
The Design Space of Network Mobility

Pamela Zave
AT&T Laboratories—Research
Florham Park, New Jersey, USA

pamela@research.att.com

Jennifer Rexford
Princeton University

Princeton, New Jersey, USA
jrex@cs.princeton.edu

March 31, 2013

Abstract

The Internet is increasingly mobile. Because mobility is difficult to im-
plement at Internet scale, there is a large and confusing landscape of mo-
bility proposals which cannot easily be compared. This tutorial is based
on the geomorphic view of networking, which is a uniform framework for
describing many key aspects of network architecture. The geomorphic
view shows that there are two distinct patterns for implementing mobil-
ity, each with its own range of design choices and costs versus benefits. We
use these patterns to classify and explain a representative sample of mo-
bility mechanisms, abstractly yet precisely. The patterns also serve as a
basis for evaluating properties of these mechanisms such as resource costs
and scalability, and for considering composition of mobility mechanisms.

1 Introduction

The Internet is increasingly mobile. Users access Internet services from mobile
devices that move from one wireless access point to another, or switch between
WiFi and cellular network connectivity. Ubiquitous computing relies on sen-
sors and actuators attached to vehicles, portable objects, and animals as well
as people. Services increasingly run on virtual machines that can migrate from
one physical server, or even one data center, to another. Modern interactive
applications increasingly demand “seamless” mobility—the ability to retain an
application-layer session despite changes in the underlying locations of the end-
points. Yet the main Internet protocols were designed in an era when each
machine attached to a single, fixed network location with a topology-dependent
address.

1

In recent years, many mechanisms have emerged for supporting mobility. A
recent survey [1] cites 22 Internet protocols dating from 1991 to 2009, including
most prominently Mobile IPv4, Mobile IPv6, MSM-IP, HIP, MOBIKE, Cellu-
lar IP, HAWAII, ILNP, and LISP Mobile Node. In other contexts mobility is
supported by:

• Ethernet LANs and VLANs, which allow an interface to retain its IP
address as the host moves within the LAN;

• injecting the IP address of a mobile machine into existing routing protocols
such as OSPF and BGP [2, 3];

• the General Packet Radio Service (GPRS) Tunneling Protocol (GTP),
which supports mobility in most cellular networks;

• the scalable “flat” routing architectures SEATTLE [4], PortLand [5], VL2 [6],
NVP [7], and Rbridges/TRILL [8, 9];

• other research proposals including TCP Migrate [10], Serval [11], and the
Internet Indirection Infrastructure [12];

• application-layer protocols such as the Session Initiation Protocol (SIP) [13].

Each well-known proposal tends to spawn a family of variants, so the total
number is probably in the hundreds and growing.

These various mechanisms operate in different layers, and make different
assumptions about naming, routing, session protocols, the scale of the system,
security, and the cooperation of remote endpoints or multiple administrative
domains. Because the community lacks a common framework for describing
and comparing mobility mechanisms, their relationships are poorly understood.
Comparisons tend to be based on superficial characteristics rather than inherent
ones. Quantitative comparison must be based on labor-intensive prototyping
and measurement or simulation.

In this book chapter, we explain mobility in a new and more useful way.
Our primary goal is to enable a precise discussion of mobility designs. We
provide descriptions of many prominent mobility mechanisms that are sufficient
to convey the richness of the design space and the important engineering trade-
offs, while stopping short of delving in to the considerable minutiae in each
protocol.

First (Section 2), we present a common framework for describing mobility
mechanisms and other aspects of networking, called the geomorphic view of
networking. This framework is both comprehensive and precise, resulting in a
unique description of each design that omits superficial detail while exposing
subtle differences.

Second, we define mobility and present the two major patterns—dynamic-
routing mobility and session-location mobility—for implementing it (Section 3).
In the context of IP, an endpoint either retains its IP address when it moves,
or changes its IP address and updates its correspondents, respectively. Each

2

A B

C D E

Figure 1: Members and links of a layer.

pattern has a completely different set of subsidiary design decisions and resource
costs.

Third, we use the framework to describe and compare many of the most
important proposals for mobility. Sections 4 and 5 compare different ways to
implement dynamic-routing mobility, with a non-hierarchical name space (e.g.,
MAC addresses in a local area network) and a hierarchical name space (e.g., IP
addresses in the wide area), respectively. Section 6 compares four prominent
session-location mobility protocols at different stages in the IETF standardiza-
tion process.

Fourth, Section 7 offers a systematic exploration of the design space of mo-
bility, and discusses composition of mobility mechanisms. As an example, we
illustrate how Mobile IPv6 is a composition of both the dynamic-routing mo-
bility and session-location mobility design patterns.

Fifth, Section 8 briefly surveys several topics closely related to mobility,
including multihoming, anycast services, site mobility, incremental deployment
of mobility protocols, and security issues for mobility. The chapter ends with a
brief conclusion outlining several more advanced areas of study.

2 The geomorphic view of networking

In the geomorphic view of networking, the architectural module is a layer. Each
layer is a microcosm of networking—it has all of the basic ingredients of net-
working in some form. In a network architecture there are many layer instances;
they appear at different levels, with different scopes, with different versions of
the basic mechanisms, and for different purposes.

2.1 Components of a layer

A layer has members, each of which has a unique name. For example, Figure 1
is a snapshot of a layer with five members, each having a capital letter as a
name. In general a member is a concurrent process, i.e., a locus of state and
control with the potential for autonomous action.

The members of a layer communicate with each other through links, shown
by lines in Figure 1. A link is a communication channel. In general, a layer
does not have a link between each pair of members.

3

One of the two primary functions of a layer is to enable members to send
messages to each other. To do this, a layer needs routes indicating how one
member can reach another through links and intermediate members. For exam-
ple, (A, B, D, E) is a route from A to E. It also needs a forwarding protocol
that runs in all members. The forwarding protocol enables members to send
and receive messages. In addition, when a member receives a message on an
incoming link that is not destined for itself, its forwarding protocol uses the
route information to decide on which outgoing link or links it will forward the
message.

A channel is an instance of a communication service. As mentioned above, a
link is a channel. Sometimes a layer implements its own links internally. Most
commonly, however, the links of a layer are implemented by other layers that
this layer uses, placing the other layers lower in the “uses” hierarchy.

If an underlay (lower layer) is implementing a link for an overlay (higher
layer), then the basic attributes of the channel must be stored in the states of
both layers. In the overlay, the channel object is one of its links. In the underlay,
the channel object is one of its sessions. There must be two names for the sets
of channels of interest to a layer, because a typical layer both uses links and
implements sessions.

The second primary function of a layer is to implement enriched communi-
cation services on top of its bare message transmission. Typical enrichments for
point-to-point services include reliability, FIFO delivery, and quality-of-service
guarantees. This function is carried out by a session protocol. A layer can im-
plement sessions on behalf of its own members, as well as or instead of as a
service to overlays.

For a link in an overlay to be implemented by a session in an underlay,
both endpoint machines must have members in both layers, as shown in Fig-
ure 2. A machine is delimited by an operating system that provides fast, reliable
communication between members of different layers on the machine. This fast,
reliable operating-system communication is the foundation on which networked
communication is built.1

A registration is a record that relates an overlay member to an underlay
member on the same machine. Registrations must be stored as data in both
layers. In the overlay they are called attachments, because they indicate how a
member is attached to the network through a lower layer. In the underlay they
are called locations, because they indicate that a member is the location of a
process in a higher layer.

The session protocol creates and maintains sessions data in its layer, and
uses locations data. For example, in Figure 2, A sent a request to a for a session
with E. To create this session, a learned from its layer’s locations that E is
currently located at e. Messages sent from A to E through the link in the overlay

1Although layer members have been described as concurrent processes, they are not usually
“processes” as defined by the operating system; processes in an operating system have many
more properties and associations than layer members do. A virtual machine can be regarded
as a machine, in which case communication through the hypervisor and soft switch of the
physical machine is regarded as networked communication.

4

registration

processes on
one machine

A E

a edb

Figure 2: Implementation of a link in an overlay by a session in an underlay.

primary function state component maintenance algorithm

member algorithm
location algorithm

attachment algorithm
link algorithm
routing algorithm

members
locations
sessions
attachments
links
routes

session protocol

forwarding protocol

Figure 3: Major components of a layer. Arrows show which protocol or algo-
rithm writes a state component.

travel through a, b, d, and e; the first and last steps uses operating-system
communication, while the middle three steps use networked communication.

