Shakkottai, C. V. Hollot, R. Srikant, and Don
Towsley. Multi-path TCP: a joint congestion control and routing scheme
to exploit path diversity in the Internet. IEEE/ACM Trans. Networking,
14(6), 2006.

Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz,
and Nick McKeown. Reproducible network experiments using container-
based emulation. In Proceedings of the Sth international conference on
Emerging networking experiments and technologies, pages 253-264. ACM,
2012.

47

[44]

[55]

[56]

Mark Handley, Vern Paxson, and Christian Kreibich. Network intrusion
detection: Evasion, traffic normalization, and end-to-end protocol seman-
tics. In Proc. USENIX Security Symposium, pages 9-9, 2001.

David A. Hayes, Jason But, and Grenville Armitage. Issues with net-
work address translation for sctp. SIGCOMM Comput. Commun. Rev.,
39(1):23-33, December 2008.

M. Holdrege and P. Srisuresh. Protocol Complications with the IP Net-
work Address Translator. RFC 3027 (Informational), January 2001.

Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh,
Mark Handley, and Hideyuki Tokuda. Is it still possible to extend tcp?
In Proceedings of the 2011 ACM SIGCOMM conference on Internet mea-
surement conference, pages 181-194. ACM, 2011.

C. Huitema. Multi-homed tcp. Internet draft, work in progress, 1995.

Sami Iren, Paul D. Amer, and Phillip T. Conrad. The transport layer:
tutorial and survey. ACM Comput. Surv., 31(4):360-404, December 1999.

Janardhan Iyengar, Bryan Ford, Dishant Ailawadi, Syed Obaid Amin,
Michael Nowlan, Nabin Tiwari, and Jeff Wise. Minion—an all-terrain
packet packhorse to jump-start stalled internet transports. In PFLDNeT
2010, November 2010.

V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Per-
formance. RFC 1323 (Proposed Standard), May 1992.

Van Jacobson. Congestion avoidance and control. ACM SIGCOMM Com-
puter Communication Review, 18(4):314-329, 1988.

S. Jiang, D. Guo, and B. Carpenter. An Incremental Carrier-Grade NAT
(CGN) for IPv6 Transition. RFC 6264 (Informational), June 2011.

F. Kelly and T. Voice. Stability of end-to-end algorithms for joint routing
and rate control. ACM SIGCOM Computer Communication Reviewer,
35(2), April 2005.

S. Kent. IP Authentication Header. RFC 4302 (Proposed Standard),
December 2005.

Ramin Khalili, Nicolas Gast, Miroslav Popovic, Utkarsh Upadhyay, and
Jean-Yves Le Boudec. Mptcp is not pareto-optimal: performance issues
and a possible solution. In Proceedings of the 8th international confer-
ence on Emerging networking experiments and technologies, CONEXT 12,
pages 1-12, New York, NY, USA, 2012. ACM.

48

[57]

[58]

[59]

Ramin Khalili, Nicolas Gast, Miroslav Popovic, Utkarsh Upadhyay, and
Jean-Yves Le Boudec. Mptcp is not pareto-optimal: performance issues
and a possible solution. In Proceedings of the 8th international conference
on Emerging networking experiments and technologies, pages 1-12. ACM,
2012.

E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control
Protocol (DCCP). RFC 4340 (Proposed Standard), March 2006. Updated
by RFCs 5595, 5596, 6335, 6773.

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. The click modular router. ACM Trans. Comput. Syst.,
18(3):263-297, August 2000.

M. Larsen and F. Gont. Recommendations for Transport-Protocol Port
Randomization. RFC 6056 (Best Current Practice), January 2011.

L-A. Larzon, M. Degermark, S. Pink, L-E. Jonsson, and G. Fairhurst. The
Lightweight User Datagram Protocol (UDP-Lite). RFC 3828 (Proposed
Standard), July 2004. Updated by RFC 6335.

M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. SOCKS
Protocol Version 5. RFC 1928 (Proposed Standard), March 1996.

Kurt Marko. Using SSL Proxies To Block Unauthorized SSL. VPNs. Pro-
cessor Magazine, www.processor.com, 32(16):23, July 2010.

M. Mathis and J. Heffner. Packetization Layer Path MTU Discovery.
RFC 4821 (Proposed Standard), March 2007.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Ac-
knowledgment Options. RFC 2018 (Proposed Standard), October 1996.

