
Optimizing and Modeling Dynamics in Networks

Ibrahim Matta

March 29, 2013

Contents

1 Introduction 2

2 Network Control as an Optimization Problem 3
2.1 Modeling the User . 5
2.2 Modeling the Network . 5
2.3 The Optimization Problem . 6
2.4 Introducing Prices . 7
2.5 Network Optimization . 8

2.5.1 Max-min Fairness . 8
2.5.2 Proportional Fairness . 9
2.5.3 General Parameterized Utility . 10

2.6 Solution to Optimization Problem . 10

3 The Control Problem 13
3.1 System Models . 14
3.2 Modeling Source and Network Dynamics . 14
3.3 TCP and RED . 16
3.4 Solving the Feedback Control System . 21

4 Linear Control Theory 22
4.1 Modeling a Vegas-like System . 24
4.2 Proportional Control and Stability of Vegas-like System 25
4.3 Proportional Integral Control and Stability of Vegas-like System 26
4.4 Stability . 27
4.5 Transient Performance and Steady-state Error 27
4.6 Steady-state Error . 29

1

5 Analyzing the Stability of Non-linear Systems 30
5.1 Solving Non-linear Differential Equations 30
5.2 Linearizing and Solving Linear Differential Equations 32

5.2.1 Effect of Feedback Delay and Nyquist Stability Criterion 34

6 Routing Dynamics 38

7 Case Study: Class-based Scheduling of Elastic Flows 41
7.1 Aggregate Control or Sharing . 42
7.2 Individual Control or Isolation . 44

8 Case Study: Elastic Transport Tunnel 45
8.1 Transient Performance Metrics . 48
8.2 Transient Performance Results . 48
8.3 Feedback Delay . 50

9 Exercises 50

10 Solutions to Exercises 54

1 Introduction

The Internet has grown very large. No one knows exactly how large but rough estimates
indicate billions of users (around 1.8B in 2009 according to eTForecasts), hundreds of
millions of web sites (over 180M in October 2008 according to netcraft), and hundreds of
billions of web pages (around 150B according to the Internet archive).

The Internet is also very dynamic — users log in and out, new services get added,
routing policies change, normal traffic gets mixed with DoS attack traffic, etc.

An important question is: How do we manage such a huge and highly dynamic structure
like the Internet?

As a corollary, how can we build a network of the future unless we understand the
steady-state and dynamics of what we build?

In these notes, we resort to two mathematical frameworks: optimization theory to
study optimal steady states of networks, and control theory to study the dynamic behavior
of networks as they evolve toward steady state. Our emphasis will be on congestion control
using the notion of prices to model the level of congestion, e.g., delays, losses, etc. observed
by users or traffic sources.

We assume minimal background in calculus and algebra, and rely on intuitive expla-
nations and simple control applications, using examples from the Internet’s congestion
control. This material has been largely influenced by the work of Frank Kelly and R.
Srikant, and control theory texts and notes, see for example:

Version 0.2 c©2004–2013 Ibrahim Matta 2

• Frank Kelly. “Mathematical Modelling of the Internet.” In ”Mathematics Unlimited
- 2001 and Beyond” (Editors B. Engquist and W. Schmid), Springer-Verlag, Berlin,
2001, pages 685-702. http://www.statslab.cam.ac.uk/̃ frank/mmi.pdf

• R. Srikant. “The Mathematics of Internet Congestion Control.” Birkhauser, 2004.
http://www.springer.com/birkhauser/mathematics/book/978-0-8176-3227-4

• Katsuhiko Ogata. “Modern Control Engineering.” Prentice Hall, 2010.
books.google.com/books?isbn=0136156738

• Chenyang Lu. “Feedback Control Theory: A Computer System’s Perspective.”
Tutorial at: http://www.cs.virginia.edu/̃ cl7v/cs851-talks/control tutorial.ppt

2 Network Control as an Optimization Problem

In this section, we describe Frank Kelly’s optimization framework which models the users’
expectations (requirements) with utility functions and the network congestion signals (e.g.,
loss, delay) as prices. The network is shown to allocate transmission rates (throughputs)
to users (flows) in such a way as to meet some fairness objective.

The objective of a user, or what makes the user happy, can be mathematically modeled
as a utility function. For example, drivers observe the“price” of transportation and make
one of many possible decisions: drive, take the subway instead, walk, bike, or stay home.
The decision may involve several factors like the price of gas, convenience, travel time,
etc. For example, if it rains, you might decide to drive to work, or you might decide to
walk to work to save money and can then afford to go to the movies later in the week. Of
course, how much the driving a person does is affected by all sorts of factors and priorities
is unknown to the the system of gas stations and oil companies. But, each driver has her
own utility!

Figure 1 illustrates with a block diagram the closed-loop relationship between drivers
(users), gas stations (where gas is sold to and consumed by users), and the market (which
represents OPEC, the government, and oil companies that collectively produce gas and
set market prices based on user demand). Drivers set the total demand by observing
gas prices. Notice that the gas price includes at-the-pump gas prices, and possible other
“exogenous” prices like tips for full service, fees for credit card payment, or additional
local taxes. Observe also that the prices observed by users are delayed and do not typically
represent the exact current state of the market given inherent delays in gas production,
refinement, transportation, etc.

This kind of block diagram is typical of many closed-loop (feedback) control systems
where the system is said to reach equilibrium if the demand (for gas by drivers) matches the
supply (of gas in the market). In data networks, users drive the demand on the network
and have different utilities (expectations) when downloading music, playing games, making
skype (voice/video) calls, or denying others service by launching a DoS attack! In turn,

Version 0.2 c©2004–2013 Ibrahim Matta 3

Figure 1: The gas control loop

the network observes that user demand and sets “prices”, where the price could be real
money, or it could be some measure (indication) of congestion (e.g., delay, loss), or it could
represent additional resources that need to be allocated to avoid congestion.

An important question is: What is the goal of network design? Is it to make users
happy? You hope so! Then, mathematically, we say the goal of the network is to maximize
the sum of utilities for all its users. Figure 2 illustrates the data network equivalent of
the gas control loop shown in Figure 1. We consider next the modeling of user utility and
network behavior (resource allocation), before introducing the optimization framework to
study the (optimal) steady state for the users and network.

Figure 2: The network control loop

Version 0.2 c©2004–2013 Ibrahim Matta 4

2.1 Modeling the User

Users typically have different utilities, i.e. different applications may perform differently
based on the level of service (e.g. loss, delay) they get from the network. But, generally
speaking, an application should perform better, the higher the rate (throughput) it is able
to send at over the network. It is also generally the case that the gain (level of “happiness”)
from higher throughput (i.e. marginal utility) diminishes as the throughput increases.

Figure 3 shows such a utility function that is typical of what is called elastic traffic.
Formally, user r has utility Ur(xr) when allocated rate xr > 0. Ur(xr) is an increasing,
strictly concave function of xr (see Figure 4). And the derivative U ′r(xr)→∞ as xr → 0,
and U ′r(xr)→ 0 as xr →∞.

Figure 3: Concave utility function

Figure 4: Concave function. A function f(.) is said to be concave if f(αx1 + (1− α)x2) ≥
αf(x1) + (1 − α)f(x2), i.e. for any two points x1 and x2, the straight line that connects
f(x1) and f(x2) is always below or equal to the function f(.) itself. Note that the function
has a maximum value at some point xmax, and that the derivative f ′(xmax) = 0. A strictly
concave function would have a strict inequality, whether a convex function has a cup-like
shape and has a minimum instead.

2.2 Modeling the Network

We consider a network on J resources, e.g. transmission links as they are typically con-
sidered the bottleneck. We denote by R the set of all possible routes, and we assume that
each user (source-destination traffic flow) is assigned to exactly one route r (i.e. static
single-path routing). We then define a 0-1 routing matrix A such that:

Version 0.2 c©2004–2013 Ibrahim Matta 5

• air = 1 if resource j is on route r

• air = 0 otherwise

Figure 5 shows an example with three users (flows colored blue, green, and red) over a
network of seven links, so the routing matrix has three columns and seven rows.

Figure 5: A network model

2.3 The Optimization Problem

Now we are ready to formulate an optimization problem that allows the network to allocate
rates to users so that the sum of their utilities is maximized. We refer to this problem as
SY STEM(U,A,C) where the inputs are the user utility functions Ur(.), the routing matrix
A, and the vector of link capacities C, and the output is the vector of allocated rates x.

SY STEM(U,A,C) :

max
∑
r∈R

Ur(xr)

subject to Ax ≤ C
over x ≥ 0

For such an optimization problem, it is known that there exists a unique solution.
This is the case because the function to optimize is strictly concave and the link capacity
inequality constraints Ax ≤ C form a so-called convex set (see Figure 6.)

The practical challenge in solving this problem however is that the network does not
know the utilities of its users, let alone its centralized nature makes it computationally
expensive to solve!

To address these challenges, we start by decomposing the problem into R problems,
one for each user r ∈ R, and one problem for the network (we will later decompose this
network problem further into individual resource problems). The network will present each

Version 0.2 c©2004–2013 Ibrahim Matta 6

Figure 6: A convex set. A convex set means that any linear combination of any two points
M and N located on the boundary of the region formed by the linear inequalities lies within
the region itself.

user with a “price” λr ($/bit). Through these prices, the network attempts to infer user
utilities. Specifically, observing λr, user r will then choose an amount to pay wr ($/second)
for the service (that maximizes the user’s utility), which in turn determines how much rate
xr (bits/second) the user would get (xr = wr/λr). The network sets its prices λr based on
the load xr ∀r.

2.4 Introducing Prices

The decomposed optimization problem can then be stated in terms of the following user
optimization problem, and network optimization problem.

USERr(Ur, λr) :

max Ur(xr =
wr
λr

)

over wr ≥ 0

Given the network price λr and its own private utility function Ur, user r determines how
much it is willing to pay wr so as to maximize her own utility.

Knowing the vector W = {wr, ∀r}, its routing and capacity matrices, the network allo-
cates user rates xr by optimizing some network function f(x,W). Once xr’s are obtained,
prices are obtained as λr = wr

xr
.

NETWORK(A,C,W) :

max
∑
r∈R

f(xr, wr)

subject to Ax ≤ C
over x ≥ 0

Version 0.2 c©2004–2013 Ibrahim Matta 7

2.5 Network Optimization

The choice of the network function f(x,W) determines how the capacity of the network gets
allocated to users, and so how fair we might consider this allocation to be! For example,
consider the following function:

f =
∑
r∈R

wr xr

Maximizing this function 1 results in maximizing the total weighted throughput for all
users. As a special case, for unit weights, the network optimization problem maximizes
the total throughput through the network. This might seem to fly in the face of what we
think is fair! Consider the following simple example: In this example, given both links

Figure 7: Greedy network allocation

have capacities of 6 units, the total throughput allocated to all users is the total network
capacity of 12 units. This can be achieved by allocating 6 units of capacity to each of the
1-link flows (users): the “red” user and the “blue” user, leaving the 2-link (“green”) flow
with no capacity allocated to its user. That does not seem “fair”! A different function
f would allocate rates to users differently and so it would provide a different notion of
fairness.

But, the big question is: how do (should) we define fairness? The research literature
introduces many notions of fairness, most notably the so-called max-min fairness.

2.5.1 Max-min Fairness

Intuitively, max-min fairness means we want to allocate resources (links) to users (flows)
such that we are:

1. fair: all users get equal share of a link, as long as users have the demand that would
fully consume their share, and

2. efficient: each link is utilized to the maximum load possible

In other words, if a user cannot consume its equal share of a link, the excess capacity must
be (recursively) allocated equally among high-demanding users. So, the final outcome is

Version 0.2 c©2004–2013 Ibrahim Matta 8

Figure 8: Max-min fair capacity allocation

that low-demanding users get exactly what they need, while high-demanding users get
equal allocations. Consider the following multi-link network example: In this example, all
links have capacities of 150 units and we assume elastic traffic sources, i.e. sources that
would consume all what they can get. Starting from the first link, as it is used by most
users so it is the most loaded one, each flow using that link gets allocated an equal share of
150/3 = 50 units. Proceeding to the next loaded link, the middle one, each of its two flows
should get an equal share of 75, however flow F3 is limited by its first link to 50 units of
throughput. Thus, flow F4 gets the left-over from F3 to a total allocation of 75 + 25 = 100.
The right-most link, at capacity of 150, does not limit the throughput of F4, which ends
up using only 100 units of that link, leaving 50 unused. At the end of this process, we say
that the max-min fair allocation vector is (50, 50, 50, 100).

Mathematically, max-min fairness is achieved when the network maximizes the following
function:

f = minr∈Rxr

Intuitively, maximizing the minimum of allocated rates results in equalizing these rates, as
long as users have enough demand that will consume these rates over the network.

2.5.2 Proportional Fairness

Another equally popular fairness definition is the so-called (weighted) proportional fairness.
This notion of fairness is achieved when the network maximizes the following function:

f =
∑
r∈R

wrlog(xr)

Note that the log function is a concave, and strictly increasing function. Thus, given
optimal rate allocation solution x∗, that is feasible, i.e. x∗ ≥ 0 and A x∗ ≤ C, any other
feasible solution x will cause the aggregate proportional change

∑
r∈R wr

xr−x∗r
x∗r

to be less
than or equal zero. To show this, for simplicity, assume one user and unit weight, so
f(x) = log(x). Expanding f(x) into its first-order (linear) Taylor’s approximation around
x∗, we obtain:

f(x) ≈ f(x∗) + (x− x∗)f ′(x∗)

Version 0.2 c©2004–2013 Ibrahim Matta 9

Given f ′(x∗) = 1
x∗ , we have:

f(x) ≈ f(x∗) +
(x− x∗)
x∗

Since f is maximized at x∗, f(x∗) ≥ f(x) and so the proportional fairness condition must
hold:

x− x∗

x∗
≤ 0

Note that the presence of weight wr intuitively means that user (flow) r is equivalent to
wr users with unit weight each.