The six major components of the state of a layer are listed in Figure 3. All
can be dynamic. We have seen that the session protocol creates and maintains
sessions; the other five are created and maintained by their own maintenance
algorithms.

2.2 Layers within a network architecture

The geomorphic view of networking was inspired by the work of Day [14], al-
though we have made many changes and additions in both content and pre-
sentation. It may seem familiar and obvious because both the classic Internet
architecture [15] and the OSI reference model [16] also describe network archi-
tecture as a hierarchy of layers, but in fact there are several radical differences,
which the name “geomorphic” has been chosen to emphasize.

In the Internet and OSI architectures, each layer has a specialized function
that is viewed as different from the function of the other layers. In both archi-
tectures there is a fixed number of layers, and the upper layers are global. In
the geomorphic view the arrangement of layers is more varied and complex, as

5

LAN 1 LAN 2 LAN 3

1 2 2 3

gateway gateway

Application 1

Application 2

Internet core

Figure 4: Geomorphic view of the classic Internet architecture. Internet links
are labeled with the LAN that implements them.

it actually is in the earth’s crust.
In the geomorphic view, each layer is viewed as the same in containing all

the basic functions of networking, and there can be as many layers as needed.
Consequently, the network (IP) and transport (TCP/UDP) layers of the classic
Internet architecture fit into one “Internet core” layer of the geomorphic view
(see Figure 4). In this layer, IP is the forwarding protocol and TCP and UDP
are variants of the session protocol offering variants of Internet communication
service.

The scope of a layer is its set of potential members. Some layers have local
scopes, such as the LANs in Figure 4. There can be many such layers at the
same level of the hierarchy.

Some layers have global, but specialized, scopes, such as the applications in
Figure 4. Each application is a layer with its own members, name space, and
communication services. These layers overlap geographically, while sharing the
resources of the Internet core. The overlapping and abutting shapes in Figure 4
are common to both geological diagrams and networking.

Because layers instantiated at different levels have different purposes, their
functions take different forms. For one example, the best-known routing algo-
rithms are in the Internet core, where their purpose is reachability. A higher-
level middleware layer might offer security as part of its communication services.
Implementing security might entail routing all messages to a particular desti-

6

nation through a particular filtering server, so that, in this layer, part of the
purpose of routing is security. An application layer might have a link or po-
tential link between any two members, implemented by communication services
below, so that in this layer the routing algorithm is vestigial.

For another example of a basic function with different forms in different
layers, low-level layers such as Ethernet local area networks (LANs) provide
broadcast as a communication service. The main services provided by the In-
ternet core are point-to-point, while an application layer might implement its
own multi-party communication service.

2.3 How we use the geomorphic view

Today’s Internet is host to many customized architectures running simultane-
ously [17, 18]. Middleware is an important part of the ecosystem, while cloud
services and virtual private networks add extra layers to the classic Internet
architecture. It is self-evident that fixed layer structures cannot describe these
architectures adequately. The geomorphic view is intended not only to describe
them, but also to generate a design space including many others not yet ex-
plored.

It might be said that the problem with mobility is not too few proposals,
but too many. As mentioned in the introduction, the total number is probably
in the hundreds and growing.

In this chapter, the geomorphic view will provide a descriptive framework
that imposes some order on this chaotic design space. We will show that each
mobility proposal has a unique description in terms of the geomorphic view, that
there are two general patterns that together explain all mobility mechanisms,
and that each specific proposal is a special case of one of the patterns—or
possibly a composition of the two.

This approach leads to many differences from other literature on mobility. As
exemplified by [19], it is common for mobility proposals to be classified according
to the layer of the classic Internet architecture where they are implemented. In
contrast, we emphasize that each specific proposal is an instance of a general
pattern, and that the general pattern can be used at any level of a network
architecture. Comparisons between ideas are less subjective, because they are
based on a common framework that exposes real similarities and differences,
even when obscured by incidentals of language and application.

If nothing else, we hope that the geomorphic view will help people under-
stand how each mobility proposal fits into “the big picture.” Naturally, most
network mechanisms are described by exception, for example, “when router R
gets a message of type M, it treats it in the following [exceptional] way....” This
is purposeful and concise, but it leaves a large number of questions unanswered,
such as:

• How does R know that M should be treated as an exception?

• If M is also exceptional in format or protocol, does the sending end know
how to generate it, and does the receiving end know how to interpret it?

7

• Does this exception interact or conflict with any other mechanism?

Because the geomorphic view provides a complete (although very simple) view
of what networks do, it should help people know what they do not know, ask
the right questions, and fit each proposal into a larger context.

3 Two patterns for implementing mobility

In networking, the term mobility refers to both a problem and its solutions. As
a problem, it means that a layer member is changing its attachment to lower
layers of the network, in particular while using communication services. As a
solution or implementation, it means maintaining the member’s communication
channels despite the movement.

In this section we show that there are two completely different patterns for
implementing mobility. They differ in where the change of attachment appears
with respect to the implementing layer, in which algorithms and protocols of the
implementing layer are involved in implementing mobility, and in which parts of
the shared state are altered. They also differ in their detailed design decisions,
and in their cost, performance, and scalability issues.

Not only are these patterns non-overlapping, they also completely cover
all implementations of mobility, in the sense that each implementation either
follows one pattern or is clearly a composition of the two patterns.

3.1 Dynamic-routing mobility

Figure 5 has two stages depicting the effect of mobility on an inter-layer channel.
Recall that the channel is a link in the state of the layer that uses it, and a session
in the state of the layer that implements it; its higher endpoints are members in
the user layer, while its lower endpoints are members in the implementing layer.

The precise site of mobility here is the lower endpoint A. In Stage 1 A is
attached to a1 in LAN 1. Recall that a1 is the location of A, and the association
between them is a registration. a1 and A are connected to the rest of their layers
through Links 1 and 2, respectively. Link 2 is implemented by LAN 1, which
might be an Ethernet or wireless subnetwork.

Between Stage 1 and Stage 2 Link 1 stops working, possibly because the
machine on which A and a1 reside has been unplugged from an Ethernet, or
has moved out of range of a wireless subnetwork. In a cascading sequence of
events, Link 1 is destroyed, Link 2 is destroyed, and the registration of A at a1
is destroyed. A is now disconnected from the rest of its layer.

Eventually the mobile machine may become plugged into another Ethernet
or enter the range of another wireless subnetwork, as shown in Stage 2. In a
cascading sequence of events, member a2 (which is the mobile machine’s member
in the new LAN 2) connects to the rest of its layer through Link 3, A becomes
attached to new location a2, and new Link 4 is created in the mobility layer
and implemented by LAN 2. Note that A is now linked to C rather than B; this
change is necessary because C is attached to LAN 2 and B is not.

8

user layer

implementing layer implementing layer

link

session

user layer

link

2

session

4

A E A E

A B D E A C D E

ba1 f
1

LAN 1
ca2 g

3

LAN 2

Figure 5: Two stages in an instance of dynamic-routing mobility.

Between Stages 1 and 2 there may be an interval during which A has no
connection with the rest of its layer. The hard problem to be solved in Figure 5
is that even after A is again reachable by other members of its layer such as D
and E, they do not know how to find it because the routes to it are obsolete.
Dynamic-routing mobility relies on the routing algorithm of the layer, which
must learn about new links, recompute routes, and disseminate new routes.
After this is accomplished, D will know that it can reach A by forwarding to C.

There are three ways in which actual dynamic-routing mobility can differ
from the example in Figure 5. Fortunately, none of them affect what the imple-
mentation has to do, so none of them need be discussed separately. First, the
new attachment a2 could be in the same layer as a1, rather than in a different
layer. Because a1 and a2 are different locations, after the move A is proba-
bly linked to a different member of its own layer, even though the new link is
implemented by the same lower layer as before.

Second, in Figure 5 the mobile member A has only one attachment and one
necessary link. As shown in Figure 4, members such as gateways have multiple
simultaneous attachments to different underlays. Because each such attachment
is necessary for the gateway’s purpose and supports its own link or links, the
mobility of each attachment is a separate problem to be solved.

Third, occasionally a layer implements sessions for the benefit of its own
members, rather than as a service to a higher user layer. In this case there is
no A or E, and the beneficiaries of the mobility implementation are A and E.