D. McLaggan. Web cache communication protocol v2, revision 1. Internet
draft, draft-mclaggan-wccp-v2revl, work in progress, August 2012.

J.C. Mogul and S.E. Deering. Path MTU discovery. RFC 1191 (Draft
Standard), November 1990.

Michael F. Nowlan, Nabin Tiwari, Janardhan Iyengar, Syed Obaid Amin,
and Bryan Ford. Fitting square pegs through round pipes: Unordered
delivery wire-compatible with TCP and TLS. In NSDI, volume 12, April
2012.

Christoph Paasch, Gregory Detal, Fabien Duchene, Costin Raiciu, and
Olivier Bonaventure. Exploring mobile/wifi handover with multipath tcp.
In Proceedings of the 2012 ACM SIGCOMM workshop on Cellular net-
works: operations, challenges, and future design, CellNet '12, pages 31-36,
New York, NY, USA, 2012. ACM.

49

[70]

[71]

[72]

[83]

[84]

V. Paxson and M. Allman. Computing TCP’s Retransmission Timer. RFC
2988 (Proposed Standard), November 2000. Obsoleted by RFC 6298.

V. Paxson, M. Allman, J. Chu, and M. Sargent. Computing TCP’s Re-
transmission Timer. RFC 6298 (Proposed Standard), June 2011.

S. Perreault, I. Yamagata, S. Miyakawa, A. Nakagawa, and H. Ashida.
Common requirements for carrier grade nats (cgns). Internet draft, draft-
ietf-behave-lsn-requirements, work in progress, Dec 2012.

Larry L Peterson and Bruce S Davie. Computer networks: a systems
approach. Morgan Kaufmann, 2007.

R. Pfeiffer. Measuring tcp congestion windows. Linux Gazette, March
2007.

T. Phelan, G. Fairhurst, and C. Perkins. DCCP-UDP: A Datagram Con-
gestion Control Protocol UDP Encapsulation for NAT Traversal. RFC
6773 (Proposed Standard), November 2012.

Lucian Popa, Ali Ghodsi, and Ion Stoica. HTTP as the narrow waist of
the future Internet. In 9th ACM Workshop on Hot Topics in Networks
(HotNets-1X), October 2010.

J. Postel. User Datagram Protocol. RFC 768 (INTERNET STANDARD),
August 1980.

J. Postel. Internet Control Message Protocol. RFC 792 (INTERNET
STANDARD), September 1981. Updated by RFCs 950, 4884, 6633.

J. Postel. Internet Protocol. RFC 791 (INTERNET STANDARD),
September 1981. Updated by RFCs 1349, 2474.

J. Postel. Transmission Control Protocol. RFC 793 (INTERNET STAN-
DARD), September 1981. Updated by RFCs 1122, 3168, 6093, 6528.

J. Postel. The TCP Maximum Segment Size and Related Topics. RFC
879, November 1983. Updated by RFC 6691.

J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (INTERNET
STANDARD), October 1985. Updated by RFCs 2228, 2640, 2773, 3659,
5797.

Sivasankar Radhakrishnan, Yuchung Cheng, Jerry Chu, Arvind Jain, and
Barath Raghavan. Tcp fast open. In Proceedings of the Seventh COn-
ference on emerging Networking EXperiments and Technologies, page 21.
ACM, 2011.

C. Raiciu, M. Handley, and D. Wischik. Coupled Congestion Control for
Multipath Transport Protocols. RFC 6356 (Experimental), October 2011.

50

[85]

[90]

[91]

[92]

Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh,
Damon Wischik, and Mark Handley. Improving datacenter performance
and robustness with multipath tcp. ACM SIGCOMM Computer Commu-
nication Review, 41(4):266-277, 2011.

Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio
Honda, Fabien Duchene, Olivier Bonaventure, and Mark Handley. How
hard can it be? designing and implementing a deployable multipath tcp.
In NSDI, volume 12, pages 2929, 2012.

Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear.
Address Allocation for Private Internets. RFC 1918 (Best Current Prac-
tice), February 1996.

KW Ross and JF Kurose. Computer networking. A top-down Approach
Featuring the Internet, 2003.

Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end
arguments in system design. ACM Transactions on Computer Systems
(TOCS), 2(4):277-288, 1984.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Trans-
port Protocol for Real-Time Applications. RFC 3550 (INTERNET STAN-
DARD), July 2003. Updated by RFCs 5506, 5761, 6051, 6222.

Jeffrey Semke, Jamshid Mahdavi, Matthew Mathis, Jeffrey Semke,
Jamshid Mahdavi, and Matthew Mathis. Automatic TCP buffer tun-
ing. ACM SIGCOMM Computer Communication Review, 28(4):315-323,
October 1998.

Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia
Ratnasamy, and Vyas Sekar. Making middleboxes someone else’s prob-
lem: Network processing as a cloud service. ACM SIGCOMM Computer
Communication Review, 42(4):13-24, 2012.

P. Srisuresh, B. Ford, S. Sivakumar, and S. Guha. NAT Behavioral Re-
quirements for ICMP. RFC 5508 (Best Current Practice), April 2009.

R. Stewart. Stream Control Transmission Protocol. RFC 4960 (Proposed
Standard), September 2007. Updated by RFCs 6096, 6335.

R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, and P. Conrad. Stream Con-
trol Transmission Protocol (SCTP) Partial Reliability Extension. RFC
3758 (Proposed Standard), May 2004.

Jonathan Stone and Craig Partridge. When the crc and tcp checksum
disagree. In Proceedings of the conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, SIGCOMM
00, pages 309-319, New York, NY, USA, 2000. ACM.

o1

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

A

W Timothy Strayer, Bert J Dempsey, and Alfred Charles Weaver. XTP:
The Xpress transfer protocol. Addison-Wesley Publishing Company, 1992.

R. Thurlow. RPC: Remote Procedure Call Protocol Specification Version
2. RFC 5531 (Draft Standard), May 20009.

J. Touch. TCP Control Block Interdependence. RFC 2140 (Informa-
tional), April 1997.

M. Tuexen and R. Stewart. UDP Encapsulation of SCTP Packets for
End-Host to End-Host Communication. Internet draft, draft-ietf-tsvwg-
sctp-udp-encaps, work in progress, March 2013.

Mythili Vutukuru, Hari Balakrishnan, and Vern Paxson. Efficient and
Robust TCP Stream Normalization. In IEEE Symposium on Security
and Privacy (sp 2008), pages 96-110. IEEE, 2008.

Zhaoguang Wang, Zhiyun Qian, Qiang Xu, Zhuoqing Mao, and Ming
Zhang. An untold story of middleboxes in cellular networks. ACM SIG-
COMM Computer Communication Review, 41(4):374-385, 2011.

Zhaoguang Wang, Zhiyun Qian, Qiang Xu, Zhuoqing Mao, and Ming
Zhang. An untold story of middleboxes in cellular networks. In Proceedings
of the ACM SIGCOMM 2011 conference, SIGCOMM ’11, pages 374-385,
New York, NY, USA, 2011. ACM.

Damon Wischik, Mark Handley, and Marcelo Bagnulo Braun. The re-
source pooling principle. SIGCOMM Comput. Commun. Rev., 38(5):47—
52, September 2008.

Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley.
Design, implementation and evaluation of congestion control for multipath
tep. In Proceedings of the 8th USENIX conference on Networked systems
design and implementation, NSDI'11, pages 88, Berkeley, CA, USA, 2011.
USENIX Association.

Hubert Zimmermann. Osi reference model-the iso model of architecture
for open systems interconnection. Communications, IEEE Transactions
on, 28(4):425-432, 1980.

Exercises

This section contains a few exercises on transport protocols, their evolution and
the middleboxes.

92

A.1 Transport protocols

1. TCP provides a reliable transport service. Assuming that you control the
two endpoints of a connection, how would you modify the TCP protocol
to provide an unreliable service 7 Explore two variants of such a transport
service :

e an unreliable bytestream where bytes can be corrupted but where
there are no losses

e an unreliable bytestream that prevents data corruption but can de-
liver holes in the bytestream

2. UDP provides an unreliable connectionless transport service. Assuming
that you control the two endpoints that are using UDP, how would you
modify this protocol to provide a reliable connectionless transport service.
Explore two variants of such a service :

e A service that ensures a reliable delivery of all messages. Sometimes,
this service may deliver the same message several times. This service
does not preserve the ordering of the messages exchanged between
two hosts.

e A service similar to the one above but that preserves the ordering of
the messages exchanged between two hosts.