2.5.3 General Parameterized Utility

If the network function f(x) is a function of the utilities of its users U(x), then the network
is in fact maximizing a function of the user utilities. Assuming each user r has unit weight
wr, Ur(xr) can be generalized as:

Ur(xr) =
x1−α
r

1− α
where α is a parameter that determines the fairness criterion of the network. More specif-
ically, if α → 0, then a user’s utility is linear in its allocated rate and the network is
effectively maximizing the sum of user utilities

∑
r∈R Ur(xr) =

∑
r∈R xr, which in turn

yields a greedy allocation that maximizes the total throughput over the network.
On the other hand, if α→ 1, then this is equivalent to a log utility, yielding proportional

fair allocation. To see this, let’s take the derivative of Ur(xr):

U ′r(xr) =
(1− α)x−αr

1− α
→ 1

xr
as α→ 1

By integrating U ′r(xr), we get back Ur(xr) = log(xr).
Similarly, it can also be shown that α→∞ corresponds to a minimum utility, yielding

a max-min fair allocation.

2.6 Solution to Optimization Problem

Consider the case where the network is maximizing the weighted sum of the log of user
rates, i.e. the network is trying to solve the following optimization problem that would
yield a weighted proportional fairness allocation:

NETWORK(A,C,W) :

max
∑
r∈R

wrlog(xr)

subject to Ax ≤ C
over x ≥ 0

Version 0.2 c©2004–2013 Ibrahim Matta 10

We can solve this problem using the theory of constrained convex optimization using the
Lagrangian technique. Specifically, we move the constraints into the objective function that
we want to optimize, thus making the optimization problem effectively unconstrained. We
do so by introducing so-called ”Lagrangian multipliers” into the new objective (Lagrangian)
function L:

max L =
∑
r∈R

wrlog(xr) + λT (C −Ax)

λT is a Lagrangian vector with a variable λj for each link j in the network. Note that L is
a strictly convex function, thus a solution exists at which the derivatives of L with respect
to each xr and each λj are equal to zero:

∂L
∂xr

= wr
xr
−
∑

j∈r λj

∂L
∂λj

= (Cj −
∑

r∈j xr)

The notation j ∈ r indicates all links j used by user (flow/route) r, whereas r ∈ j denotes
all flows r using link j, i.e. the total load on link j.

By equating the first set of equations to zero, we obtain the (weighted proportionally
fair) solution1:

xr =
wr∑
j∈r λj

We obtain λj by equating the second set of equations to zero. Note that λj and (Cj −∑
r∈j xr) must be greater than or equal to zero since negative values do not maximize

the objective function L! Furthermore, (Cj −
∑

r∈j xr) ≥ 0 ensures that the link capacity
constraints

∑
r∈j xr ≤ Cj are automatically satisfied. If (Cj −

∑
r∈j xr) = 0 then λj can

be greater than zero. On the other hand, if λj = 0, then the associated link may not be
fully utilized, i.e.

∑
r∈j xr < Cj . Intuitively, λj represents the ”cost” associated with link

j, so it is zero if the link is under-utilized, and positive if the link is allocated to capacity.

Example: Consider the example in Figure 7 but now assume the network’s objective to
proportionally allocate its capacity, i.e.,

max f = log(x0) + log(x1) + log(x2)

subject to:

x0 + x1 ≤ 6

x0 + x2 ≤ 6

x0, x1, x2 ≥ 0

1In optimization theory, this is referred to as Karush-Kuhn-Tucker (KKT) conditions.

Version 0.2 c©2004–2013 Ibrahim Matta 11

where x0, x1, and x2 are the rates allocated to the two-link flow (user), the first-link flow,
and the second-link flow, respectively. 2

Using the Lagrangian’s solution method, we obtain:

max L = log(x0) + log(x1) + log(x2) + λ1(6− (x0 + x1)) + λ2(6− (x0 + x2))

Taking derivatives, we obtain:

∂L
∂x0

= 1
x0
− (λ1 + λ2)

∂L
∂x1

= 1
x1
− λ1

∂L
∂x2

= 1
x2
− λ2

∂L
∂λ1

= 6− (x0 + x1)

∂L
∂λ2

= 6− (x0 + x2)

Equating these derivatives to zero, the last two equations show full utilization of the link
capacities and that x1 = x2, while the first three equations give the following values of xi’s:

x1 = x2 =
1

λ1
=

1

λ2
=

1

λ

x0 =
1

2λ

Substituting in the capacity equations, we obtain the price of each link λ:

1

2λ
+

1

λ
= 6

Thus, λ = 1
4 , and so x0 = 2, and x1 = x2 = 4. Note that in this optimal case, each link

is fully utilized to capacity, and the flow that traverses two links is charged twice for each
link it traverses and so it gets allocated a lower rate.3 End Example.

If the utility of each user r is a log function in its allocated rate xr, then the (weighted
proportionally fair) network solution xr = wr∑

j∈r λj
is in fact, a solution to the whole system

optimization problem that includes the network, as well as all users possibly trying to

2Note that since the objective (log) function is strictly increasing, then the xi’s should be as large as
possible to consume the total capacity of the links, so the two inequalities on link capacities could be turned
to equalities.

3As we will later see, this proportional rate allocation is what TCP Vegas provides.

Version 0.2 c©2004–2013 Ibrahim Matta 12

independently (in a distributed way) maximize their own log utilities. However, in a
distributed setting, as noted earlier, even if the network knows the user utility functions,
the network allocates user rates based on their willingness to pay, wr, which might be
unknown to the network. This lack of knowledge can be overcome by observing the demand
behavior of the user xr and the price λr =

∑
j∈r λj , and so wr is computed as wr = xr/λr.

Otherwise, the network can just assign some weights wr to users based on some preference
policy.

The moral of the story is that in practice, there is no central network controller that
knows W and can then allocate rates to users. Each user and each resource (link) might
have its own individual controller that will operate independently and so we need to study
the collective behavior of such composite system and answer questions such as: Would the
system converge (stabilize) to a solution in the long term (i.e., reaching steady state)? If
so, is this solution unique and how far is it from the target (optimal) operating point?
In general, if the system gets perturbed, is it stable, i.e. does it converge back to steady
state, and how long does it take to converge and how smooth or rough was that? In
control-theoretic terminology, we refer to the response to such perturbation until steady
state is reached as the transient response of the system. We refer to how far the system is
from being unstable, or the magnitude of perturbation that renders the system unstable,
as stability margin.

To formally address these questions, we will resort to the modeling of user and network
dynamic behaviors, in the form of differential (or difference) equations, then use well-known
control-theoretic techniques to study the overall transient and steady-state behavior of the
system.

3 The Control Problem

The basic control problem is to control the output of a system given a certain input. For
example, we want to control the user demand (sending rate) given the observed network
price (e.g., packet loss or delay). Similarly, we want to control the price advertised by a
network resource given the demand (rates) of its users.

There is basically two kinds of control: open-loop control, and closed-loop (feedback)
control. In open-loop control systems, there is no feedback about the state of the system
and the output of the system is controlled directly by the input signal. This type of control
is thus simple, but not as common as closed-loop control. An example of open-loop control
system is a microwave that heats food for the input (specified) duration.

Feedback (closed-loop) control is more interesting and multiple controllers may be
present in the same control loop. See Figure 2 where a user controller is present to control
demand based on price, and a resource controller is also present to control price based on
demand. Feedback control makes it possible to control the system well even if we can’t ob-
serve or know everything, or if we make errors in our estimation (modeling) of the current

Version 0.2 c©2004–2013 Ibrahim Matta 13

state of the system, or if things change. This is because we can continually measure and
correct (adapt) to what we observe (i.e., feedback signal). For example, in a congestion
control system, we do not need to exactly know the number of users, the arrival rate of
connections, or the service rate of the bottleneck resource, since each user would adapt its
demand based on its own observed (measured, fed back) price, which reflects the current
overall congestion of the bottleneck resource.

Associated with feedback control is a delay to observe the feedback (measured) signal,
which is referred to as feedback delay. More precisely, feedback delay refers to the time taken
from the generation of a control signal (e.g., updated user demand) until the process/system
reacts to it (e.g. demand routed over the network), this reaction takes effect at each resource
(e.g. load on each link), and this reaction is fed back to the controller (e.g. price observed
by the user).

3.1 System Models

Models of controlled systems can be classified along four dimensions:

• Deterministic versus stochastic models. The latter models capture stochastic effects
like noise and uncertainties.

• Time-invariant versus time-varying models. The latter models contain system pa-
rameters that change over time.

• Continuous-time versus discrete-time models. In the latter models, time is divided
into discrete-time steps.

• Linear versus non-linear models. The latter models contain non-linear dynamics.

In most of our treatment, we consider the simplest kind of models that deterministic, time-
invariant, continuous-time, and linear. In modeling a controlled system, we characterize
the relationships among system variables as a function of time, i.e., dynamic equations.
See Figure 9 where functions f and h are generally non-linear functions. As we will see
later, for mathematical tractability, we often linearize dynamic non-linear models.

3.2 Modeling Source and Network Dynamics

Consider a source r with log utility, i.e. Ur(t) = wrlog(xr), and a network that allocates
rates in a weighted proportional fashion. We saw earlier that in steady state, the (optimal)
solution (referred to as the KKT condition) is:

xr =
wr
λr

(1)

This can be re-written as wr − xrλr = 0. Also, we saw that the optimal solution ensures
that each link l is fully utilized, i.e. the load (total input rate) on link l, denoted by
yl =

∑
s:l∈s xs, equals the link capacity cl.

Version 0.2 c©2004–2013 Ibrahim Matta 14

Figure 9: Typical system model.

The dynamics of the sources and links can then be modeled such that these steady-
state user rates and link loads are achieved. Specifically, we can write the dynamic (time-
dependent) source algorithm as:

ẋr(t) = k(wr − xr(t)λr(t)) (2)

where k is a proportionality factor. Note that wr represents how much user r is willing to
pay, whereas xr(t)λr(t) represents the cost (price) of sending at that rate. Intuitively, the
user sending rate increases (decreases) when the difference between these two quantities is
positive (negative). And in steady state, ẋr(∞) → 0, and so we obtain the steady-state
solution xr = wr

λr
(as expected).

Given that the derivative of Ur(t), U
′
r(t) = wr

xr
, the source rate adaptation algorithm

can be re-written as:

ẋr(t) = kxr(t)(U
′
r(t)− λr(t))

ẋr(t) = K(t)(U ′r(t)− λr(t)) (3)

Intuitively, the user increases its sending rate if the marginal utility (satisfaction) is higher
than the price that the user will pay, otherwise the user decreases its sending rate.

We can also write a dynamic equation for the adaptation in the link price λl(t), called
the link pricing algorithm:

λ̇l(t) = h(yl(t)− cl) (4)

where h is a proportionality factor, and the total price, λr(t), for user r, is the sum of
the link prices along the user’s route, i.e. λr(t) =

∑
l:l∈r λ

l(t). Intuitively, the link price
increases if the link is over-utilized (i.e. yl(t) > cl), otherwise the link price decreases. Note
that at steady state, λ̇l(∞) → 0, and we obtain the steady-state optimal solution yl = cl
(as expected).

It turns out that the source and link algorithms, Equations 3 and 4, represent gen-
eral user and resource adaptation algorithms that collectively determine the transient and

Version 0.2 c©2004–2013 Ibrahim Matta 15

steady behavior of the whole system. In what follows, we use the form of Equation 3 to
reserve engineer different versions of TCP and deduce the utility function that the TCP
source tries to maximize.

3.3 TCP and RED

Many analytical studies considered the network system composed of TCP sources over a
network of queues that employ a certain queue management policy. Examples of TCP vari-
ants include Reno, SACK, NewReno, Vegas, FAST, etc. Examples of queue management
policies include Drop Tail, RED, FRED, REM, PI, etc. One of the most widely studied
instantiations is that of TCP sources over a RED bottleneck queue — see Figure 10.

Figure 10: TCP over RED feedback control system.