A router is a member of a layer that receives and forward messages not
destined for itself, whether it sends and receives messages on its own behalf
or not. A forwarding table is a distributed copy of some of the routes state

9

component of a layer. Implementations of dynamic-routing mobility incur four
kinds of resource cost:

• storage cost is the cost of storing routes to mobile members, in the for-
warding tables of all the routers that need them;

• update cost is the cost of updating the stored routes as mobile members
move;

• path cost is the cost of longer or more congested message paths due to
mobility;

• handoff latency is the message delay caused by a move.

These costs will be discussed further in Section 3.3.
The primary issue in implementing dynamic-routing mobility (DRM) is that

large layers such as the classic Internet core achieve scalability through a hier-
archical name space. In the Internet core, names (IP addresses) are organized
into a hierarchy based on geographical, topological, and administrative factors.
A layer member is assigned a name based on its location in this hierarchy. Sub-
trees in the hierarchy correspond to blocks of names, and routing scales because
it operates on aggregated blocks rather than individual names. Mobility vio-
lates the rules of this scheme, because a mobile member retains its name as it
moves across the boundaries of the hierarchy. If implemented naively, it would
require a large number of entries in the forwarding table of each IP router for
individual mobile machines.

This issue is so important that the design decisions made to implement
DRM are completely different in hierarchical and non-hierarchical layers. For
that reason, we have divided examples of DRM into two sections (Sections 4
and 5).

3.2 Session-location mobility

Figure 6 is similar to Figure 5. One difference is that A’s location in the imple-
menting layer changes from A1 to A2, rather than staying the same. Another
difference is that the LAN level is not shown. This is because the relevant change
of attachment is now between the user layer and the implementing layer, not
between the implementing layer and the LAN level, so what happens at the
LAN level is irrelevant.2

This is a crucial difference from the perspective of the implementing layer,
and requires a completely different mechanism for implementing mobility. The
bulk of the work of implementing session-location mobility lies in ensuring that
A’s correspondents know that it is now located at A2 rather than A1. The
distributed version of the locations mapping that is used for lookup must be
updated. Each lower endpoint that was participating in a session with A1 on

2Most often layer members A1 and a1 would be destroyed, and members A2 and a2 created.
In this case there would be no mobility between the implementing level and LAN level because
each of the Aj is attached to the same aj throughout its lifetime.

10

user layer

implementing layer implementing layer

link

session

user layer

link

session

A E A E

A1 B D E A2 C D E

Figure 6: Two stages in an instance of session-location mobility.

behalf of A must be informed that it should now be corresponding with A2
instead.

The change of registration from A1 to A2 should be familiar from observing
what happens when a laptop containing an application layer member A moves to
a new subnetwork of the Internet, and gets a new IP address from DHCP. From
the perspective of the Internet, the laptop has died as member A1 and become
reborn as member A2. From the perspective of the laptop, its IP interface has
changed its name from A1 to A2.

It should be apparent that session-location mobility is a natural choice for
implementing mobility in a hierarchical layer, because the lower endpoint of a
session can change names when it moves with respect to the hierarchy. Strictly
speaking some dynamic routing could be involved, because A2 is a new member
of the layer and there must be routes to it. In practice this is rarely an issue,
because the name A2 is part of some larger address block to which routes already
exist.

Generally the fastest handoffs are achieved when a new lower endpoint sends
updates directly to all its correspondent lower endpoints (in addition to updating
the global locations mapping). This requires, of course, that the new lower
endpoint have the correct name of the lower endpoint at the other end of each
session.

Interesting behavior arises if both ends of a session move concurrently. Nei-
ther lower endpoint will know the new name of the far endpoint, so neither
can send an update to the other. In this “double handoff” scenario a mobile
endpoint, finding that it cannot reach a far endpoint to update it, will suspect
that the far endpoint has moved also. Both endpoints must fall back on lookup
from the locations mapping to get the new location of the far endpoint.

Like DRM, session-location mobility (SLM) has storage costs, update costs,
and handoff latency. The storage costs are the costs of maintaining a scal-
able distributed implementation of locations. The update costs are the costs of

11

updating locations and current correspondents when a member moves.
Implementations of SLM vary in a number of ways (see Section 6), although

no one variation is as important as the hierarchical versus non-hierarchical vari-
ation for DRM.

3.3 Major differences between the patterns

There are obvious structural differences between the two patterns:

• In DRM the change of attachment appears between the implementing
layer and a lower layer, while in SLM the change of attachment appears
between the user layer (higher) and the implementing layer (see Figures 5
and 6).

• In DRM the bulk of the work is performed by the routing algorithm,
while in SLM the bulk of the work is performed by the session protocol
and location algorithm (see Figure 3).

These structural differences prove that the two patterns are fundamentally dif-
ferent.

In attempting to understand mobility mechanisms, people are sometimes
confused by the fact that routes (changed by DRM) and locations (changed by
SLM) are both mappings. Furthermore, in the case that a mapping is global
in its layer, it is often implemented by a shared data structure called a direc-
tory. The result is that directories are sometimes used in both DRM and SLM
implementations.

This similarity is misleading because it does not tell us anything important
about how the implementations fit into their layers or their overall network
architectures. The mappings used in DRM and SLM are always fundamentally
different, and can always be distinguished from one another. As mentioned
in Section 3.1, routes is a peer-to-peer or intra-layer mapping: at each router,
entries in the forwarding table map each destination name to a member, link,
or path in the same layer. Locations, on the other hand, is always an inter-layer
mapping, mapping names in a higher layer to names in a lower layer.

Obviously a quantitative comparison between two mobility implementations
cannot be made without implementation details and a profile of the expected
load. Nevertheless, it is possible to make some general comparisons between the
two patterns based on their greatest strengths and weaknesses.

The greatest weakness of DRM is its storage, update, and path costs. Nor-
mally routing information is different in different places, so there is a lot of it,
it is spread widely across a layer, and it is expensive to update. Attempts to
economize on storage and update costs can lead to high path costs (see Sec-
tion 5), as messages travel further to be routed successfully. Path costs must
be weighted heavily because every message that travels on a channel is affected
by its path cost, if any.

Locations are very different from routes because the result of a location query
is usually the same no matter which member is querying (in contrast to a route,

12

which is different depending on where it is starting from), and because a location
query is needed only at the beginning of a session and possibly after a move
(in contrast to routes, which are consulted on every hop of every message). As
a result, locations can be stored and updated much more cheaply than routes.
For example, even a centralized directory would perform adequately in many
contexts. And even if lookup of a location is slow, we do not count it as a path
cost because the cost is incurred a few times for each channel rather than being
built into the cost of transmitting each message on the channel.

The greatest weakness of SLM is that it must be implemented with the
participation of session endpoints. This means that deployment of an SLM
mechanism requires new or updated mobile devices. Interoperation with legacy
endpoints calls for expensive middleboxes. Security is a serious concern because
endpoint devices can initiate updates of the global layer state. Designing a
protocol that correctly updates correspondents can be challenging, because it
must deal with asynchronous concurrency, message loss, and out-of-order de-
livery. The alternative is to force all parties to refresh the locations mappings
frequently, which is simpler but has higher overhead.

These concerns do not necessarily apply to DRM because a layer can, in
principle, be designed so that its members are partitioned into endpoints and
routers. Only the routers need be aware of or participate in an implementation
of DRM.

4 Examples of dynamic-routing mobility in non-
hierarchical layers

Dynamic-routing mobility is often used in LANs, which have smaller scopes and
can function without hierarchical name spaces and aggregated routing.

4.1 Wired Ethernet LANs

An Ethernet LAN is a single layer. Its member processes are the Ethernet
representatives of hosts (endpoints) and switches (routers), and its names are
MAC addresses. It has no pre-attachment requirements or configuration for
hosts, which makes it “plug and play.”

The LAN offers both broadcast and point-to-point services to higher layers.
In this brief section we do not consider these communication services further,
so there will be no discussion of the layer’s sessions or locations. Also, for
simplicity, we will not extend the modeling into lower levels, so links in the
Ethernet layer are primitives.

An Ethernet layer has two kinds of links. There are point-to-point links
between switches, each of which is basically a wire between two machines. There
are also shared media or buses. A bus delivers each message to every machine
on the bus, and is used to connect a switch to a set of hosts. Either kind of link
can be identified at each switch that uses it by the port on the switch’s machine
to which it is attached.

13

root

Figure 7: Inter-switch links of an Ethernet LAN layer (left) and an overlay layer
(right). The Ethernet links are physical, while the overlay links are virtual.