3. TCP provides a connection-oriented bytestream service. How would you
modify TCP to support a message-oriented service. Consider two variants
of this service :

e A connection-oriented message-mode service that supports only small
messages, i.e. all messages are smaller than one segment.

e A connection-oriented message-mode service that supports any mes-
sage length.

4. The large windows extension for TCP defined in [51] uses the WScale op-
tion to negotiate a scaling factor which is valid for the entire duration of
the connection. Propose another method to transport a larger window
by using a new type of option inside each segment. What are the advan-
tages/drawbacks of this approach compared to [51] assuming that there
are no middleboxes ?

A.2 Middleboxes

Middleboxes may perform various changes and checks on the packets that they
process. Testing real middleboxes can be difficult because it involves installing
complex and sometimes costly devices. However, getting an understanding of
the interactions between middleboxes and transport protocols is useful for pro-
tocol designers.

93

A first approach to understand the impact of middleboxes on transport
protocols is to emulate the interactions caused by middleboxes. The https:
//bitbucket.org/bhesmans/click repository contains a set of click [59] ele-
ments that emulate the operation of middleboxes :

e ChangeSeqElement changes the sequence number in the TCP header of
processed segments to model a firewall that randomises sequence numbers

e RemoveTCPOptionElement selectively removes a chosen option from pro-
cessed TCP segments

e SegSplitElement selectively splits a TCP segment in two different seg-
ments and copies the options in one or both segments

e SegCoalElement selectively coalesces consecutive segments and uses the
TCP option from the first/second segment for the coalesced one

Using some of these click elements, perform the following tests with one
TCP implementation'®.

1. Using a TCP implementation that supports the timestamp option defined
in [51] discuss the effect of removing this option in the SYN, SYN+ACK or
regular TCP segments. Use the RemoveTCPOptionElement click element
to experimentally verify your answer.

2. Using a TCP implementation that supports the selective acknowledgement
option defined in [65] discuss the effect randomizing the sequence number
in the TCP header without updating anything in this option as done by
some firewalls. Use the ChangeSeqElement click element to experimen-
tally verify your answer. Instead of using pure random sequence numbers,
evaluate the impact of logarithmically increasing/decreasing the sequence
numbers (i.e. +10, +100, +1000, +1000, ...)

3. Recent TCP implementations support the large windows extension defined
in [51]. This extension uses the WScale option in the SYN and SYN+ACK
segments. Discuss the impact of removing this option in one of these
segments. Use the RemoveTCPOptionElement to verify your answer. For
the experiments, try to force the utilisation of a large receive window by
configuring your TCP stack.

4. Some middleboxes split or coalesce segments. Considering Multipath
TCP, discuss the impact of splitting and coalescing segments on the cor-
rect operation of the protocol. Use the Multipath TCP implementation in
the Linux kernel and the SegCoalElement and SegSplitElement click
elements to experimentally validated your answer.

10A netkit image containing these elements will be distributed with the final version of the
chapter.

o4

5. The extensibility of SCTP depends on the utilisation of chunks. Consider
an SCTP-aware middlebox that recognizes the standard SCTP chunks but
drops the new ones. Consider for example the partial-reliability extension
defined in [95]. Develop a click element that allows to selectively remove
a chunk from processed segments and evaluate experimentally its impact

on SCTP.

Another way to evaluate middleboxes is to try to infer their presence in a
network by sending probe packets. This is the approach used by Michio Honda
and his colleagues in [47]. However, the TCPExposure software !! requires the
utilisation of a special server and thus only allows to probe the path towards
this server. An alternative is to use tracebox'?. tracebox is an extension
to the popular traceroute tool that allows to detect middleboxes on (almost)
any path. tracebox sends TCP and UDP segments inside IP packets that have
different Time-To-Live values like traceroute. When an IPv4 router receives an
IPv4 packet whose TTL is going to expire, it returns an ICMPv4 Time Fxceeded
packet that contains the offending packet. According to [78], the returned ICMP
packet should contain the TP header of the original packet and the first 64 bits
of the payload of this packet. When the packet contains a TCP segment, these
first 64 bits correspond to the source and destination ports and the sequence
number. However, recent measurements performed by using tracebox show
that a large fraction of IP routers in the Internet, notably in the core, return
the complete original packet. This is conforming to [6] and this change was
probably motivated to support [12] that has been recently deployed. tracebox
compares the packet returned inside the ICMP message with the original one
to detect any modification performed by middleboxes. All the packets sent and
received by tracebox are recorded as a libpcap file that can be easily processed
by using tcpdump'® or wireshark!4.