First, consider the modeling of TCP Reno, where the congestion window cwnd is in-
creased by 1/cwnd for every acknowledged TCP segment (i.e. non-loss), i.e. it is (roughly)
increased by 1 every round-trip time, and decreased by half for every loss. Thus, we can
write the following equation for changes in the congestion window of a single TCP flow,
where p is the segment loss probability:

∆cwnd =
1

cwnd
(1− p)− cwnd

2
p

Let x denote the sending rate, and T the round-trip time, thus x = cwnd
T . Assuming

acknowledgments (ACKs) come equally spaced, the time between ACKs (or lack thereof)
is given by T

cwnd . Thus, we can re-write the above equation in terms of change in sending
rate as:

∆
cwnd

T
=

(1
cwnd(1− p)− cwnd

2 p)/T
T

cwnd

d

dt
x(t) =

(1
x(t)T 2 (1− p(t))− x(t)

2 p(t))

1
x(t)

Version 0.2 c©2004–2013 Ibrahim Matta 16

d

dt
x(t) =

1

T 2
(1− p(t))− x(t)2

2
p(t)

d

dt
x(t) =

1

T 2
(1− p(t))− x(t)2

2
p(t)

d

dt
x(t) =

1

T 2
− (

1

T 2
+
x(t)2

2
)p(t) (5)

Let’s denote the loss probability p(t) of TCP connection r as pr(t). pr(t) depends on the
current load on the path r, and can be approximated by the sum of the loss probabilities
experienced on the individual links j ∈ r along the connection’s path. More specifically,

pr(t) =
∑
i∈r

pj(
∑
s:j∈s

xs(t))

Assuming small p such that (1− p) ≈ 1, we can rewrite Equation 6 as follows:

d

dt
x(t) =

1

T 2
− x(t)2

2
p(t)

d

dt
x(t) =

x(t)2

2
(

2

T 2x(t)2
− p(t)) (6)

Comparing Equation 6 with Equation 3, we can deduce the utility function of a TCP
Reno source:

U̇(x) =
2

T 2x2

Integrating U̇(x) we get:

U(x) =
−2

T 2x

Observe that maximizing Reno’s utility results in minimizing the quantity 1
x , which can

be viewed as the “potential delay” as it is inversely proportional to the allocated rate x.
Thus, this allocation is referred to as minimum potential delay fair allocation.

Version 0.2 c©2004–2013 Ibrahim Matta 17

Example: Revisting the example in Figure 7 but now assume the network’s objective is
to allocate its capacity according to the minimum potential delay fair allocation, i.e.,

max f =
−1

x0
+
−1

x1
+
−1

x2

subject to:

x0 + x1 ≤ 6

x0 + x2 ≤ 6

x0, x1, x2 ≥ 0

where x0, x1, and x2 are the rates allocated to the two-link flow (user), the first-link flow,
and the second-link flow, respectively.

Using the Lagrangian’s solution method, we obtain:

max L =
−1

x0
+
−1

x1
+
−1

x2
+ λ1(6− (x0 + x1)) + λ2(6− (x0 + x2))

Taking derivatives, we obtain:

∂L
∂x0

= 1
x20
− (λ1 + λ2)

∂L
∂x1

= 1
x21
− λ1

∂L
∂x2

= 1
x22
− λ2

∂L
∂λ1

= 6− (x0 + x1)

∂L
∂λ2

= 6− (x0 + x2)

Equating these derivatives to zero, the last two equations show full utilization of the link
capacities and that x1 = x2, while the first three equations give the following values of xi’s:

x1 = x2 =
1√
λ1

=
1√
λ2

=
1√
λ

x0 =
1√
2λ

Substituting in the capacity equations, we obtain the price of each link λ = 0.08, and so
x0 ≈ 2.5, and x1 = x2 ≈ 3.5.

Note that in this optimal case, each link is fully utilized to capacity, and the rate
allocated to a flow is inversely proportional to the square-root of the price it observes along
its path.

Version 0.2 c©2004–2013 Ibrahim Matta 18

Note also that this captures the well-known steady-state relationship between the through-
put of a TCP Reno source and the inverse of the square-root of the loss probability observed
by the TCP source. A TCP Reno source adapting based on Equation 6 would converge to
such steady-state throughput value. End Example.

Now, let us consider the modeling of another version of TCP — TCP Vegas. This
version, unlike Reno, tries to avoid congestion, rather than inducing loss and adapting
the transmission (congestion) window to it. The basic idea behind Vegas is to calculate

the actual throughput of the connection as w(t)
R(t) , where w(t) is the current window size,

and R(t) is the measured round-trip time (RTT) over the connection’s path. This RTT
includes queueing delay, as well as propagation delay D. Ideally, with no congestion, the
ideal throughput can be computed by the source as w(t)

D , where D is estimated using the
minimum RTT recently observed by the source. To ensure high utilization of the network,
we want some queueing, i.e. the actual throughput is lower than the ideal one, but not too
low to start causing congestion (i.e. buffer overflow at the bottleneck link and so losses).
Vegas then adapts w(t) based on some target difference, α, between the actual throughput

and the ideal one. More specifically, the window increases if (w(t)
D −

w(t)
R(t)) < α, decreases if

(w(t)
D −

w(t)
R(t)) > α, and stays the same otherwise. This dynamic source behavior, i.e. change

in window over time, can be modeled as:

dw(t)

dt
= k(α− (

w(t)

D
− w(t)

R(t)
))

This can be re-written as:

dw(t)

dt
=

k

D
(αD − (w(t)− w(t)

R(t)
D))

Denoting the sending rate (throughput) by x(t) = w(t)
R(t) , and γ = k

D , we have:

dw(t)

dt
= γ(αD − (w(t)− x(t)D))

At steady state, as ẇ(∞)→ 0, we have:

w − xD = αD

xR− xD = αD

Denoting the queueing delay by Q, we have R = Q+D, and so:

xQ = αD

Version 0.2 c©2004–2013 Ibrahim Matta 19

x =
αD

Q

Comparing with Equation 1, we can deduce that the willingness to pay wr for a Vegas user
r is αD and that the price experienced by the user is the queueing delay Q.

Now, to deduce the utility function that a Vegas user tries to maximize, let us write its
rate adaptation equation following Equation 2:

ẋr(t) = k(αD − xr(t)Q(t))

ẋr(t) = K(t)(
αD

xr(t)
−Q(t))

Thus, comparing with Equation 3, we deduce:

U ′r(t) =
αD

xr(t)

Integrating, we obtain:

Ur(t) = αD log(xr(t))

Recall that maximizing such user utilities results in a weighted proportional fair allocation.
Let us now consider the modeling of the buffer and associated RED queue management

algorithm. Figure 11 shows how RED tries to avoid congestion by dropping (or marking)
packets with probablity pc as a (non-linear) function of the average queue length v. First,

Figure 11: RED dropping (or marking) function.

we model the evolution of the queue length b(t) as a function of the total input rate,
y(t) =

∑
xs(t), and (bottleneck) link capacity, C:

ḃ(t) = y(t)− C

Denoting by v(t), the EWMA of the queue length:

v(t+ δ) = (1− α)v(t) + αb(t)

Version 0.2 c©2004–2013 Ibrahim Matta 20

v(t+ δ)− v(t) = α(b(t)− v(t))

Given v(t) gets updated at the link rate, i.e. δ = 1
C , and v̇(t) = v(t+δ)−v(t)

δ , we have:

v̇(t) = αC(b(t)− v(t))

This last equation represents the dynamic model of RED averaging, which in turn deter-
mines the price pc(t) that users experience.

Ignoring RED averaging and the (hard) non-linearities of the RED function, and as-
suming the price is set in proportion to the actual queue length, we have:

pc(t) = hb(t)

ṗc(t) = hḃ(t) = h(y(t)− C)

Comparing with Equation 4, the packet dropping (congestion marking) probability, ṗc(t),
represents the “price”, i.e. Lagrangian multiplier, observed by the users of this buffer.
Note that at steady state, ṗc(∞)→ 0, and so y = C, i.e. the link is fully utilized at steady
state.

3.4 Solving the Feedback Control System

We have developed dynamic (time-dependent) models for users (sources), e.g. TCP, and
the network (links), e.g. RED, and the interaction between them through prices. The next
step is to solve for the transient and steady-state performance of such system. Solving such
systems is challenging because of inherent non-linearilities, e.g. the “hard” non-linearities
(discontinuities) in the RED pricing function, or the “soft” non-linearity of TCP where the
sending rate changes quadratically in the current rate. Non-linear control theory becomes a
useful tool as it deals directly with non-linear differential equations. Specifically, a method
called Lyapunov allows one to study convergence (stability) by showing that the value of
some positive function of the state of the system continuously decreases as the system
evolves over time. Finding such a Lyapunov function can be challenging, and transient
performance can often only be obtained by solving the system equations numerically.

To this end, a technique called linearization can prove more tractable where the non-
linear system is approximated by a set of linear equations around a single operating point
(state). See Figure 12. WIth linearization, we become concerned with local stability and
study perturbations around the operating point using standard (linear) control theory. By
local stability, we mean that if the system is perturbed within a small region around the
operating point then the system will converge and stabilize back to that point. This is
in contrast to global stability where the original (non-linear) system is shown to converge
from any starting state. To linearize the non-linear system around an operating point, the

Version 0.2 c©2004–2013 Ibrahim Matta 21

Figure 12: Linearization.

basic idea is to expand the non-linear differential equation into a Taylor series around that
point and then ignore high-order terms.

In what follows, we briefly review some basics of classical control theory for linear
systems, then we introduce non-linear control theory. We also show examples of control
theoretic analysis for the dynamic models introduced above.

4 Linear Control Theory

In linear control theory, we transform differential equations in the time domain to algebraic
equations in the so-called frequency or Laplace domains. Once this Laplace transformation
is done, we use simple algebra to study the performance of the system without the need
for going back to the (complicated) time domain. Specifically, we can transform a function
f(t) to an algebraic function F (s), referred to as the Laplace transform of f(t), as follows:

F (s) =

∫ ∞
0

f(t)e−stdt

where s is a complex variable: s = σ + jω, σ is the real part of s, denoted by Re(s), and
ω is the imaginary part of s, denoted by Im(s).

Example (Unit step function): The Laplace transform of a unit step function u(t),
where u(t) = 1 if t > 0, and u(t) = 0 otherwise, is given by:

U(s) =

∫ ∞
0

1.e−stdt =
1

s

Example (Impulse function): The Laplace transform of a unit impulse function δ(t),
where δ(t) = 1 if t = 0, and δ(t) = 0 otherwise, is given by:

U(s) =

∫ ∞
0

1.e−stdt = e0 = 1

The following are basic Laplace transforms:
The following are basic composition rules, where L[f(t)] denotes the Laplace transform

of f(t), i.e. F (s).

Version 0.2 c©2004–2013 Ibrahim Matta 22

Table 1: Basic Laplace transforms

Impulse input: f(t) = δ(t) F (s) = 1
Step input: f(t) = a.1(t) F (s) = a/s
Ramp input: f(t) = a.t F (s) = a/s2

Exponential: f(t) = eat F (s) = 1/(s− a)
Sinusoid input: f(t) = sin(at) F (s) = a/(s2 + a2)

Table 2: Composition rules

Linearity: L[a f(t) + b g(t)] = aF (s) + bG(s)
Differentiation: L[df(t)/dt] = sF (s)− f(0) = sF (s) if f(0) = 0

Integration: L[
∫
f(τ)dτ] = F (s)/s

Convolution: y(t) = g(t) ∗ u(t) =
∫ t

0 g(t− τ)u(τ)dτ ⇒ Y (s) = G(s)U(s)

Example: Consider the following second-order linear, time-invariant differential equa-
tion, where y(t) represents the output of a system, and u(t) represents the input:

a2ÿ(t) + a1
˙y(t) + a0y(t) = b1u̇(t) + b0u(t)

In the time domain, if we represent the system by g(t), then y(t) can be obtained by
convolving u(t) with g(t), i.e. y(t) = g(t) ∗ u(t). This involves a complicated integration
over the system responses, g(t− τ), to impulse inputs of magnitude u(τ), for all 0 < τ < t.

Assuming y(0) = u(0) = 0, taking the Laplace transform of both sides, we obtain:

a2s
2Y (s) + a1sY (s) + a0Y (s) = b1sU(s) + b0U(s)

Y (s) =
(b1s+ b0)

(a2s2 + a1s+ a0)
U(s) = G(s)U(s)

Thus, in the Laplace domain, the output Y (s) can be obtained by simply multiplying G(s),
called the transfer function of the system, with U(s). We can then take the inverse Laplace
transform, L−1[Y (s)], to obtain y(t), or as we will later see, we can simply analyze the
stability of the system by examining the roots of the denominator of the transfer function
G(s) and their location in the complex s-domain.

Note that because Y (s) = G(s) for an impulse input, i.e. U(s) = 1, the transfer
function G(s) is also called impulse response function.

Version 0.2 c©2004–2013 Ibrahim Matta 23

4.1 Modeling a Vegas-like System

Consider the system in Figure 13 where a controller C is used to match the queue length
b(t) to a target Br by controlling the input window size w(t). The output rate from the
queue is denoted by d(t). The goal is to first write down the differential equations that

Figure 13: Vegas-like system

model the different components of the system, then instead of solving the equations in the
time domain, we will transform them to the Laplace domain and analyze the stability of
the system algebraically. This

We start by describing the buffer evolution as:

d

dt
b(t) = w(t)− d(t)

Then, w(t) is the output of convolving the error e(t) = Br−b(t) with the controller function
C(t), i.e.

w(t) = C(t) ∗ e(t)

Now, taking the Laplace transforms, we obtain:

sB(s) = W (s)−D(s)⇒ B(s) =
W (s)−D(s)

s

W (s) = C(s)E(s) = C(s)(Br(s)−B(s))

Figure 14 shows the system using its transfer functions and their input/output flows,
where G0 = 1

s . This is called the block diagram and provides a powerful pictorial tool.
From the block diagram, one can write the algebraic equation of the output in terms of
the input(s). Dropping the ”s” variable for convenience:

(Br −B)C −D
s

= B

Version 0.2 c©2004–2013 Ibrahim Matta 24

Figure 14: Block diagram of Vegas-like system

Rearranging, we get:

B =
C

s+ C
Br −

1

s+ C
D (7)

Note that the system has two inputs: Br(s) and D(s), subjected to two transfer functions,
C(s)
s+C(s) and − 1

s+C(s) , respectively, and adding their responses we obtain the output B(s).