The inter-switch links of the layer must form a bidirectional spanning tree
(see Figure 7). Otherwise, when flooding is used (see below), the network could
be overwhelmed by messages traveling on cycles. There are usually more phys-
ical links than needed for the spanning tree, but the extras can only be used
when other links fail and the spanning tree is recomputed.

Each switch has a forwarding table containing (MAC address, port) pairs.
The port identifies the link on which the switch should forward messages des-
tined for the MAC address. Each switch’s table is sparse and is populated lazily
by a routing algorithm called “MAC learning.” Upon receiving a message with
a source MAC address that is not in its forwarding table, the switch adds to its
table the MAC address and the link on which the message was received.

The forwarding algorithm of a switch is similarly simple. Upon receiving
a message not destined for itself, the switch looks for the destination MAC
address in its own forwarding table. If it finds an entry, it forwards the message
on the designated link. If it does not find an entry, it “floods” by forwarding
the message on every link except the one on which it was received.

These mechanisms implement dynamic-routing mobility as an aspect of nor-
mal operation rather than as a special case. When a host moves within the
layer, it changes the link through which it is attached to the layer. As soon as it
sends messages, new routes to it begin to propagate through the layer. Obsolete
forwarding-table entries are removed when their time-to-live expires. Missing
table entries are handled by flooding. Note that an entry might also be removed
from a forwarding table because the table is full and space for a newer entry is
needed.

4.2 Ethernet overlays

Several recent designs [4, 6, 7] avoid flooding by forming an overlay topology
that interconnects all of the edge switches, as shown on the right side of Figure 7.
While the inter-switch links of an Ethernet are physical and form a spanning

14

Hv HzSy

Sy

Sw

Sw Sx

overlay

v v v
z z z

w w
y y

underlay

Figure 8: The path of a message through two layers and three switches.

tree, the inter-switch links of an overlay network are virtual and fully connect
the switches.

The virtual links are communication services implemented by a second, lower
layer. For example, Figure 8 shows the path of a message from host Hv to host
Hz (the lower-case letters stand for their MAC addresses). On each hop, the
path is labeled with the source name above and the destination name below.
The virtual hop between switches Sw and Sy in the overlay layer is implemented
in the underlay, where the message is encapsulated in a message with source w
and destination y.

How are the virtual links in the overlay implemented by the underlay? The
members of the underlay layer are the switches only, not the hosts. Each switch’s
name is the MAC address of its machine, just as in the overlay, so there is no
need for a locations state component to map one name to another. The members
of the underlay are stable and stationary. Routing is static except for failures,
and the forwarding tables are fully populated. Because there is no flooding,
there is no need to restrict the links to a spanning tree, and all of the physical
links between switches can be fully utilized. The underlay can run an efficient
routing protocol, such as a link-state protocol, to compute a shortest path from
one edge switch to another.

Routing in the overlay is unusual compared to routing in general, because
every edge switch is directly linked to every other edge switch. This means that
an inter-switch route to a host can be identified simply by the MAC address of
the host’s edge switch, and is exactly the same no matter which switch needs
the route! Thus inter-switch routing is a mapping that is global within the layer.

As with Ethernet LANs, each switch has a routing table that is populated
lazily (e.g., through MAC learning). The difference lies in what happens when a
switch needs a route to an unknown destination. Rather than flooding, it looks
the route up in a global routing directory.

When a host moves, the directory is updated with the new route to the
host. The exact update mechanism differs from one overlay design to another,

15

depending on whether mobility is planned (e.g., virtual-machine migration in a
data center) or unplanned (e.g., a mobile device moving within a campus). In
a data center, a central controller that triggers virtual-machine migration can
also update the directory with the new route [6, 7]. If the directory cannot be
informed in advance that a host is moving, the new local switch can learn that
a new device has connected and subsequently update the directory [4].

The routing directory in an overlay is an important part of its design, and
may have many features to make both queries and updates fast and efficient.
Different designs have different directory structures. VL2 [6] and NVP [7] run a
centralized directory on a collection of server machines. In these designs, if the
ingress switch Sw does not know the route for host Hz, Sw queries a directory
server to learn the route Sy. In contrast, SEATTLE [4] implements the directory
as a “one-hop Distributed Hash Table” [20] running directly on the switches. If
the ingress switch Sw does not know the route for host Hz, Sw computes the hash
of the Hz’s MAC address and forwards the message over a single overlay link to
the switch responsible for this hashed value. This switch, in turn, forwards the
message to Hz’s local switch Sy and informs switch Sw of the route for Hz so
that future messages flow directly from Sw to Sy.

To improve the speed of mobile handoff, the ingress switch Sw can receive
an update when a host moves to a new location. To perform these updates, the
directory could maintain information about all ingress switches that recently
queried the directory for a route to Hz. However, this can require the directory
to maintain a large amount of state. Instead, when a host moves, the directory
can update the mobile host’s old local switch. Upon receiving a message for the
mobile host, the old local switch can both forward the message to the mobile
host and send an immediate notification about the new route to the sending
switch [4]. This reactive invalidation of stale routes obviates the need for the
directory to maintain information about which ingress switches sent queries for
Hz, while still ensuring rapid invalidation of stale routes.

In addition to SEATTLE, VL2, and NVP, several other designs adopt cer-
tain aspects of the overlay solution. The early work on Rbridges [8], and the
resulting TRILL [9] standard at the IETF, also forms an Ethernet overlay with
shortest-path routing in the underlay. However, instead of having an explicit
directory service, TRILL relies on flooding to reach hosts with unknown routes.
Rather than flooding on all normal overlay links, TRILL floods on a special
multicast link in the overlay. This special link is implemented in the underlay
by a multicast tree formed on the underlay topology.

Like VL2 and NVP, the PortLand [5] design has a set of directory servers
that allow ingress switches to learn the route to a destination host. Instead
of encapsulating a message, PortLand assigns each edge switch a block of host
“pseudo-MAC addresses” and rewrites the host MAC addresses at the edge. To
enable the use of hierarchical pseudo-MAC addresses, PortLand is restricted to
the tree topologies common in data-center networks. Table 1 summarizes the
structural characteristics of all five designs.

16

Protocol Routing Directory Encapsulation
SEATTLE one-hop DHT on the switches simple encapsulation
VL2 directory servers simple encapsulation
NVP directory servers simple encapsulation
Rbridges/TRILL none, flooding on multicast tree simple encapsulation
PortLand directory servers none, MAC rewriting

Table 1: Ethernet overlay designs for dynamic-routing mobility.

4.3 Comparative resource costs

Concerning storage costs, both Ethernet LANs and overlay designs incur the
costs of the forwarding tables in switches. These costs are kept moderate by
the fact that the tables are sparsely populated. Because there is no aggregation
of names or table entries, the costs of densely populated tables would be too
great. In addition to the forwarding tables, the overlay designs incur a storage
cost for the routing directory, which maintains global state for the layer.

Concerning update costs, both approaches incur negligible costs for popu-
lating forwarding tables lazily though MAC learning. The biggest update cost
is the cost of Ethernet flooding. The cost of flooding, in terms of bandwidth,
grows quadratically with the size of the network—which makes it a potential
scalability problem. Whether it becomes an actual problem or or not depends
on its frequency, which depends on both the frequency of moves and the num-
ber of correspondents that a mobile host tends to have. SEATTLE, VL2, NVP,
and PortLand have no flooding cost, though they do have the additional cost of
updating the directory.

Mobility in the overlay designs incurs no path cost. The path cost of Ether-
net mobility is significant, because the spanning tree (which is necessitated by
flooding) forces paths to be longer and forces some physical links to go unused.

We can measure handoff latency from the instant when the mobile host
re-attaches to the network and informs its local switch (before that time no
mobility mechanism can take effect). The following scenarios assume that a
correspondent switch is sending a steady stream of messages to a mobile host.
They describe the elapse of time before messages sent by the correspondent
switch (CS) are forwarded to the mobile host at its new attachment.

The Ethernet scenario:

1. The time-to-live of the CS’s route to the mobile host expires, if it has not
already.

2. CS receives the next message from the correspondent host and floods it.

3. After a round trip to the mobile host, CS learns the new route.

After Step 3, messages sent by CS are forwarded to the mobile host at its new
attachment.

17

In the directory-based overlay solutions (i.e., SEATTLE, VL2, NVP, and
PortLand):

1. The directory receives an update of the mobile host’s new local switch.

2. The directory informs the mobile host’s old local switch of the new route.

3. The next message arrives at the mobile host’s old local switch, and is
forwarded on the new route.

4. The mobile host’s old switch also informs the CS of the new route.

At Step 3 and after, messages sent by CS are forwarded to the mobile host at its
new attachment. If Step 1 of the Ethernet scenario takes time, then the handoff
latency of the overlay designs will be smaller than the Ethernet’s.