1. Use tracebox to detect whether the TCP sequence numbers of the seg-
ments that your host sends are modified by intermediate firewalls or prox-
ies.

2. Use tracebox behind a Network Address Translator, e.g. behind a DSL/CATV
router, to see whether tracebox is able to detect the modifications per-
formed by the NAT. Try with TCP, UDP and regular IP packets to see
whether the results. Analyse the collected packet traces.

3. Some firewalls and middleboxes change the MSS option in the SYN segments
that they process. Can you explain a possible reason for this change ? Use
tracebox to verify whether there is a middlebox that performs this change
inside your network.

You can still experiment with this software from http://web.sfc.wide.ad.jp/~micchie/
middlebox/cfc.html.

12This tool will be released as open-source before the publication of the chapter. It will be
available from http://www.tracebox.org

http://www.tcpdump. org

Mhttp://wuw.wireshark.org

99

4. Use tracebox to detect whether the middleboxes that are deployed in
your network allow new TCP options, such as the ones used by Multipath
TCP, to pass through.

5. Extend tracebox so that it supports the transmission of SCTP segments
containing various types of chunks.

6. Extend tracebox so that it supports the transmission of DCCP segments.

7. Extend tracebox so that it can be used over IPv6 and compare the mid-
dleboxes used in IPv4 with the middleboxes used over IPv6.

A.3 Multipath TCP

Although Multipath TCP is a relatively young extension to TCP, it is already
possible to perform interesting experiments and simulations with it. The fol-
lowing resources can be useful to experiment with Multipath TCP :

e http://www.multipath-tcp.org provides an implementation of Multi-
path TCP in the Linux kernel with complete source code and binary pack-
ages. This implementation covers most of [37] and supports the coupled
congestion control [84] and OLIA [57]

e http://caia.swin.edu.au/urp/newtcp/mptcp/ provides a kernel patch
that enables Multipath TCP in the FreeBSD-10.x kernel. This implemen-
tation only supports a subset of [37]

e http://nrg.cs.ucl.ac.uk/mptcp/implementation.html provides the htsim
simulator that was designed for the initial work on the coupled congestion
control.

e The ns-3 network simulator!® contains two forms of support for Multipath
TCP. The first one is by using a Multipath TCP model'®. The second is
by executing a modified Linux kernel'” inside ns-3 by using Direct Code
Execution'®.

Most of the exercises below can be performed by using one of the above
mentioned simulators or implementation. To allow students to easily perform
simulations using the Linux kernel that supports Multipath TCP, a mininet [43]
image containing this kernel will be released together with the final version of
this chapter.

1. Several congestion control schemes have been proposed for Multipath TCP
and some of them have been implemented. Compare the performance of
the congestion control algorithms that it supports (notably [84] and [57]).

153ee http://www.nsnam.org/.

16See https://code.google.com/p/mptcp-ns3/

17See https://plus.google.com/u/0/106093986108036190339/posts/aYuboVFcQeF
183ee http://www.nsnam.org/projects/direct-code-execution/

96

2. The Multipath TCP congestion control scheme was designed to move traf-
fic away from congested paths. TCP detects congestion through losses.
Devise an experiment using one of the above mentioned simulators/image
to analyse the performance of Multipath TCP when losses occur.

3. The non-standard TCP_INFO socket option[74] which is supported by TCP
and Mulitpath TCP in the Linux kernel allows to collect information about
any active TCP connection. Develop an application that uses TCP_INFO
to study the evolution of the Multipath TCP congestion windows.

4. Using the mininet image with Multipath TCP, experiment with Multipath
TCP’s fallback mechanism by using ftp to transfer files through a NAT
that includes an application level gateway. Collect the packet trace and
check that the fallback works correctly.

o7