4.2 Proportional Control and Stability of Vegas-like System

One basic controller C is referred to as Proportional (P) controller where the controlled
variable w(t) is simply set in proportion to the error signal, i.e. w(t) = Kp e(t). In this
case, C(s) is simply the constant Kp.

Substituting in Equation 7, we have:

B(s) =
Kp

s+Kp
Br(s)−

1

s+Kp
D(s) (8)

An important question is: does the P-controller make the system stable? More precisely,
if we subject the system to impulse input(s), does the system converge back to a quiescent
state? Control theory gives a systematic way to answer such stability question by examining
the roots of the denominator of the system’s transfer function, called the characteristic
equation. In this case, the characteristic equation is:

s+Kp = 0⇒ s = −Kp

The system is stable if the roots (also called poles) lie in the lefthand side of the complex
s-plane. Thus this system is stable if −Kp < 0⇒ Kp > 0.

Note that we did not need to go back to the time domain to analyze the stability of
the system. But let’s do that here to understand why poles on the lefthand side of the
s-plane makes the system stable. Taking the inverse Laplace transform of Equation 7, and
assuming impulse inputs, i.e. Br(s) = D(s) = 1, we get:

b(t) = Kpe
−Kpt − e−Kpt

Version 0.2 c©2004–2013 Ibrahim Matta 25

We can then see that b(t) decays exponentially over time, starting from b(0) = (Kp − 1).
We say the system is stable or exhibits overdamped response.

We can also analyze transient performance by noting that b(0) = (Kp − 1) represents
an overshoot response to the impulse input, and that this overshoot is lower for lower Kp.
So by controlling Kp, referred to as the controller gain, we can also control the system’s
transient response.

4.3 Proportional Integral Control and Stability of Vegas-like System

Another type of controller is known as Proportional Integral (PI) controller where the
controlled variable w(t) is set in proportion to the integral of the error signal, i.e. w(t) =
Ki

∫
e(t). In this case, taking the Laplace transform, C(s) = Ki

s . Note that the integration
means that the history of the error is used to control w(t).

Substituting in Equation 7, we have:

B(s) =
Ki

s2 +Ki
Br(s)−

s

s2 +Ki
D(s) (9)

To analyze stability, we again examine the poles of the characteristic equation:

s2 +Ki = 0⇒ s =
+
− j

√
Ki

Given Ki > 0, the two imaginary conjugate poles lie in the lefthand side of the complex
s-plane, and so the system is stable, though critically stable as we explain next.

To convince ourselves, let us go back to the time domain by taking the inverse Laplace
transform:

L−1[
Ki

s2 +Ki
] = L−1[

Ki

(s− j
√
Ki)(s+ j

√
Ki)

] = L−1[
A

(s− j
√
Ki)

+
B

(s+ j
√
Ki)

]

And some some values of A and B, this yields:

Aej
√
Kit +Be−j

√
Kit

Given the fact that ejθ = cosθ + j sinθ, the function in the time domain oscillates in
a sinusoidal fashion. Although the time function does not decay over time, it does not
diverge, i.e it is not unstable! So, we consider such a system to have bounded oscillations
in response to impulse input and we say it is critically (or marginally) stable or the system
exhibits undamped oscillatory response.

Note that a higher value of Ki results in more oscillatory behavior.

Version 0.2 c©2004–2013 Ibrahim Matta 26

4.4 Stability

More formally, a linear time-invariant system is stable if all poles of its transfer function
are in the lefthand side of the s-plane, i.e. the real part of all poles is negative. Figure 15
shows the time response given the location of the poles.

Note that if the poles are complex conjugates and strictly in the lefthand side of the
s-plane, the system is stable as oscillations in response to impulse input decay over time,
and we say the system exhibits underdamped response.

Figure 15: Time response depending on pole location.

4.5 Transient Performance and Steady-state Error

Besides stability, there are other performance metrics of interest that characterize the
transient performance of the system and the quality of the steady state. Figure 16 shows
several of these metrics, including the time for the controlled variable to reach its peak
(maximum) value, the time to reach the target, the maximum overshoot over the steady-
state value, and the error that remains at steady state when the system stabilizes away
from the desired target value.

Figure 17 illustrates different configurations exhibiting different performance for our
Vegas-like system. The controlled variable is the window size, i.e. number of packets
allowed into the system. The response is the queue length, which we measure and compare
to the target buffer size. A “good” system is one that converges quickly to the desired
target with minimum oscillations (i.e., overshoots and undershoots) and with almost zero
steady-state error.

Version 0.2 c©2004–2013 Ibrahim Matta 27

Figure 16: Performance specifications

Figure 17: Control and response

Version 0.2 c©2004–2013 Ibrahim Matta 28

4.6 Steady-state Error

In control theory, the steady-state error of a stable system is defined as:

ess = limt→∞ e(t) = limt→∞ (r(t)− y(t))

where r(t) is the reference input, and y(t) is the system output (response). This error
reflects how accurately the system can achieve the desired target, which is chosen to be a
step input.

We state without proof the Final Value Theorem:

ess = limt→∞ e(t) = lims→0 s E(s)

This theorem allows us to calculate ess algebraically in the Laplace domain.

Example (P-control of Vegas-like system):

E(s) = Br(s)−B(s)

Substituting for B(s) from Equation 8 and using the Final Value Theorem, we obtain:

ess = lims→0 s (Br(s)−
Kp

s+Kp
Br(s) +

1

s+Kp
D(s))

Assuming step inputs, i.e. Br(s) = Br
s and D(s) = D

s , we have:

ess = lims→0 (Br −
Kp

s+Kp
Br +

1

s+Kp
D) =

D

Kp

Recall that under the P-controller, the system is (over-damped) stable, i.e. b(t) approaches
the target Br without oscillations, however, at steady state, b(t) misses the target by D

Kp

and stabilizes at a value lower than Br. Notice that the higher the service capacity D is,
the larger the steady-state error. So, to decrease the steady-state error, the controller gain
Kp could be increased. However, increasing Kp increases the overshoot. A tradeoff clearly
exists between transient performance and steady-state performance, and one has to choose
Kp to balance the two and meet desired operation goals. End Example.

Example (PI-control of Vegas-like system):

E(s) = Br(s)−B(s)

Substituting for B(s) from Equation 9 and using the Final Value Theorem, we obtain:

ess = lims→0 s (Br(s)−
Ki

s2 +Ki
Br(s) +

s

s2 +Ki
D(s))

Version 0.2 c©2004–2013 Ibrahim Matta 29

Assuming step inputs, i.e. Br(s) = Br
s and D(s) = D

s , we have:

ess = lims→0 (Br −
Ki

s2 +Ki
Br +

s

s2 +Ki
D) = 0

Although the steady-state error is zero under the PI-controller, recall that the system is
critically stable, i.e. it converges to the target while oscillating. Decreasing the controller
gain Ki decreases these oscillations, however at the expense of longer time to reach steady
state. This illustrates again the inherent tradeoff between transient performance and the
quality of the steady state.

5 Analyzing the Stability of Non-linear Systems

As we have seen, linear control theory can be applied to non-linear systems if we assume a
small range of operation around which the system behavior is linear. This linear analysis
is simple to use, and the system, if stable, has a unique equilibrium point.

On the other hand, most control systems are non-linear, and operates over a wide range
of parameters, and multiple equilibrium points may exist. In this case, non-linear control
theory could be more complex to use.

In what follows, we first consider a non-linear model of the adaptation of sources and
network, and use a non-linear control-theoretic stability analysis method, called Lyapunov
method. Then, we linearize the system and illustrate the application of linear control-
theoretic analysis.

5.1 Solving Non-linear Differential Equations

Recall Vegas-like source adaptations from Equation 2:

dxr(t)

dt
= k(wr − xr(t)pr(t))

where pr(t) represents the total price observed by user r along its path. Note that this
differential equation is non-linear since pr(t) is a function of the rates xs(t):

pr(t) =
∑

link l∈route r

pl(t) =
∑
l∈r

pl(
∑
s:l∈s

xs(t))

We assume that the pricing function pl(y) is monotonically increasing in the load y.
At steady state, if the system stabilizes, setting the derivatives to 0, we obtain the

steady-state solution:

k(wr − xr(t)pr(t)) = 0⇒ xr =
wr
pr

=
wr∑
l∈r pl

Version 0.2 c©2004–2013 Ibrahim Matta 30

To prove stability, we use the non-linear method of Lyapunov. The basic idea is to
find a positive scalar function V (x(t)), we call the Lyapunov function, and show that the
function monotonically increases (or decreases) over time, approaching the steady-state
solution.

Define V (x) as follows:

V (x) =
∑
r∈R

wrlog(xr)−
∑
j∈J

∫ ∑
s:j∈s xs

0
pj(y)dy

Finding a suitable Lyapunov function that shows stability is tricky and more of an art! If
you can’t find one, it does not mean that the system is not stable. Note that this V (x)
has some special meaning: the first term represents the utility gain from making the user
happy, while the second term represents the cost in terms of price. So V (x) represents
the net gain. Also, note that since the first term is concave because of the log function,
and the second term is assumed to be monotonically increasing, so the resulting V (x) is
convex, i.e. it has a maximum value.

To show that V (x(t)) is strictly convergent, we want to show that dV (x(t))
dt > 0, which

implies that V (x(t)) strictly increases (i.e. the net gain keeps increasing over time), until

the system stabilizes and reaches steady state when dV (x(t))
dt = 0 (i.e. the net gain V (x)

reaches its maximum value).
First, we note:

∂V (x)

∂xr
=
wr
xr
−
∑
j∈r

pj(
∑
s:j∈s

xs)

Then:

V (x(t))

dt
=

∑
r∈R

∂V (x(t))

∂xr

dxr(t)

dt

V (x(t))

dt
=

∑
r∈R

(
wr
xr
−
∑
j∈r

pj(
∑
s:j∈s

xs(t))) k(wr − xr(t)pr(t))

V (x(t))

dt
=

∑
r∈R

k

xr(t)
(
wr
xr
−
∑
j∈r

pj(
∑
s:j∈s

xs(t)))
2 > 0

Observe that this non-linear stability analysis shows that the system is stable, no matter
what the initial state x(0) is. This property is referred to as global stability, which is in
contract to local stability proved when the system is linearized locally around a certain
operating point as we will see next.

Version 0.2 c©2004–2013 Ibrahim Matta 31

5.2 Linearizing and Solving Linear Differential Equations

As noted earlier, finding Lyapunov functions to prove global stability of non-linear control
systems, even for simple models, is challenging. For example, consider more sophisticated
models with feedback delay, different regions of TCP operation (e.g., timeouts, slow-start),
queue management with different operating regions (e.g. RED), and challenging or adver-
sarial environments (e.g. exogenous losses over wireless links or due to DoS attacks).

Using linearization, we can separately study simpler linear models around the different
points (regions) of operation. More specifically, we linearize the system around a single
operating point x∗ and study perturbations around x∗, i.e. if we perturb the system away
from x∗ to a point x(0) such that the initial perturbation δx(0) = x(0) − x∗, we want to
show that δx(t) diminishes over time and the system returns to its original state x∗, i.e.
δx(t)→ 0. In this case, we say that the system is locally stable around x∗.

Let’s consider again the Vegas-like source adaptation and assume, for simplicity, a single
user over a single resource:

dx(t)

dt
= k(w − x(t)p(x(t)))

Define the perturbation δx(t) = x(t)− x∗. Then we can write:

d(δx(t) + x∗)

dt
= k(w − (δx(t) + x∗)p((δx(t) + x∗)))

Expanding the non-linear term p((δx(t) + x∗)) into its first-order Taylor series:

p((δx(t) + x∗)) ≈ p(x∗) + p′(x∗)δx(t)

Substituting with this linear approximation, we get:

dδx(t)

dt
= k(w − (δx(t) + x∗)(p(x∗) + p′(x∗)δx(t)))

dδx(t)

dt
= k(w − δx(t)p(x∗)− x∗p(x∗)− p′(x∗)δ2x(t)− p′(x∗)x∗δx(t))

If x∗ is the optimal steady-state point, we know that w − x∗p(x∗) = 0. Also, given
small perturbation δ2x(t), δ2x(t) ≈ 0. Then, we have:

dδx(t)

dt
= k(−δx(t)p(x∗)− p′(x∗)x∗δx(t))

dδx(t)

dt
= −k(p(x∗) + x∗p′(x∗)) δx(t)

Version 0.2 c©2004–2013 Ibrahim Matta 32

Let k(p(x∗) + x∗p′(x∗)) = γ, we have:

dδx(t)

dt
= −γ δx(t) (10)

This is now a linear differential equation, which unlike the original non-linear differential
equation, we can easily study using linear control-theoretic techniques, or in this simple
case, solve by straightforward integration:∫ t

0

d δx(t)

δx(t)
= −γ

∫ t

0
dt

log(δx(t))− log(δx(0)) = −γt

log(
δx(t)

δx(0)
) = −γt

δx(t) = δx(0)e−γt

Note that from this time-domain analysis, the system is shown to be stable, i.e. the
perturbation vanishes over time and the system returns to its original state x(0). We also
observe that the system response decays exponentially from its original perturbation δx(0),
i.e. without oscillations, and so the response is classified as overdamped.