In addition to resource costs, security and privacy are ever-present concerns.
In Section 3.3 we noted that DRM usually has minimal security problems be-
cause only routers participate in routing. Ethernet flooding is an exception to
this rule because it allows hosts to play a role in routing. Malicious hosts can
force flooding by filling up the network’s forwarding tables. (This would be
accomplished by sending many messages from spoofed source MAC addresses.)
Severe flooding can cause denial of service. Also, the malicious hosts will receive
all the flooded packets, which may contain private information that they wish
to see.

5 Examples of dynamic-routing mobility in hi-
erarchical layers

Both of the designs in this section are intended for mobility within the Internet
core. For this reason, both must grapple with the problem of a hierarchical
name space as explained in Section 3.1. To reduce overhead, both solutions
significantly limit the number of routers in the Internet that must store and
update state concerning how to reach each mobile node.

5.1 Mobile IPv4

Mobile IPv4 [21, 22] drastically reduces storage and update costs by reducing
the number of routers that must have a current route to a particular mobile
host to one or two. Also, because each router is responsible for only a limited
number of mobile hosts, no router is over-burdened by mobility.

Figure 9 shows the path of a message from correspondent host C to mobile
host M in an Internet core layer with Mobile IPv4. Router HA is the home
agent of M, and is supposed to have a route to it at all times. Router FA is the
foreign agent of M, meaning that it is local to the subnetwork where M is now
attached, and currently knows a route to M through the subnetwork.

The IP address M is in an aggregated routing block such that all messages
destined for the block are routed to HA. Thus this router need only be the home

18

Internet core
with

Mobile IPv4

tunneling
layer

C

C

R1

R1

HA

HA

FA

FA

M

COR2

R2

Figure 9: The path of a message to mobile host M with Mobile IPv4. Special
links are drawn with heavier lines. Only the links employed in the path are
shown.

agent for mobile hosts with IP addresses in its block. The message from C arrives
at HA by means of normal IP routing through router R1. The subnetwork of
HA is M’s home subnetwork, so when M is at home HA has a local route to it.

When M is not at home and becomes attached to the subnetwork of FA, it
gets a local “care-of” IP address CO in that subnetwork. M informs FA, which
informs HA that it is the current foreign agent of M. To forward messages to M,
however, HA cannot merely forward them toward FA. It they were sent out on
normal IP links, normal IP routing would send them back to HA! Messages to
M from HA and FA must be forwarded on special links that are separate from
normal IP links.

As shown in Figure 9, the special links in the Internet core are implemented
by a tunneling layer below the core layer. The home agents, foreign agents, and
mobile hosts of the Internet core are all registered at members of the tunneling
layer. Home agents and foreign agents have the same names in both layers, while
M is attached to member CO in the tunneling layer. To forward a message for
M on its special link, HA in the core layer encapsulates the message in another
message destined for FA, and passes the message to member HA in the tunneling
layer.

Although the tunneling layer resembles the core layer (see below), its state
differs from that of the core layer in several important respects:

• Routes: In the core layer, at HA messages for M are forwarded to FA on
a special link, at FA messages for M are forwarded to M on a special link,
and everywhere else messages for M are forwarded to HA on a normal
link. In the tunneling layer M does not exist.

• Attachments: Some members of the core layer are attached to members
of the tunneling layer.

• Locations: The core layer has no locations state, at least not related to
Mobile IPv4. Although the tunneling layer need not maintain explicit
locations state for mobile routers because they have the same names in

19

both layers, it must maintain explicit locations state for mobile hosts from
the core layer. This state, which supplies the current local IP address of
a mobile host, is stored in the foreign agent to which it is relevant.

In Mobile IPv4, mobile hosts such as M send messages to their correspon-
dents such as C though normal IP links. This often creates problems because
IP address M is not part of the normal routing block of the subnetwork at FA.
If there is ingress filtering for security in or near this subnet, messages with a
source address of M will be thrown away. In Section 7 we shall see how Mobile
IPv6 eliminates this problem.

Overall this is an interesting architecture because the Internet core layer and
the tunneling layer are mostly identical, and share the same implementation.
Home agents, foreign agents, and mobile hosts are all aware of the differences
between the layers and aware of their dual membership and dual roles. The
shared implementation works because none of the other members of the layers
need to be self-aware in that way. They always behave the same, without
knowing that sometimes their actions contribute to the core layer, while other
times their actions contribute to the tunneling layer.

By distinguishing clearly between the two layers, we make it possible to
check the correctness of the software for each. It also becomes possible to make
further distinctions if advantageous. For instance, implementation of a link
between HA and R2 can be shared by both layers, but it might make sense to
distinguish links in the two layers for reasons of performance or accounting.

5.2 MSM-IP

MSM-IP [23] is a proposal for using IP multicast to implement mobility. A
mobile host gets an IP address M in the distinguished multicast block. When
the mobile host attaches to a new subnetwork using local IP address L, L joins
the multicast group for M, and the previous local address used by M resigns
from the group.

With IP multicast there is a distinguished set of multicast routers, which
are globally distributed and are responsible for routing messages destined for
a multicast address to all members of the address’s current multicast group.
These routers exchange information and forward messages to each other through
special links, exactly as the routers participating in Mobile IP do. The special
links are implemented by a tunneling layer, exactly as the special links in Mobile
IP are.

With MSM-IP, every subnetwork that supports either mobile hosts or their
correspondents must have a multicast router. Messages to mobile hosts (or
true multicast groups) are recognized by their distinguished addresses and sent
to their local multicast router, where they enter the special multicast routing
system.

20

5.3 Comparative resource costs

The costs of dynamic-routing mobility depend greatly on the number of routers
that must have a current route to each mobile host. More routers incur more
storage and update costs. Storage and update costs are much greater for MSM-
IP than for Mobile IPv4, because an entire network of multicast routers must
be updated on each move.

Using fewer routers, on the other hand, incurs more path cost. With MSM-IP
path cost is minimal, because a message travels from the multicast router in the
sender’s subnetwork, along an optimal path through the distributed multicast
routers, to the multicast router in the receiver’s subnetwork. With Mobile IPv4
path cost can be high, because each message to a mobile host must pass through
the home agent, regardless of where the sender is and where the mobile host
is. This problem of path cost or “triangular routing” is the reason why the
designers of Mobile IPv4 decided to send messages from mobile hosts through
normal IP links. They incur no path cost, but they do run afoul of security
filtering.3

In Section 3.3 we said that dynamic-routing mobility does not in principle
require participation of the endpoints. Mobile hosts in Mobile IPv4 and MSM-
IP do not have this advantage. The reason that they must have special behavior
is that both designs use special routing mechanisms, separate from normal IP
routing, to find mobile hosts. Because the routing mechanism is special, it
is not necessary to update every IP router when a mobile host moves. But
also, because the routing mechanism is special, mobile hosts must also behave
differently to interact with it in the correct way.

6 Examples of session-location mobility

In this section we compare four IETF standards for session-location mobility:
the Host Identity Protocol (HIP) [24, 25], the Identifier-Locator Network Pro-
tocol (ILNP) [26], the Locator/Identifier Separation Protocol (LISP) Mobile
Node [27], and the “route optimization” mechanism of Mobile IPv6 [28, 29].
Section 7.3 will explain how route optimization fits into Mobile IPv6 overall.

These standards have many similarities, as they all provide mobility by split-
ting the Internet core layer (shown in Figure 4) into two layers. These two layers
are shown in Figure 10, and also correspond to the two layers in Figure 6. Mo-
bility supports the persistence of an inter-layer channel that is a link in the
upper layer. This is called the identifier layer because each Internet host has a
persistent name in it called its identifier. The channel is implemented by a ses-
sion with SLM mobility in the lower layer. In the lower layer, called the locator
layer, each IP interface of each host has a locator which is an IP address.4

3Messages from MSM-IP mobile hosts do not have problems with security filtering because
multicast IP addresses are recognizable as belonging to a special category.

4Note that the members of the identifier layer are hosts, while the members of the locator
layer are interfaces. This distinction can safely be ignored in this section, but it is important
for multihoming as discussed in Section 8.1.