If the linearized differential equation modeling the system were more complicated, it is
much easier to transform it into the Laplace domain and analyze the system algebraically.
Denoting δx(t) by u(t), the Laplace transform of δx(t) by U(s), and taking the Laplace
transform of Equation 10, we get:

s U(s)− u(0) = −γ U(s)

U(s) =
u(0)

s+ γ

For stability analysis, we examine the location of the poles (roots) of the characteristic
equation s + γ = 0, yielding the pole s = −γ. Since the pole is strictly in the left-side of
the s-plane, given γ > 0, the system is stable and its response is overdamped.

To evaluate the steady-state error, we define the error as e(t) = u(0) − u(t), and
applying the Final Value Theorem with an impulse perturbation of magnitude u(0), i.e.
U(0) = u(0), we obtain:

ess = lims→0 sE(s) = lims→0 s(u(0)− u(0)

s+ γ
) = 0

So, there is no steady-state error.

Version 0.2 c©2004–2013 Ibrahim Matta 33

5.2.1 Effect of Feedback Delay and Nyquist Stability Criterion

As we just noted above, the power of solving the linearized model in the Laplace domain
comes when the model is even slightly more complicated. For example, let us consider a
feedback delay T such that Equation 10 looks like:

du(t)

dt
= −γ u(t− T)

Taking the Laplace transform, and noting that the Laplace transform of a delayed
signal u(t− T) is e−sTU(s), we obtain:

sU(s)− u(0) = −γ e−sTU(s)

U(s) =
u(0)

s+ γ e−sT

Then, the characteristic equation is:

s+ γ e−sT = 0 (11)

which we need to solve to locate the poles and determine the stability of the system.
To solve such characteristic equation, we resort to another control-theoretic method

called the Nyquist stability criterion. To this end, we introduce, without proof, the Cauchy’s
principle, which states that given F (s), and we plot F (s) as we vary s along a certain
contour in the s-plane — see Figure 18 — and denote the following:

• Z: the number of zeros of F (s), i.e. the roots of the numerator of F (s), inside the
contour.

• P : the number of poles of F (s), i.e. the roots of the denominator of F (s), inside the
contour.

• N : the number of encirclements of the plot of F (s) around the origin in the F (s)-
plane, such that an encirclement is negative if it is in the opposite direction of the
s-contour.

Then the following relationship holds:

Z = P +N

The Nyquist method applies the Cauchy’s principle as follows. Let’s say we want to
analyze the stability of a closed-loop control system whose forward transfer function is G(s)
and its feedback transfer function is H(s)—see Figure 19. Then, the closed-loop transfer

Version 0.2 c©2004–2013 Ibrahim Matta 34

Figure 18: Cauchy’s principle

Figure 19: Typical closed-loop control system

Version 0.2 c©2004–2013 Ibrahim Matta 35

function is given by G(s)
1+G(s)H(s) , where G(s)H(s) is referred to as the open-loop transfer

function. The characteristic equation is given by: F (s) = 1 +G(s)H(s) = 0. Observe that
the zeros of F (s) are the closed-loop poles, and the poles of F (s) are the open-loop poles
(i.e. poles of G(s)H(s)).

By taking the s-contour to be around the right-side (i.e. unstable side) of the s-plane
(see Figure 20), and noting the number of unstable open-loop poles P and the number of
encirclements N around the origin in the F (s)-plane, we determine the number of unstable
zeros Z of F (s), i.e. number of unstable closed-loop poles, using Cauchy’s relationship:
Z = P +N . If P = 0 and N = 0, then Z = 0 implies that there are no unstable closed-loop
poles and so the closed-loop system is stable.4

Figure 20: Contour around the unstable right-side of the s-plane

This process can be slightly simplified if instead of plotting F (s), we instead plot the
open-loop transfer function: G(s)H(s) and observe its encirclements of the (−1, j0) point
in the G(s)H(s)-plane, instead of the origin (0, j0) in the F (s)-plane. Given there are no
poles of G(s)H(s) in the right-side of the s-plane, i.e. P = 0, in order for the closed-loop
system to be stable, the plot of G(s)H(s) should not encircle -1 as we vary s along the
contour enclosing the right-side of the s-plane. We are mostly interested in varying s along
the imaginary axis, i.e. s = jω where ω varies from 0 to ∞. This is because the plot for ω
from −∞ and 0 is symmetric, and the plot for the semi-circle as s→∞ maps to the origin
in the G(s)H(s)-plane. Thus, we are interested in plotting G(jω)H(jω) as ω varies from
0 to ∞.

4Note that a pole on the imaginary axis is not considered unstable and the s-contour avoids such a pole
and we show it as a small circle around it.

Version 0.2 c©2004–2013 Ibrahim Matta 36

Example: Let’s go back to the characteristic equation in Equation 11:

s+ γ e−sT = 0⇒ F (s) = 1 +
γ

s
e−sT ⇒ G(s)H(s) =

γ

s
e−sT

Note that G(s)H(s) does not have any unstable poles, i.e. P = 0. In particular, s = 0 is
considered a (critically) stable pole.

Ignoring the constant factor γ for now, we want to plot:

e−jωT

jω
ω : 0→∞

Noting that ejθ = cosθ + j sinθ, we have:

e−jωT = cos(ωT)− j sin(ωT)

Then,

e−jωT

jω
= −j cos(ωT)

ω
− sin(ωT)

ω

Since we are interested in determining intercepts with the real-axis of G(jω)H(jω) and
whether they occur to the right or left of -1, we want to determine the values of ω for
which the imaginary part of G(jω)H(jω), i.e. − cos(ωT)

ω , is zero. Such intercepts occur
when ωT = π

2 ,
3π
2 , · · ·, when the cosine value is zero.

Now, at these values of ωT , we can determine the points of interception along the
real-axis, i.e. the magnitude |G(jω)H(jω)| when the plot intercepts the real-axis:

−sin(ωT)

ω
= − 1

π
2T

,+
1
3π
2T

, · · ·

For the system to be stable, |G(jω)H(jω)| must be less than 1, so the G(s)H(s) plot does
not encircle -1. This is the case if after restoring the constant factor γ we initially ignored,
the following holds:

γ
2T

π
< 1

End Example.
Observe that T is the feedback delay so as T gets larger, it gets harder to satisfy the

stability condition. Intuitively, this makes sense since a larger feedback delay results in out-
dated feedback (measurements) and it becomes impossible to stabilize the system. This is
the fundamental reason why TCP over long-delay paths does not work, and architecturally,
control has to be broken up into smaller control loops.

Version 0.2 c©2004–2013 Ibrahim Matta 37

6 Routing Dynamics

So far, we assumed routes taken by flows to be static. In general, routes may also be
adapted based on feedback on link prices (reflecting load, delay, etc.), albeit over a longer
timescale of minutes, hours or even days compared to that of milliseconds for sending rate
adaptation. Figure 21 shows a block diagram that includes both route and rate adaptation.

Figure 21: Block diagram with both flow and routing control

Figure 22 illustrates the general process of adaptation. Flow or routing control deter-
mines the amount of load directed to a particular link based on the link’s observed price
— relative to that of other possible links on alternate routes in the case of routing. We call
this mapping from link price λ to link load x, the response function H(λ). Given link load,
a certain price is observed for the link. We call such load-to-price mapping, the pricing
(feedback) function G(x). The process of adaptation is then an iterative process:

λ = G(x)

x = H(λ)

Figure 22: Convergence

Version 0.2 c©2004–2013 Ibrahim Matta 38

We can then write:

λ = G(H(λ)) = F (λ)

where F (λ) is an iterative function whose stable (fixed) point λ∗ is the intersection of the
response function and the pricing function. Figure 23 illustrates convergence to a fixed
point. Starting from an initial λ0, we find F (λ0), then projecting on the 45o line we obtain
λ1 = F (λ0), which we use to find F (λ1), and this iterative process continues until we reach
the fixed point.

Figure 23: Contractive mapping

In order to converge to that fixed point, F (λ) must be a so-called contractive mapping.
F (λ) is contractive iff its slope is less than 1, i.e. |F (λ2) − F (λ1)| < α|λ2 − λ1|, α < 1.
Figure 24 illustrates a mapping that results in divergence.

Intuitively, the use of Lyapunov functions to prove convergence tests whether the it-
erative process describing the evolution of the system over time is a contractive mapping,
i.e. the distance to the fixed point keeps shrinking at every iteration.

Example: Consider the adaptive routing of N > 0 unit-rate flows over two possible paths
whose prices are given by monotonically increasing functions p1(x) and p2(N −x), where x
represents the number of flows (or load) routed on the first path. Note that x completely
defines the state of the system. Also, assume that routing to the least-loaded path is done
gradually, to avoid wild oscillations, where 0 < α < 1 of the flows are re-routed. Using
a discrete-time model where routes are adapted at discrete-time steps, we can write the
following difference equations:

x(t+ 1) = x(t) + α(N − x(t)), if p1(x(t)) ≤ p2(N − x(t))

Version 0.2 c©2004–2013 Ibrahim Matta 39

Figure 24: Divergent mapping

x(t+ 1) = x(t)− αx(t), otherwise

At steady state, this system might converge to one of two possible stable (fixed) points.
One possibility is obtained when substituting with x(t)→ x∗ in the first difference equation:
x(t)→ x∗ ⇒ x∗ = x∗+α(N−x∗)⇒ x∗ = N , so all traffic will end up getting routed on the
first path. A necessary condition to reach that x∗ = N fixed point is that p1(N) ≤ p2(0),
i.e. the first path is least loaded (priced) even when all N flows are on it.

Another possibility is obtained when substituting with x(t)→ x∗ in the second differ-
ence equation: x(t) → x∗ ⇒ x∗ = x∗ − αx∗ ⇒ x∗ = 0, so all traffic will end up getting
routed on the second path. A necessary condition to reach that x∗ = 0 fixed point is that
p1(0) > p2(N), i.e. the second path is least loaded (priced) even when all N flows are on
it.

We can show convergence to one of these fixed points depending on which necessary
condition holds: p1(N) ≤ p2(0) or p1(0) > p2(N).

Let’s assume p1(N) ≤ p2(0) holds. We want to define a Lyapunov function V (x) ≥
0 and show that V (x(t + 1)) ≤ V (x(t)) for some or all starting state x(0), i.e. V (x)
monotonically decreases toward the x∗ = N fixed point where equality holds. If there are
only certain values of the starting state x(0) for which the system converges then such
conditions must hold, in addition to the necessary condition, for convergence to happen.
In this case, we say that the necessary condition by itself is not sufficient for convergence.

Define V (x) = N − x. Note that V (x) ≥ 0 because 0 ≤ x ≤ N , and V (x) = 0 when
x = N , i.e. at the fixed point. So, under convergence, we expect V (x) to monotonically
decrease toward zero. Substituting for x(t+ 1) in V (x), we obtain:

V (x(t+ 1)) = N − x(t+ 1)

Version 0.2 c©2004–2013 Ibrahim Matta 40

Given the pricing functions are monotonically increasing with load, p1(N) ≤ p2(0) ⇒
p1(x(t)) ≤ p2(N−x(t)), ∀x(t), and we can only use the first difference equation to substitute
for x(t+ 1):

V (x(t+ 1)) = N − (x(t) + α(N − x(t))) = (1− α)(N − x(t)) = (1− α)V (x(t)) ≤ V (x(t))

So, we can conclude that the system is convergent regardless of the starting state x(0) as
long as 0 < α < 1.

Thus, 0 < α < 1, along with the necessary condition p1(N) ≤ p2(0) , thus represent
necessary and sufficient conditions for convergence.

A similar convergence proof can be obtained if on the other hand, the necessary condi-
tion p1(0) > p2(N) holds. End Example.

7 Case Study: Class-based Scheduling of Elastic Flows

In this and the following section, we consider the modeling and control-theoretic analysis
of two traffic control case studies. This first case study concerns the performance of elastic
flows, i.e., rate-adaptive flows similar to TCP. The goal is to investigate the effect of
class-based scheduling that isolates elastic flows into two classes (service queues) based on
different characteristics, for example based on their lifetime (transfer size) or burstiness of
arrivals/departures and sending rate (window) dynamics. We want to show the benefits
of isolation, in terms of better predictability and fairness, over traditional shared queueing
systems.

We formulate two control models. In the first model (Section 7.1), each flow controls
its input traffic rate based on the aggregate state of the network due to all N flows. In
the second model (Section 7.2), each flow (or class of homogeneous flows) controls its rate
based on its own individual state within the network. We assume that the flows use PI
control for adapting their sending rate.

In the aggregate control model, the packet sending rate of flow i, denoted by xi(t), is
adapted based on the difference between a target total buffer space, denoted by B, and
the current total number of outstanding packets, denoted by q(t). In the individual control
model, xi(t) is adapted based on flow (or class) i’s target, denoted by Bi, and its current
number of outstanding packets, denoted by qi(t). We denote by c(t) the total packet
service rate, and by ci(t) the packet service rate of flow/class i. In what follows, for each
control model, we determine conditions under which the system stabilizes. We then solve
for the values of the state variables at equilibrium, and show whether fairness (or a form
of weighted resource sharing) can be achieved. Table 3 lists all system variables along with
their meanings.