21

identifier
layer

locator
layer

I1 I2

L4L2L3L1

link

linklink link

TCP session

session with mobility

Figure 10: The Internet core layer splits into two layers for session-location
mobility. In the identifier layer, session protocols such as TCP run largely
unmodified. In the locator layer, the session protocol implements mobility.

Protocol Identifier Locator
HIP (hash of) public key IPv4 or IPv6 address
ILNP 64-bit IPv6 suffix IPv6 address
LISP Mobile Node IPv4/IPv6 address (called EID) IPv4/IPv6 address (called RLoc)
Mobile IPv6 IPv6 address IPv6 address

Table 2: Comparison of SLM standards on the basis of names.

Figure 10 is a geomorphic approximation of the real implementations of these
standards, in which the split between layers is implicit and incomplete. In the
geomorphic view, two separate session protocols are employed. In the identifier
layer, a largely unmodified TCP implementation provides the usual TCP service
as if identifiers were IP addresses. (UDP and other service protocols operate
here as well.) In the locator layer, the only purpose of the session protocol is to
implement SLM.

6.1 Names

Table 2 compares the four standards on their choices of names. They differ most
on identifiers, which must be globally unique and persistent, but have no other
necessary constraints.

HIP places a great emphasis on building in security, so the identifier of a
host is the host’s public cryptographic key. With the use of keys as identifiers,
messages can have self-authenticating source information. Self-authentication
provides security within the SLM locator update protocol (see Section 6.3), while
the guaranteed presence of a public key makes it easy to protect the channel
data with encryption. Identifiers can also be hashes of public keys, which allows
for shorter identifiers without sacrificing self-authentication.

ILNP can only be used in the context of IPv6. Its identifiers are 64 bits
long; a host usually chooses a unique identifier for itself by taking the 48-bit

22

MAC address of one of its hardware interfaces and using a standard algorithm
to extend it to 64 bits.

The significance of 64 bits is that in IPv6 routing based on hierarchical names
and aggregation, the longest possible prefix is 64 bits. This means that at its
finest-grained, IPv6 routing examines the first 64 bits of an IPv6 address and
points to a subnetwork. The IPv6 address still has a 64-bit suffix to map to an
IPv6 interface attached to the subnetwork. In ILNP, identifiers are carried in
the 64-bit suffixes of IPv6 addresses. In other words, an ILNP locator is derived
from an ILNP identifier by prefixing 64 bits that indicate a subnetwork where
the identified host can be found.

This scheme is very efficient in its use of address bits. It places constraints on
the locator layer that are certainly satisfiable, but cannot be taken for granted,
and may not be achievable in legacy situations. First, when some interface of
a host attaches to a subnetwork, it must be able to choose its own IP suffix
(local address) within the subnetwork, and it must be free to choose its own
identifier as that suffix. Second, consider what happens when a host with two
MAC addresses m1 and m2 chooses m1 as the basis of its ILNP identifier. It
may then attach to a subnetwork through the interface associated with m2.
Despite the use of m2 to access the subnetwork, the subnetwork must allow it
to choose an IP suffix based on m1.

LISP Mobile Node and Mobile IPv6 are less interesting. In both cases,
identifiers are normal routable IP addresses.

Naming choices have the biggest effect on the deployment opportunities of
a design. Mobile IPv6 and ILNP require the deployment of IPv6. HIP and
ILNP require more changes to TCP because their identifiers are not normal IP
addresses. Deployment of new protocols is usually incremental, which means
that updated hosts and subnetworks must interoperate with legacy hosts and
subnetworks. Often a legacy components cannot know whether a name it re-
ceives is an identifier or a locator. This gives a big advantage to LISP Mobile
Node and Mobile IPv6, which use the same name space for both. Interoperation
is a complex subject, and will not be considered further here.

6.2 Directories

An implementation of SLM requires a globally accessible implementation of lo-
cations in the locator layer, mapping identifiers to locators. Table 3 compares
the four standards on their choices of location directory or other mapping im-
plementation.

LISP Mobile Node inherits its directory mechanism from LISP [30], which
is an IETF standard designed for a different purpose (multihoming of large-
scale enterprise subnetworks), and not originally intended for the support of
mobility. The directory mechanism is a special-purpose distributed subsystem
of directory servers. While this requires a substantial initial investment, it does
give the deployer maximum freedom. For example, different deployments could
use almost any name space as the set of identifiers.

23

Protocol Location Directory
HIP DNS
ILNP DNS
LISP Mobile Node LISP subsystem
Mobile IPv6 home agent for each host has its locator

Table 3: Comparison of SLM standards on the basis of directories.

Both HIP and ILNP make use of the Domain Name System (DNS) as a
scalable, highly available directory subsystem. In both cases it is necessary for
a mobile host to have a domain name, which serves as the lookup key for both the
host’s identifier and locator, in two separate lookups. This is necessary because
a domain name is hierarchical in structure, while the identifiers used in HIP
and ILNP are not. DNS relies on the hierarchical structure of domain names
both for scalability of lookups and to manage the distributed administration of
DNS servers. Although an entity wishing to communicate with a mobile host
would often know it only by a domain name anyway, the need for an extraneous
third name that is neither an identifier nor a locator violates the principle of
separation of concerns.

For both HIP and ILNP it is necessary to add new record types to those
stored by DNS servers, because the value being looked up is not always an IP
address. Finally, the DNS server with the authoritative copy of a locator must
send it out with a time-to-live of zero. Otherwise other DNS servers will cache
the information, impeding responsiveness to changes of location.

The route optimization (SLM) mechanism of Mobile IPv6 is an adjunct to
the Mobile IPv6 DRM implementation (see Sections 5.1 and 7.3). Because the
DRM implementation uses home agents, the SLM implementation uses them
also. The current locator of an identifier can always be obtained from its home
agent. Mobile IPv6 may be less reliable than other designs because a home
agents is a single point of failure with respect to its mobile hosts. Home agents
do not necessarily have the built-in redundancy and high availability that the
directories of the other designs have.

6.3 Locator update protocols

An implementation of SLM must have a protocol through which mobile nodes
update the directory and their correspondents after a move. The protocol must
have security to prevent updates from unauthorized hosts.

It would take far too much space to report on how each standard meets
these requirements. Also, many standards provide a menu of implementation
alternatives, some of them better-documented than others. In lieu of this detail,
we will merely touch on a few of the design issues for SLM protocols.

Even without the problem of double handoff (as introduced in Section 3.2),
an update protocol can suffer from lost or re-ordered messages. If a correspon-
dent node or directory receives two different update messages from a mobile

24

Protocol Encapsulation
HIP encapsulation with IPSec Encapsulating Security Payload
ILNP none, identifier is extracted from locator
LISP Mobile Node simple encapsulation
Mobile IPv6 (RFC 3775) simple encapsulation
Mobile IPv6 (RFC 6275) Home Address destination option and Type 2 Header

Table 4: Comparison of SLM standards on the basis of encapsulation.

host in the wrong order, it could retain an obsolete locator for the mobile node.
If a correspondent node or directory determines from sequence numbers that an
update message has been lost, it might wait forever for a retransmission that
will not come because the mobile node is somewhere else and will not receive the
retransmission request. These bugs have been discovered in real SLM protocols
[31]. In general, the two techniques to rely on are (1) version numbers rather
than sequence numbers, and (2) some form of protocol verification to insure
against otherwise-almost-inevitable mistakes.

If an endpoint loses track of the session’s other endpoint because of double
handoff, loss of update messages, or a protocol bug, it can always get the current
locator by making a new lookup in the directory. In general, an SLM proto-
col can be made more robust by having mobile nodes report their locators to
the directory frequently, and having correspondent nodes refresh their cached
locators from the directory frequently. This robustness comes at the cost of
increased overhead in the form of message traffic.

HIP uses a different method to solve the problem of double handoff. When
a mobile host moves, its old locator is adopted by a “rendezvous server” that
keeps track of its new locator. The rendezvous server intercepts control messages
destined for the old locator, and forwards them to the new locator. Even when
both endpoints of a session move at the same time, their update messages will
reach each other through rendezvous servers. As always, data messages travel
directly between hosts.

6.4 Encapsulation

Like Table 1, Table 4 compares the standards on the basis of how they encap-
sulate overlay messages as they travel through an underlay. Note that there are
two versions of the Mobile IPv6 standard which differ in this respect (the newer
[29] supersedes the older [28], so this comparison is of academic interest only).

Consider a message being sent from left to right in Figure 10, at a time when
identifier I1 has locator L3 and identifier I2 has locator L2. In the simplest im-
plementation, the message consists of a message with source I1 and destination
I2, encapsulated in a message with source L3 and destination L2. There are
other possibilities, however, motivated by the desire to conserve space in mes-
sage headers. This is a serious concern in IPv6, where each of the four address
fields is 128 bits long.

25

LISP Mobile Node and the original version of Mobile IPv6 use simple encap-
sulation as above. HIP does also, with the additional proviso that the message
body containing the identifiers is protected with IPsec. In ILNP each identifier
is a suffix of its current locator, so it need not be sent separately.

In the revised Mobile IPv6 standard, there is an optimization apparently
based on the observation that, most of the time, only one of the endpoints of
a session will be mobile. For a stationary node, the identifier and locator are
always the same (see Section 7.3), and need not be sent twice. So a message
from the mobile node needs a source identifier and not a destination identifier,
and a message to a mobile node needs a destination identifier and not a source
identifier.

Now let us assume that I1 is mobile and I2 is stationary. For messages from
I2 to I1, a destination identifier is needed. The revised Mobile IPv6 standard
uses a special Type 2 header. This is a kind of “source routing” header, allowing
the source to provide a list of destination addresses through which the message
must be routed. The messages have destination list (L3; I1), where the second
hop from L3 to I1 is internal to the mobile host. For messages from I1 to
I2, a source identifier is needed. The extra source address I1 is inserted using a
special “Home Address destination option.” This option is an extension to IPv6
allowing an extra field in a message header. In this way, the extra identifiers
can be added to messages only when needed.

One might speculate that such a complex optimization would cause trouble
in the form of further, cascading complexities, and this is indeed the case. There
are elaborate rules in [29] for processing messages so that IPsec works correctly:
each message must be processed partially with I1 in the ordinary source or desti-
nation field, and partially with I1 moved to the Type 2 header or Home Address
destination option field. Note that this is an interaction that has been explic-
itly recognized and accommodated in the standard. No one knows how many
problematic interactions with other protocols, caused by this optimization, will
be discovered if Mobile IPv6 comes into widespread use.

The SLM implementation of Mobile IPv6 is constrained by the need to com-
pose with the DRM implementation of Mobile IPv6 (see Section 7.3). If there
were not so many constraints, the size of headers could be reduced without vi-
olating the principle of separation of concerns. For example, Figure 11 revises
Figure 10 in an obvious way as suggested by the geomorphic view. The session
protocol in the locator layer now performs both TCP and SLM functions.

In the identifier layer, the link between I1 and I2 is uniquely identified at
one end by I1, p1, where p1 is a port number, and uniquely identified at the
other end by I2, p2. Note that the identifier layer is more like an application
layer than an IP layer in that it has no forwarding—only direct links between
pairs of communicating endpoints. Consequently, once the link has been set
up, there is absolutely no need to transmit I1 and I2 in data messages. Each
endpoint simply uses the port number to pass messages unambiguously across
the layer boundary. Figure 11 has many similarities with TCP Migrate [10] and
Serval [11, 31], which are other proposals for SLM.

26

p1 p2application/
identifier

layer

locator
layer

I1 I2

L4L2L3L1

link

linklink link

session with mobility and reliability

Figure 11: A more efficient version of Figure 10.

7 Composition of the patterns

7.1 Structural modeling

The geomorphic view of networking is rigorously defined and can be formalized.
We have formalized various aspects of the geomorphic view in Alloy, which is
the modeling language of the Alloy Analyzer [32], and in Promela, which is the
modeling language of the Spin model checker [33]. These are structural models.

Networking researchers and practitioners are accustomed to analytical mod-
els, which are also formal, but quantitative rather than structural. Once can
assign numbers to some symbols in an analytical model, give the numbers and
model to a suitable evaluator, and receive numbers for other symbols in the
model.

Structural models are similar, except that evaluation is logical rather than
quantitative. We assume that some formulas in a model are true, give the
assumptions and the model to a suitable evaluator such as the Alloy Analyzer
or Spin, and receive information about the truth of other formulas. We either
learn that a formula is true, or get a counterexample showing why it is not true.

Sections 3 through 6 should have made clear why the term we use to de-
scribe these models is structural. We use them to describe hardware and soft-
ware structures within networks, and to compare mechanisms based on where
their structures are similar and different. We also use them to show how struc-
tural decisions constrain other decisions and affect important properties such as
scalability and interoperability. In the next subsection, we will mention some
additional knowledge gained with the help of structural modeling.

7.2 Generating the design space of mobility

An instance of mobility is an isolated episode in which one layer member changes
its attachment from one underlay member to another. One of our goals is to give
network architects the freedom to handle any instance of mobility with any mo-
bility pattern at any level of the layer hierarchy. This should enhance efficiency

27

DRM

0

1

2

3

SLM

0

1

2

DRM

0

1

2

DRM

0

1

2

SLM0

1 SLM

0

1

2

m’’

m’

m1 m2

a1 a2

m’

m1 m2

a1 a2

m’

m1 m2

a1 a2

m’

m

a1 a2

m’

m

a1 a2

m

a1 a2

Figure 12: Generating the design space.

and scalability by allowing solutions that are finely tuned to the characteristics
of the problem they are solving.

The first step was to identify the two possible implementation patterns and to
provide sufficiently abstract versions of them (Section 3). The next step, taken
in this section, is to show that any instance of mobility can be implemented
with either pattern at almost any level of the layer hierarchy.

In the left column of Figure 12, top half, we see a fundamental instance of
mobility in which the old and new locations are in the same layer at Level 0. As
notated, the channel at Level 1 can be preserved by session-location mobility
(SLM) at Level 0. In the left column, bottom half, we see a fundamental instance
of mobility in which the old and new locations are in different layers at Level 0.
As notated, a channel at Level 2 can be preserved by dynamic routing mobility
(DRM) at Level 1.

The middle column of the figure shows the effects of a “lifting” transforma-
tion in which each mobility implementation is moved up a level in the hierarchy.
The purpose is to show that mobility can be implemented in many different
places, if the current architecture allows it or the designer has control of the
content and design of relevant layers. In each case member m at Level 1 is
replaced by two members m1 and m2. Neither m1 nor m2 is mobile, as each
has a stationary registration in Level 0 throughout its lifetime. Now member
m’ at Level 2 is mobile. As shown in the figure (top), a channel in Level 2 with
m’ as its higher endpoint can be preserved by SLM at Level 1. Or, as shown at
the bottom, a channel in Level 3 with m” as its higher endpoint and m’ as its
lower endpoint can be preserved by DRM at Level 2.

The right column of the figure shows where one implementation pattern can
be replaced by the other. To replace SLM by DRM (top right), it is necessary

28

Internet core
with

Mobile IPv6

tunneling
layer

C

C

HA

HA

M

CO1CO2

M
M

M
M

C C

CC

CO2
CO2

HA

HA

Figure 13: The paths of messages to and from mobile host M with the dynamic-
routing mobility mechanism of Mobile IPv6. Special links are drawn with heav-
ier lines. Only the links employed in the path are shown.

to lift the channel up one level. To replace DRM by SLM (bottom right), the
channel can stay at the same level, but the mobility must be lifted up a level.

The final step of this exercise is to show that implementations of the two
patterns can be freely composed, in the same layer or different layers of the same
hierarchy. This result is verified with the Alloy Analyzer in [34], and establishes
that network architects can exploit the entire design space of mobility without
worrying about interactions or incompatibilities. The most important limitation
is that, to benefit from proven compositionality, implementations must maintain
the minimal separation of concerns inherent in the geomorphic view.

7.3 Composition in Mobile IPv6

As we saw in Section 5, Mobile IPv4 is an instance of DRM. Mobile IPv6 [28, 29]
uses a similar DRM mechanism, and also composes it with the SLM mechanism
described in Section 6. We first consider the DRM mechanism.

Figure 13 is the Mobile IPv6 version of Figure 9. Note that Mobile IPv6
has no foreign agents, as their functions are performed by the mobile hosts
themselves. In the figure, both the old attachment of M at CO1 and its new
attachment at CO2 are shown. Normal routers are not shown, being replaced
by ellipses in the paths consisting of normal links.

Figure 13 also differs from Figure 9 in showing the source and destination
addresses of the messages on every link (source on top, destination below). Thus
a message in the core layer with source C and destination M is forwarded on
a special link from HA to M. The implementation of this special link in the
tunneling layer encapsulates the message in another message with source HA
and destination CO2, and sends it through normal IP links and routers.