Version 0.2 c©2004–2013 Ibrahim Matta 41

Table 3: Table defining system variables
Variable Meaning

N total number of flows (or classes of homogeneous flows)
xi(t) packet sending rate of flow/class i
qi(t) number of outstanding packets of flow/class i
ci(t) packet service rate of flow/class i
q(t) total number of outstanding packets
c(t) total packet service rate
B target total buffer space
Bi target buffer space allocated to flow/class i
αi parameter controlling increase and decrease rate of xi(t)

7.1 Aggregate Control or Sharing

Under aggregate PI control, the evolution of the system state is described by the following
differential equations:

ẋi(t) = αi(B − q(t))

q̇(t) =

N∑
i=1

xi(t)− c(t) (12)

Stability Condition: Without loss of generality, assume a constant packet service rate
(i.e. c(t) = C for all t), all flows start with the same initial input state (i.e. xi(0) is the
same for all i), and that all flows adapt at the same rate (i.e. αi = α for all i). Then,
equations (12) can be rewritten as:

ẋi(t) = α(B − q(t))

q̇(t) =

N∑
i=1

xi(t)− C (13)

Since flows adapt their xi(t) at the same rate, then xi(t) =
∑N

j=1 xj(t)

N for all i. Denote by

e(t) the error at time t, i.e. e(t) = B− q(t), and let y(t) =
∑N

j=1 xj(t)−C. Equations (13)
can then be rewritten as:

ẏ(t)

N
= α e(t)

q̇(t) = y(t) (14)

Version 0.2 c©2004–2013 Ibrahim Matta 42

Taking the Laplace transform of equations (14), we get:

1

N
(sY (s)− y(0)) = α E(s)

s Q(s) = Y (s)

E(s) = B −Q(s) (15)

Solving equations(15), we obtain the closed-loop system’s characteristic equation:

s2 + α N = 0⇒ s =
+
− j
√
α N (16)

For α > 0, this system is marginally stable. However, the magnitude of oscillations
increases for higher α and/or higher N .

This indicates that the existence of flows that rapidly change their sending rates through
high values of αi can cause the system to have high oscillations. This suggests that elastic
flows that aggressively change their sending rates, may affect the stability of other flows
that change their sending rates cautiously, in a system that mixes both kinds of flows.
Furthermore, in such a system, the value of N may be high so as to cause high oscillations.

We now derive the values of the state variables at equilibrium. Denote by (xi)s and qs
the steady-state values of xi(t) and q(t), respectively. Then, at equilibrium, we have from
equations (12):

0 = αi(B − qs)

0 =
N∑
i=1

(xi)s − C (17)

Thus, at equilibrium, qs = B and
∑N

i=1(xi)s = C. In other words, the system converges to
a state where the total input rate matches the total service rate, and the total buffer space
is full.

Note that if αi = α for all i, then xi(t) changes at the same rate for every flow i.
Consequently, if we start the evolution of the system with xi(0) being the same for all
flows, only then we have equal sharing of the network at steady-state, i.e. (xi)s = C

N ,
regardless of the initial value q(0). However, in general, when xi(0) are not equal for all
flows, the system converges to an unfair state, more precisely, to a state where

(xi)s = xi(0) +
C −

∑N
j=1 xj(0)

N
(18)

To summarize, controlling several flows by observing the resulting aggregate state of
the network may lead to high oscillations due to either the existence of flows which are
rapidly adjusting their sending rates, or a high number of flows competing for the same
shared resource. Furthermore, the system is highly likely to converge to an unfair state
where flows receive unequal shares of the resource.

Version 0.2 c©2004–2013 Ibrahim Matta 43

7.2 Individual Control or Isolation

Under individual PI control, the evolution of the system state is described by the following
differential equations:

ẋi(t) = αi(Bi − qi(t))
q̇i(t) = xi(t)− ci(t) (19)

Recall that under individual control, flow/class i regulates its input, xi(t), based on its
own number of outstanding packets. For simplicity, assume a constant packet service rate,
i.e. ci(t) = Ci for all t. Following the same stability analysis as aggregate control, it is easy
to see that flow/class i stabilizes and the poles of the closed-loop system are:5

s =
+
− j
√
αi (20)

Observe that, unlike aggregate control, flows/classes are isolated from each other. There-
fore, the existence of flows/classes that rapidly change their sending rates through high
values of αi, does not affect the stability of other flows. This isolation can be implemented
using, for example, a class-based queueing (CBQ) discipline. In such a CBQ system, each
class of homogeneous flows can be allocated its own buffer space and service capacity.

We now derive the values of the state variables of flow/class i at equilibrium. Denote by
(xi)s and (qi)s the steady-state values of xi(t) and qi(t), respectively. Then, at equilibrium,
we have from equations (19):

0 = αi(Bi − (qi)s)

0 = (xi)s − Ci (21)

Thus, at equilibrium, (qi)s = Bi and (xi)s = Ci. In other words, each flow/class i converges
to a state where its input rate matches its allocated service rate, and its allocated buffer
space is full. We note that if the allocated buffers Bi and service capacities Ci are equal,
then every flow receives an equal share of the resources, regardless of the initial values
xi(0) and qi(0). One can also achieve a weighted resource sharing by assigning different
Bi and Ci allocations. Thus, a flow/class with higher priority (e.g. short interactive TCP
flows operating aggressively in slow start) can be allocated more resources, so as to receive
better throughput/delay service than other flows (e.g. long TCP flows operating cautiously
in congestion avoidance).

To summarize, controlling each flow (or class of homogeneous flows) by observing its
own individual state within the network provides isolation between them. Thus, sta-
bility can be achieved for a flow/class regardless of the behavior and number of other
flows/classes. Furthermore, the system can converge to a fair state where flows/classes
receive a weighted share of the resources.

5We set N = 1 in equation (16).

Version 0.2 c©2004–2013 Ibrahim Matta 44

8 Case Study: Elastic Transport Tunnel

Consider n regular user connections between sending and receiving end-hosts, all passing
through two “gateways” — let’s call them a source gateway and a destination gateway.
Our main goal is to provide a soft-bandwidth-guaranteed tunnel for these user flows over an
Internet path of bottleneck capacity C, which is also shared by another set of x flows, rep-
resenting cross traffic. Consider that user and cross-traffic connections are all rate-adaptive
connections (similar to TCP). These x cross-traffic connections present a challenge: as x
keeps changing, the bandwidth allocation for the n user flows keeps changing in tandem.
So an important question is whether it is possible to “counter” the change in x so as to
ensure that the n user flows are able to maintain a desirable bandwidth.

Clearly without the intervention of the two gateways, the answer to the above question
is no. When different flows share a link, the effect of each individual flow (or an aggregate of
flows) affects the rest since all are competing for a fixed amount of resources. However, if the
gateways dynamically maintain a number m of open rate-adaptive (e.g., TCP) connections
between them, they can provide a positive pressure that would equalize the pressure caused
by the cross-traffic connections, if the latter occurs. Since m will be changing over time,
we describe the gateway-to-gateway tunnel, made of the m connections, as elastic. Note
that the source gateway can decide to reduce m (i.e. relieve pressure) if x goes down—
the reason is that as long as the tunnel is achieving its target bandwidth, releasing extra
bandwidth should improve the performance of cross-traffic connections, which is in the
spirit of best-effort networking.

To illustrate this scenario and the issues involved, consider a gateway-to-gateway tunnel
going through a single bottleneck link. Under normal load, the behavior of the bottleneck
can be approximated by Generalized Processor Sharing (GPS), i.e. each connection receives
the same fair share of resources. Thus, each connection ends up with C

m+x bandwidth.
This, in turn, gives the m gateway-to-gateway rate-adaptive flows, or collectively the elas-
tic gateway-to-gateway tunnel, a bandwidth of Cm

m+x . As the source gateway increases m
by opening more rate-adaptive connections to the destination gateway, the tunnel can grab
more bandwidth. If x increases, and the gateways measure a tunnel’s bandwidth below
a target value (say B∗), then m is increased to push back cross-traffic connections. If x
decreases, and the gateways measure a tunnel’s bandwidth above B∗, then m is decreased
for the good of cross-traffic connections. It is important to note that the source gateway
should refrain from unnecessarily increasing m, thus achieving a tunnel’s bandwidth above
B∗, since an unnecessary increase in the total number of competing rate-adaptive flows
reduces the share of each connection and may cause flows to timeout leading to inefficiency
and unfairness. The source gateway also has the responsibility of scheduling user packets
coming on the n user connections over the tunnel, i.e. the m gateway-to-gateway connec-
tions. In this case study, we do not focus on scheduling but the control theoretic modeling
and analysis of the tunnel’s bandwidth adaptation. We study the effect of different types
of controllers employed at the source gateway. Such controller determines the degree of

Version 0.2 c©2004–2013 Ibrahim Matta 45

elasticity of the gateway-to-gateway rate-adaptive tunnel, thus it determines the transient
and steady-state behavior of the soft-bandwidth-guaranteed service.

Naive Control: This naive controller measures the bandwidth b′ grabbed by the current
m′ gateway-rate-adaptive connections. Then, it directly computes the quiescent number
m̂ of gateway-rate-adaptive connections that should be open as:

m̂ =
B∗

b′
m′ (22)

Clearly, this controller naively relies on the previously measured bandwidth b′ and adapts
without regard to delays in measurements and possible changes in network conditions, e.g.
changes in the amount of cross traffic. We thus investigate general well-known controllers
which judiciously zoom-in toward the target bandwidth value. To that end, we develop a
flow-level model of the system dynamics. The change in the bandwidth grabbed b(t) by
the m(t) gateway-rate-adaptive flows (constituting the elastic gateway-to-gateway tunnel)
can be described as:

ḃ(t) = α[(C −B∗)m(t)−B∗x(t)] (23)

Thus, b(t) increases with m(t) and decreases as the number of cross-connections x(t) in-
creases. α is a constant that represents the degree of multiplexing of flows and we choose
it here to be the steady-state connection’s fair share ratio of the bottleneck capacity. At
steady-state, ḃ(t) equals zero, which yields:

B∗ =
Cm̂

(x̂+ m̂)
(24)

where m̂ and x̂ represent the steady-state values for the number of gateway-rate-adaptive
and cross-traffic flows, respectively. Based of the current bandwidth allocation b(t) and
the target bandwidth B∗, an error signal e(t) can be obtained as:

e(t) = B∗ − b(t) (25)

P and PI Control: A controller would adjust m(t) based on the value of e(t). For a
simple Proportional controller (P-type), such adjustment can be described by:

m(t) = Kpe(t) (26)

P-type controllers are known to result in a non-zero steady-state error. To exactly achieve
the target B∗ (i.e. with zero steady-state error), a Proportional-Integral (PI-type) controller
can be used:

m(t) = Kpe(t) +Ki

∫
e(t) dt (27)

Version 0.2 c©2004–2013 Ibrahim Matta 46

Figure 25 shows the block diagram of this elastic-tunnel model. In the Laplace domain,
denoting the controller transfer function by C(s), the output b(s) is given by:

b(s) =
C(s)G1(s)

1 + C(s)G1(s)
B∗(s) +

G2(s)

1 + C(s)G1(s)
x(s) (28)

where G1(s) is given by:

G1(s) =
β

s
(29)

where β = α(C −B∗). G2(s) is given by:

G2(s) =
−αB∗

s
(30)

where γ = −αB∗. For the P-controller, from Equation (26), C(s) is simply Kp. For the

PI-controller, from Equation (27), C(s) equals Kp + Ki
s . Thus, the transfer function b(s)

B∗

in the presence of a P-controller is given by:

b(s)

B∗
=

Kpβ

s+Kpβ
(31)

The system with P-controller is always stable since the root of the characteristic equation
(i.e. the denominator of the transfer function) is negative, given by −Kpβ. In the presence

of a PI-controller, the transfer function b(s)
B∗ is given by:

b(s)

B∗
=

Kpβs+Kiβ

s2 +Kpβs+Kiβ
(32)

One can choose the PI-controller parameters Kp and Ki to achieve a certain convergence
behavior to the target bandwidth B∗. We next define transient performance measures to
assess such convergence behavior.

- C(s) G 1 (s) +

G 2 (s)

B*(s) e(s) m(s)

x(s)

b(s)

Controller

Figure 25: Block Diagram of the Elastic-Tunnel Model

Version 0.2 c©2004–2013 Ibrahim Matta 47

8.1 Transient Performance Metrics

Transient behavior represents the system’s response which decays with time. In the de-
sign of reliable systems, it is of extreme importance that transient response meets certain
requirements such as reasonable settling time and overshoot. Often times, the transient
response is obtained by subjecting the system to an impulse or a step input and observing
the output(s). One has to guarantee that the response of the system to specific inputs does
not render the system unstable or pushes it away from its intended target. For our specific
elastic rate-adaptive tunneling system, we can define our performance metrics as follows:

• Settling Time: The time taken for our system to respond to a step input in the
cross traffic or target bandwidth until it stabilizes once again.

The system is assumed to have stabilized (in steady state) if the error (the differ-
ence between target and measured bandwidth) is bounded for at least 2 seconds.
Specifically, if e(t) is the error at time t then the system is considered in steady state
if

∀t ∈ [t0, tk] where tk − t0 ≥ 2secs, b̄− δ ≤ e(t) ≤ b̄+ δ,

where b̄ is the average bandwidth measured during this period and δ is a constant.
We choose here δ = B∗

20 .

• Maximum Overshoot: The largest overshoot value experienced by the controller
in terms of extra gateway-rate-adaptive connections opened or extra bandwidth al-
located.

• Stability in Number of gateway-rate-adaptive Flows: The variability in num-
ber of gateway-rate-adaptive flows reflects the overhead of setting up and tearing
down gateway-rate-adaptive connections within the elastic tunnel.

8.2 Transient Performance Results

Figure 26 shows the step response of the transfer function given in Equation (28). The
left column shows the response to a step change in the target bandwidth, while the right
column shows the response to a step change in the cross-traffic. Figure 26(a), for the
P-controller, shows that while the response could be acceptable due to a step change in
the reference bandwidth, it fails to remove the steady-state error (non-zero amplitude)
obtained from the step change in the cross-traffic. Figures 26(a) and (b) show the response
due to the PI-controller. One can see that through a careful choice of Kp and Ki, the
transient response can be adjusted. Notice that with a PI-controller, the elastic-tunneling
system can reach the target bandwidth with zero steady-state error in response to a step
change in cross-traffic.

Version 0.2 c©2004–2013 Ibrahim Matta 48

Step Response

Time (sec)

Am
pl

itu
de

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Target Bandwidth Step Response

Step Response

Time (sec)

Am
pl

itu
de

0 0.5 1 1.5 2 2.5 3 3.5
2.5

2

1.5

1

0.5

0

Cross-traffic Step Response
(a) Proportional controller with Kp = 0.1

Step Response

Time (sec)

Am
pl

itu
de

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Target Bandwidth Step Response

Step Response

Time (sec)

Am
pl

itu
de

0 0.5 1 1.5 2 2.5 3 3.5

0.6

0.4

0.2

0

0.2

Cross-traffic Step Response
(b) Proportional Integral controller with Kp = 0.2 and Ki = 1

Step Response

Time (sec)

Am
pl

itu
de

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

Target Bandwidth Step Response

Step Response

Time (sec)

Am
pl

itu
de

0 2 4 6 8 10 12

0.2

0.1

0

Cross-traffic Step Response
(c) Proportional Integral controller with Kp = 1 and Ki = 0.5

Figure 26: Transient Analysis of the Elastic-Tunnel Model

Version 0.2 c©2004–2013 Ibrahim Matta 49

- C(s) G 1 (s) +

G 2 (s)

H(s)

B*(s) e(s) m(s)

x(s)

b(s)

Controller

Feedback Delay

Figure 27: Elastic-Tunnel Model (with Feedback Delay)

8.3 Feedback Delay

So far in our analysis, we have ignored the feedback delay which is inherent in the design
of any control system that tries to adjust its signal through a delayed feedback loop.

Figure 27 augments the block diagram of Figure 25 with feedback delay denoted by
H(s). This feedback delay arises either due to delayed mesurements of bandwidth and/or
delayed response of the system as a result of applying new control. For example, when a
new gateway-rate-adaptive connection is opened, it doesn’t get its steady-state throughput
instantaneously, rather after some delay (say τ). Thus, H(s) is given by:

H(s) = e−τs (33)

where τ represents the feedback time delay. For small τ , the above equation can be
approximated by:

H(s) = 1− τs (34)

If we are using a PI-controller, the characteristic equation in the presence of feedback delay
becomes:

s2(1− βτKp) + s(Kpβ − βτKi) + βKi (35)

Figure 28 shows the response of the PI-controller to a step change in the target bandwidth.
As the feedback delay τ increases, the system may not converge to the target bandwidth.

9 Exercises

1. Let r be a max-min fair rate vector corresponding to a given network and set of flows.
This max-min fair allocation maximizes the allocation of each flow i subject to the
constraint that an incremental increase in i’s allocation does not cause a decrease in
some other flow’s allocation that is already as small as i’s or smaller.

Version 0.2 c©2004–2013 Ibrahim Matta 50

Step Response

Time (sec)

Am
pl

itu
de

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Target Bandwidth Step Response

Step Response

Time (sec)

Am
pl

itu
de

0 5 10 15 20 25 30 35 40 45 50
0.5

0

0.5

1

1.5

2

2.5

Response with Feedback Delay
(d) Proportional Integral controller with Kp = 0.01 and Ki = 0.02

Figure 28: Transient Analysis in the presence of Feedback Delay

(a) Suppose that some of the flows are eliminated and let r̄ be a corresponding
max-min fair rate vector. Show by example that we may have r̄p < rp for some
of the remaining flows p.

(b) Suppose that some of the link capacities are increased and let r̄ be a correspond-
ing max-min fair rate vector. Show by example that we may have r̄p < rp for
some flows p.

2. Consider two network links in tandem (one after the other) of capacities 6 Mbps
each. For two different sets of elastic flows (i.e. the utility function of each flow/user
is a log function of its allocated rate), you are asked to write down the corresponding
network optimization problem, where the network tries to maximize the sum of flow
utilities subject to link capacity constraints. For each set of flows, described in parts
(a) and (b) below, rewrite the constrained optimization problem as an unconstrained
optimization problem: write down the Lagrangian function and corresponding equa-
tions to solve for the optimal rate allocation. What are the optimal rates allocated
to different flows for each one of these two settings?

(a) Consider two flows: one flow using the first link only and another flow using
both links.

(b) Consider the same two flows from part (a), as well as a third flow using the
second link only.

3. Consider two network links in tandem (one after the other) of capacities 6 Mbps
each. Assume three flows: one flow using the first link only, another flow using the
second link only, and a third flow using both links. Assume the utility function of
each flow/user is a log function of its allocated rate, and that the two-link flow is
given a weight of 2, while the two one-link flows are given a weight of 1.

Version 0.2 c©2004–2013 Ibrahim Matta 51

You are asked to write down the corresponding network optimization problem, where
the network tries to maximize the sum of the weighted flow utilities subject to link
capacity constraints. Rewrite the constrained optimization problem as an uncon-
strained optimization problem: write down the Lagrangian function and correspond-
ing equations to solve for the optimal rate allocation. What are the optimal rates
allocated to each flow?

4. Consider a source adapting its sending rate x(t) so the buffer size of its path’s bottle-
neck b(t) stays at a certain target value T . Denote the error signal by e(t) = T −b(t).
The sending rate is adapted according to one of the following three controllers:

(a) x(t) = Kpe(t)

(b) x(t) = Kpe(t) +Ki

∫ t
0 e(t)dt

(c) x(t) = Kpe(t) +Ki

∫ t
0 e(t)dt+Kd

d
dte(t)

where Kp,Ki,Kd are constant parameters of the rate controllers.

(a) Assume c(t) is the capacity available to the source at time t, write down the
differential equation for b(t).

(b) By transforming the system to the Laplace domain, determine the conditions
under which the system is stable for each type of controller, i.e. does b(t)
converge to a given T for certain values of Kp,Ki,Kd. Do this by examining
the roots (poles) of the characteristic equation of the system’s transfer function.
Draw the block diagram of the system that shows the relationships between the
system variables in the (Laplace) s-domain for each type of controller.

(c) Again by examining the roots (poles) of the characteristic equation of the sys-
tem’s transfer function and using the Final Value Theorem, compare the tran-
sient and steady-state performance under each type of controller.

(d) Support your answers above by numerically solving the system’s equations over
time for each type of controller. Assume a small time step ∆, say ∆ = 1, and
solve the discretized version of the equations at these time steps – you can then
approximate the differentiation d

dtb(t) by b(t)− b(t− 1).

5. Consider an adaptation of a transmission window w whose goal is to reach a target
window T as follows:

w(k+1) = wk + α(T − wk)

where 0 < α < 1.

(a) Derive the necessary condition (if any) for convergence to the target window
size.

Version 0.2 c©2004–2013 Ibrahim Matta 52

(b) Use the Lyapunov method to show whether the system converges regardless of
the initial window size.

6. Given a system with the following adaptation rules: x(t), representing a sending rate,
is adapted using an AIMD policy, whereas p(t), representing the price, is adapted in
proportion to how far x(t) is from a target capacity c:

dx(t)

dt
= 1− x(t)p(x(t))

p(x(t)) = α(x(t)− c)

(a) Why is that system non-linear?

(b) Linearize the system around a certain operating point x0.

(c) By transforming the linearized system to the Laplace domain, obtain the con-
dition on x0 under which the linearized system is stable.

7. This question is based on the paper The Revised ARPANET Routing Metric, by Zinky
and Khanna. A unified way to model adaptive resource management—whether it is
TCP adaptive to RED or routing adaptive to changing link costs or other examples—
is through two functions: a feedback (pricing) function such as that of RED or link
utilization metric, and an adaptation function such as that of TCP or utilization-
based routing. Consider a resource that generates prices p and users that adapt their
load λ based on the currently reported p. Assume the following pricing and load
adaptation functions:

λ = 1− p

p =

0.1 if 0 ≤ λ < 0.4
0.2 if 0.4 ≤ λ ≤ 0.8
1.0 if 0.8 < λ ≤ 1.0

Show the two functions on the (λ, p) plane. Trace one trajectory showing convergence
to a fixed point, and another trajectory showing oscillations. Hint: consider initial
values of λ = 0.2 and 0.6.

Version 0.2 c©2004–2013 Ibrahim Matta 53

10 Solutions to Exercises

1. (a) Refer to Figure 8. Using max-min fairness the original flow assignment is:
(F1=50, F2=50, F3=50, F4=100). Assume F2 is removed. The new assignment
is: (F1=75, F2=0, F3=75, F4=75). F1 and F3 will share the extra capacity,
while F4 will decrease its rate. This is only possible because F4’s original as-
signed rate was not less than or equal to F3’s rate, before F2 was removed, thus
allowing F3 to increase its rate.

(b) Refer to Figure 8. Using max-min fairness the original flow assignment is:
(F1=50, F2=50, F3=50, F4=100). If the capacity of link 1 is increased to
225 then the new allocated rates will be: (F1=75, F2=75, F3=75, F4=75). The
extra capacity on link 1 will be shared by F1, F2 and F3. Again, this is only
possible because F4’s original assigned rate is not less than or equal to F3’s rate,
before the capacity of link 1 was increased, thus allowing F3 to increase its rate.

2. Note that earlier in these notes, we did not explicitly cover the technique of “slack”,
which we use here to denote residual link capacity when solving the dual Lagrangian
problem. Intuitively, if the link is fully utilized, i.e. it has zero slack, then its price
(Lagrangian multiplier) is non-zero. On the other hand, a non-bottleneck link will
have a non-zero slack and so a price of zero.

(a) Let z2
1 and z2

2 denote the (non-negative) slack on links 1 and 2, respectively. Let
x1 and x2 denote the rates assigned to flows 1 and 2, respectively. Let f(x1, x2)
denote the function to be maximized.

f(x1, x2) = log x1 + log x2

Constraints on links 1 and 2, respectively, are as follows:

x1 + x2 + z2
1 − c1 = 0

x2 + z2
2 − c2 = 0

Replacing c1 and c2 with their values we get:

x1 + x2 + z2
1 − 6 = 0

x2 + z2
2 − 6 = 0

The Lagrangian function to be differentiated is as follows:

Version 0.2 c©2004–2013 Ibrahim Matta 54

F (x1, x2) = log x1 + log x2 − λ(x1 + x2 + z2
1 − 6)− µ(x2 + z2

2 − 6)

Taking the partial derivative with respect to each variable we get the following
equations:

∂F

∂x1
=

1

x1
− λ = 0

∂F

∂x2
=

1

x2
− λ− µ = 0

∂F

∂λ
= −(x1 + x2 + z2

1 − 6) = 0

∂F

∂µ
= −(x2 + z2

2 − 6) = 0

∂F

∂z1
= −2z1λ = 0

∂F

∂z2
= −2z2µ = 0

Since F1 can utilize any left over capacity (slack) on link 1, z1 = 0, which implies
that λ 6= 0. Conversely, since F2 is limited by link 1, z2 6= 0, which implies that
µ = 0.

Replacing z1 = 0 and µ = 0 into the derived equations, we get:

1

x1
− λ = 0

1

x2
− λ− 0 = 0

x1 + x2 + 0− 6 = 0

Solving for x1 we get x1 = 1
λ

Solving for x2 we get x2 = 1
λ . Hence, x1 = x2.

Replacing x2 by x1 in the capacity equation we get:

x1 + x1 = 6

Hence, x1 = x2 = 3.

Version 0.2 c©2004–2013 Ibrahim Matta 55

(b) Let z2
1 and z2

2 denote the slack on links 1 and 2, respectively. Let x1, x2 and
x3 denote the rates assigned to flows 1, 2 and 3, respectively. Let f(x1, x2, x3)
denote the function to be maximized.

f(x1, x2, x3) = log x1 + log x2 + log x3

Constraints on links 1 and 2, respectively, are as follows:

x1 + x2 + z2
1 − c1 = 0

x3 + x2 + z2
2 − c2 = 0

Replacing c1 and c2 with their values we get:

x1 + x2 + z2
1 − 6 = 0

x3 + x2 + z2
2 − 6 = 0

The Lagrangian function to be differentiated is as follows:

F (x1, x2, x3) = log x1 + log x2 + log x3 − λ(x1 + x2 + z2
1 − 6)− µ(x3 + x2 + z2

2 − 6)

Taking the partial derivative with respect to each variable we get the following
equations:

∂F

∂x1
=

1

x1
− λ = 0

∂F

∂x2
=

1

x2
− λ− µ = 0

∂F

∂x3
=

1

x3
− µ = 0

∂F

∂λ
= −(x1 + x2 + z2

1 − 6) = 0

Version 0.2 c©2004–2013 Ibrahim Matta 56

∂F

∂µ
= −(x3 + x2 + z2

2 − 6) = 0

∂F

∂z1
= −2z1λ = 0

∂F

∂z2
= −2z2µ = 0

From the equations above we can deduce the following:

x1 =
1

λ

x2 =
1

λ+ µ

x3 =
1

µ

Since F1 and F3 can utilize any left over capacity (slack) on links 1 and 2,
z1 = z2 = 0. This implies that λ 6= 0 and µ 6= 0.

Replacing z1 = 0 and z2 = 0 into the derived equations we get:

x1 + x2 = 6

x2 + x3 = 6

Replacing x1 by 1
λ , x2 by 1

λ+µ and x3 by 1
µ into the equations above, we get:

1

λ
+

1

λ+ µ
= 6

1

λ+ µ
+

1

µ
= 6

Multiplying the first equation by (-1) and adding it to second equation, results
in the following:

1

µ
− 1

λ
= 0

Hence, λ = µ

Version 0.2 c©2004–2013 Ibrahim Matta 57

Thus, x1 = x3 = 1
λ and x2 = 1

2λ = x1
2 = x3

2

Finally we get:

x1 +
x1

2
= 6

Hence, x1 = x3 = 4 and x2 = 2.

3. The objective function we want to maximize is:

F (x) = log x1 + log x2 + 2 log x3

subject to the capacity constraints:

x1 + x3 ≤ 6
x2 + x3 ≤ 6
x1, x2, x3 ≥ 0

The Lagrangian (unconstrained) function that we want to maximize is:

L(x) = log x1 + log x2 + 2 log x3 − λ1(x1 + x3 − 6)− λ2(x2 + x3 − 6)

Note that we do not explicitly include the slacks for the link capacities here, since
both links should be fully utilized as the one-link flows are not limited by any other
link, so the slack values are zero.

Taking the partial derivatives of L(.) we obtain:
∂L
∂x1

= 1
x1
− λ1 = 0⇒ x1 = 1

λ1

∂L
∂x2

= 1
x2
− λ2 = 0⇒ x2 = 1

λ2

∂L
∂x3

= 2
x3
− (λ1 + λ2) = 0⇒ x3 = 2

λ1+λ2

∂L
∂λ1

= 0⇒ x1 + x3 − 6 = 0⇒ x1 + x3 = 6

∂L
∂λ2

= 0⇒ x2 + x3 − 6 = 0⇒ x2 + x3 = 6

The last two equations yield x1 = x2 ⇒ λ1 = λ2 = λ

From the capacity equation, we have:

x1 + x3 = 1
λ + 2

2λ = 6⇒ λ = 1
3 , thus

x1 = x2 = 3, and x3 = 6− 3 = 3.

4. We use the following notation:

In the time domain we have:
b(t), buffer size at time t
x(t), sending rate at time t
c(t), service rate at time t
T , target buffer size
e(t), error (difference between current buffer size and the target) at time t

Version 0.2 c©2004–2013 Ibrahim Matta 58

In the frequency domain we have:
B(s), current buffer size
X(s), sending rate
C(s), service rate
T (s), target buffer size
E(s), error signal
D(s), controller (based on error signal computes sending rate)

We will assume that the target buffer size and the buffer’s service rate are constant
values.

(a) e(t) = T − b(t)
d
dtb(t) = x(t)− c(t)

D(s) 1/s

C(s)

 X(s) + B(s)

- B(s)

T(s) + E(s)
-

Figure 29: System Block Diagram

(b) The system’s block diagram is depicted in Figure 29. Using the block diagram,
we can formulate the following equation:

([(T (s)−B(s)) D(s)]− C(s)) (1
s) = B(s)

([T (s)D(s)−B(s)D(s)]− C(s)) (1
s) = B(s)

(T (s)D(s)−B(s)D(s)− C(s)) (1
s) = B(s)

Version 0.2 c©2004–2013 Ibrahim Matta 59

[T (s)D(s)
s − B(s)D(s))

s − C(s)
s] = B(s)

B(s) + B(s)D(s)
s = T (s)D(s)

s − C(s)
s

B(s)[1 + D(s)
s] = T (s)D(s)

s − C(s)
s

B(s)[s+D(s)
s] = T (s)D(s)

s − C(s)
s

B(s) = T (s)D(s)
s+D(s) −

C(s)
s+D(s)

P-Controller:

x(t) = Kpe(t)

By taking the Laplace transform we get:

X(s) = KpE(s)⇒ D(s) = X(s)
E(s) = Kp

Replacing D(s) into the equation for B(s) we get:

B(s) =
T (s)Kp

s+Kp
− C(s)

s+Kp

Roots of the system’s characteristic equation are:

s+Kp = 0⇒ s = −Kp < 0
Thus, system is stable for all values of Kp > 0

PI-Controller:

x(t) = Kpe(t) +Ki

∫ t
0 e(t)dt

By taking the Laplace transform we get:

X(s) = KpE(s) + Ki
s E(s)⇒ D(s) = X(s)

E(s) = Kp + Ki
s

Replacing D(s) into the equation for B(s) we get:

B(s) =
(Kp+

Ki
s

)T (s)

s+(Kp+
Ki
s

)
− C(s)

s+(Kp+
Ki
s

)

Roots of the system’s characteristic equation are:

s+Kp + Ki
s = 0

s2 +Kps+Ki = 0
a = 1, b = Kp, c = Ki

∆ = b2 − 4ac = K2
p − 4(1)(Ki) = K2

p − 4Ki

Version 0.2 c©2004–2013 Ibrahim Matta 60

s = −b±
√

∆
2a

s =
−Kp±

√
K2

p−4Ki

2

s = −1
2Kp ± 1

2

√
K2
p − 4Ki

System will be stable with two real roots (i.e., overdamped) if the following
conditions are true:
Kp > 0
K2
p − 4Ki > 0⇒ K2

p > 4Ki√
K2
p − 4Ki < Kp ⇒ K2

p − 4Ki < K2
p ⇒ Ki > 0

System will be stable with two complex roots (i.e., underdamped) if the following
conditions are true:
Kp > 0
K2
p − 4Ki < 0⇒ K2

p < 4Ki

PID-Controller:

x(t) = Kpe(t) +Ki

∫ t
0 e(t)dt+Kd

d
dte(t)

By taking the Laplace transform we get:

X(s) = KpE(s) + Ki
s E(s) +KdsE(s)⇒ D(s) = X(s)

E(s) = Kp + Ki
s +Kds

Replacing D(s) into the equation for B(s) we get:

B(s) =
(Kp+

Ki
s

+Kds)T (s)

s+(Kp+
Ki
s

+Kds)
− C(s)

s+(Kp+
Ki
s

+Kds)

Roots of the system’s characteristic equation are:

s+Kp + Ki
s +Kds = 0

s2 +Kps+Ki +Kds
2 = 0

(1 +Kd)s
2 +Kps+Ki = 0

a = 1 +Kd, b = Kp, c = Ki

∆ = b2 − 4ac = K2
p − 4(1 +Kd)(Ki) = K2

p − 4Ki(1 +Kd)

s = −b±
√

∆
2a

s =
−Kp±

√
K2

p−4Ki(1+Kd)

2(1+Kd)

s = − Kp

2(1+Kd) ±
1

2(1+Kd)

√
K2
p − 4Ki(1 +Kd)

Version 0.2 c©2004–2013 Ibrahim Matta 61

System will be stable with two real roots if the following conditions are true:
Kp

1+Kd
> 0

K2
p − 4Ki(1 +Kd) > 0⇒ K2

p > 4Ki(1 +Kd)√
K2
p − 4Ki(1 +Kd) < Kp ⇒ K2

p − 4Ki(1 +Kd) < K2
p ⇒ 4Ki(1 +Kd) > 0

System will be stable with two complex roots if the following conditions are
true:
Kp

1+Kd
> 0

K2
p − 4Ki(1 +Kd) < 0⇒ K2

p < 4Ki(1 +Kd)

(c) Final Value Theorem
limt→∞ f(t) = lims→0 sF (s)

Thus, we have:
limt→∞ b(t) = lims→0 sB(s)

Note that,
B(s) = T (s)D(s)

s+D(s) −
C(s)

s+D(s)

Let the service rate be constant and equal to C. We therefore have, C(s) = C
s .

Similarly, let the target buffer size be a constant and equal to T . We therefore
have, T (s) = T

s . Replacing these two values into the equation for B(s), we get:

B(s) =
T
s
D(s)

s+D(s) −
C
s

s+D(s)

Multiplying by s to get sB(s), we get:

sB(s) = TD(s)
s+D(s) −

C
s+D(s)

P-Controller:
D(s) = Kp

sB(s) =
TKp

s+Kp
− C

s+Kp

lims→0 sB(s) = lims→0[
TKp

s+Kp
− C

s+Kp
] = T − C

Kp

Version 0.2 c©2004–2013 Ibrahim Matta 62

PI-Controller:
D(s) = Kp + Ki

s

sB(s) =
T (Kp+

Ki
s

)

s+(Kp+
Ki
s

)
− C

s+(Kp+
Ki
s

)
= [

T (Kps+Ki)
s2+Kps+Ki

− Cs
s2+Kps+Ki

]

lims→0 sB(s) = lims→0[
T (Kps+Ki)
s2+Kps+Ki

− Cs
s2+Kps+Ki

] = T

PID-Controller:
D(s) = Kp + Ki

s +Kds

sB(s) =
T (Kp+

Ki
s

+Kds)

s+(Kp+
Ki
s

+Kds)
− C

s+(Kp+
Ki
s

+Kds)
=

T (Kps+Ki+Kds
2)

s2+Kps+Ki+Kds2
− Cs

s2+Kps+Ki+Kds2

sB(s) =
T (Kps+Ki+Kds

2)
(1+Kd)s2+Kps+Ki

− Cs
(1+Kd)s2+Kps+Ki

lims→0 sB(s) = lims→0[
T (Kps+Ki+Kds

2)
(1+Kd)s2+Kps+Ki

− Cs
(1+Kd)s2+Kps+Ki

] = T

(d) We leave it to the reader to show the plots for b(t).

5. (a) At steady state, wk ←− w∗. This implies that w∗ = w∗ + α(T − w∗). Thus,
w∗ = T . This means that there is no necessary condition, since the system will
always converge to the target window size.

(b) We have wk+1 ←− wk + α(T − wk). Re-writing this equation we get, wk+1 ←−
wk(1−α)+αT . Assume w0 < T , let the Lyapunov function be L(w) = T−w > 0.

L(wk+1) = T − wk+1

L(wk+1) = T − [wk + α(T − wk)]
L(wk+1) = T − wk − αT + αwk
L(wk+1) = (1− α)T − (1− α)wk
L(wk+1) = (1− α)(T − wk)
L(wk+1) = (1− α)L(wk) < L(wk)

This is true since (1 − α) < 0. In other words, L(w) is indeed a decreasing
function.

If instead we assume that w0 > T , then the Lyapunov function would be L(w) =
w − T > 0. Similarly we have,

Version 0.2 c©2004–2013 Ibrahim Matta 63

L(wk+1) = wk+1 − T
L(wk+1) = [wk(1− α) + αT]− T
L(wk+1) = wk(1− α)− (T − αT)
L(wk+1) = wk(1− α)− T (1− α)
L(wk+1) = (1− α)(wk − T)
L(wk+1) = (1− α)L(wk) < L(wk)

This is true since (1 − α) < 0. In other words, L(w) is indeed a decreasing
function.

6. (a) d
dtx(t) = 1− x(t)p(x(t))
p(x(t)) = α(x(t)− c)
d
dtx(t) = 1− x(t)[α(x(t)− c)]
d
dtx(t) = 1− x(t)[αx(t)− αc)]
d
dtx(t) = 1− αx2(t) + αcx(t)

The equation above is non-linear because it has an x2(t) term.

(b) Let f(x) = 1− αx2(t) + αcx(t)
f ′(x0) = −2αx0 + αc
(Note that one may choose to linearize the x2 term only. Here we choose to
linearize the whole f(x).)
∆f = f ′(x0)∆x
d
dt∆x = f ′(x0)∆x
Let y(t) = ∆x
d
dty(t) = f ′(x0)y(t)
d
dty(t) = [−2αx0 + αc]y(t)
Let β = [−2αx0 + αc]
d
dty(t) = βy(t)

(c) Transforming this equation to the s-domain, we get:

sY (s)− y(0) = βY (s)
sY (s)− βY (s) = y(0)
Y (s)[s− β] = y(0)

Y (s) = y(0)
s−β

The root of the characteristic equation s − β is s = β. For the system to be
stable, β must be less than zero. Assuming α > 0, we need the following to be
true:

Version 0.2 c©2004–2013 Ibrahim Matta 64

β < 0
−2αx0 + αc < 0
−2αx0 < −αc
2αx0 > αc
x0 >

c
2

7. We leave it to the reader to produce the plot. Notice that the fixed point is (λ =
0.8, p = 0.2) where the pricing curve and the load curve intersect. Also the system
diverges for starting λ = 0.2, whereas it converges for λ = 0.6. Specifically, in the
latter case, λ = 0.6 yields p = 0.2, which in turn yields λ = 1 − p = 0.8 and the
system stabilizes at the fixed point.

Version 0.2 c©2004–2013 Ibrahim Matta 65