Figure 13 also differs from Figure 9 in showing the paths of return messages

29

Internet core
with

Mobile IPv6

tunneling
layer

C

C

M

CO1CO2CO2
CO2

M
M

C

C

C

C

HA

Figure 14: The paths of messages to and from mobile host M with the session-
location mobility mechanism of Mobile IPv6. Special links are drawn with
heavier lines.

from M to C. In contrast to MIPv4, return messages from M travel on a special
link as far as HA. At HA they enter the realm of normal links and routers. There
is no problem with ingress filtering because M belongs to the address block of
HA’s subnetwork, so M is a normal source address at that location.

The big problem with Mobile IP is the path cost of routing every message
through a mobile host’s home agent. Path cost is even worse in Mobile IPv6
than in Mobile IPv4, because it is incurred by messages from a mobile host
as well as messages to it. To reduce this problem, Mobile IPv6 standardizes a
version of SLM called “route optimization,” as already presented in Section 6.
SLM is used only after the session between C and M is established, and only if
both endpoints have the protocol capability.

Figure 14 shows the SLM mechanism of Mobile IPv6 in the same context
as its DRM mechanism in Figure 13. For simplicity, this figure uses simple
encapsulation as in [28]. After the endpoints have exchanged messages to set up
SLM, they send messages on special links implemented in the tunneling layer.
Note that these are different special links than those used by DRM (Figure 13).
The DRM special links involve HA and will change when M moves. The SLM
special links do not involve HA, and will not change from the perspective of
the core layer when M moves. With SLM, the only role played by HA in the
tunneling layer is to store the directory entry for M. It is not needed originally
because when SLM begins the two endpoints are already connected and know
each other’s locations in the tunneling layer, but it may be needed in case of
double handoff.

Figure 14 also shows the SLM mechanism of Mobile IPv6 in the same context
as Figure 10. The “Internet core with Mobile IPv6” layer in Figure 14 is the
same as the identifier layer in Figure 10. The tunneling layer in Figure 14 is the

30

same as the locator layer in Figure 10.
So far our discussion of the Internet core/identifier layer has been limited

to its links. We have seen that C and M may have a choice of links over which
to send their messages. Because the network path associated with each link is
different, its performance may be different. It is the job of TCP in the Internet
core/identifier layer to smooth over any difficulties caused by diverse paths, for
example by ensuring that messages are delivered to an application layer in FIFO
order.

The design space generated in Section 7.2 is intended primarily for compo-
sitions in which different instances of mobility are managed by different mech-
anisms or at different levels of the architecture. Composition in Mobile IPv6
is a little different because the exact same instance of mobility—pictured in
the figures as M’s change of attachment from CO1 to CO2—is being handled
simultaneously by both forms of mobility. The DRM implementation is in the
core/identifier layer, while the SLM implementation is in the tunneling/locator
layer. DRM is the default mechanism, because SLM can only be used if both
endpoints are SLM-enabled.

8 Design considerations related to mobility

Mobility mechanisms lie close to the heart of networking, so they are related to
many other communication services and aspects of networking. In this section,
we touch briefly on several other topics closely related to mobility.

8.1 Multihoming

Increasingly, mobile devices connect to the Internet via multiple interfaces (e.g.,
a laptop with WiFi and wired Ethernet interfaces, a smartphone with WiFi and
cellular interfaces, or a virtual machine running on a physical server with multi-
ple wired Ethernet interfaces). Since these interfaces usually connect to different
administrative domains (e.g., a campus WiFi network and a commercial cellu-
lar provider), they must have different IP addresses in different address blocks.
There is no name for the Internet host itself, and no way to route to the host
itself rather than a specific one of its interfaces.

Sequential multihoming is the use by a host of multiple interfaces, one after
the other, during the lifetime of a channel. A mobility mechanism can be used to
implement sequential multihoming; in principle either of the mobility patterns
can be used to provide it.

If we look at the specific real mobility protocols in Sections 4 through 6,
however, we see that the DRM protocols in Sections 4 and 5 work with a single IP
address per host, while the SLM protocols in 6 work with multiple IP addresses
per host. This is an artifact of where these protocols sit in the IP stack rather
than an inherent property of the implementation patterns, but it does mean
that SLM implementations are currently a better match for multihoming than
DRM implementations.

31

Simultaneous multihoming allows a host to use its multiple interfaces to
contribute bandwidth to the same channel simultaneously. Simultaneous mul-
tihoming is closely related to sequential multihoming and therefore to mobility,
but not strictly the same because the multiple interfaces of a host might not be
allowed to change during the lifetime of a channel. Of course, what we really
want is simultaneous and sequential multihoming, which is a little more complex
than sequential multihoming because it requires protocol extensions so that a
layer member can have and use more than one attachment at a time. All of HIP,
ILNP, LISP Mobile Node, and Serval already have session protocols capable of
simultaneous multihoming.

Although we can easily adapt a mobility solution to provide multihoming, it
is more difficult to go the other way. Multipath TCP [35] and the Stream Control
Transmission Protocol (SCTP) [36] are both proposals for multihoming, which
can be used for either increased bandwidth or failure recovery. A communication
channel formed with these protocols may have multiple IP addresses at each
endpoint, but there is no higher-level host identifier that can survive the loss
of network connectivity through those addresses. Without such an identifier,
there is no way to preserve the channel until network connectivity is restored
through other IP addresses.

8.2 Anycast

Increasingly, the Internet is a platform for users to access services hosted on
multiple servers in multiple locations. The appropriate network abstraction for
their requirements is anycast, in which a service has an anycast name that corre-
sponds to a group of servers offering the service. A request for a communication
channel to the service can result in a channel to any member of the group of
servers.

For simple query-response services like DNS, all server replicas can share
a single locator (i.e., an IP address), and rely on IP routing to direct client
requests to one of the server replicas. However, IP routing does not guarantee
that multiple messages sent to the same IP address would reach the same server
replica. In today’s Internet, a domain name for a geo-replicated service can map
to multiple IP addresses, one for each server replica. This supports communi-
cation services with multiple message exchanges between client and server. It
is different from mobility, however, because the higher-level domain name has
nothing to do with the channel after the initial DNS lookup.

Alternatively, anycast could be combined with SLM, as it is in Serval [11, 31].
A Serval identifier is an anycast name, and is registered as located at a dynamic
group of servers in the locator layer. When a request for a channel to an
identifier is handled by the Serval session protocol, the protocol selects the
locator of some member of the group. In contrast to the previous paragraph,
the identifier remains the name of the channel’s higher endpoint throughout its
lifetime. The SLM session protocol can thus maintain the channel through both
mobility events and changes to the membership of the server group.

32

8.3 Subnetwork mobility

Mobility proposals typically focus on the movement of a single mobile endpoint,
like a mobile device or a virtual machine. However, in some scenarios a sub-
network serving multiple endpoints can move from one location to another. For
example, a fast-moving bus, train, or plane may carry a LAN that provides
network connectivity to a large collection of passengers.

Dynamic-routing mobility in a hierarchical layer naturally handles subnet-
work mobility by updating the routes used to reach the entire aggregated block
of names. For example, Boeing had an early in-flight WiFi service that provided
seamless mobility for airline passengers by associating each international flight
with an IP address block, and announcing the block into the global routing
system at different locations as the plane moved [2]. However, this solution re-
quired all interdomain routers in the Internet to store and update fine-grained
routing information, leading to high overhead.

In our recent work [34], we have shown that subnetwork mobility is merely
the mobility of the gateway’s attachment to the larger network, and is imple-
mented with the same two patterns as mobility of endpoints. We identified
several applications of the design patterns that seem promising for handling
combinations of subnetwork mobility and endpoint mobility. These solutions
have the property that the mechanism for subnetwork mobility (a bus moves its
access point from one roadside LAN to another) is completely independent of
the mechanism for endpoint mobility (a user with a laptop gets on and off the
bus). Nevertheless, it is not yet clear which solutions for subnetwork mobility
would be most viable in practice.

8.4 Incremental deployment and interoperation

Deploying new protocols that span administrative domains is always challenging,
since the Internet is a federated infrastructure and cannot easily have a “flag
day” on which everyone upgrades to new protocols. Most real deployments
are DRM mechanisms that operate within a single administrative domain (e.g.,
cellular networks, Ethernet LANs, or data-center networks), or require support
only from the mobile endpoint and a small number of routers (e.g., Mobile
IPv4).

It is not surprising that most real mobility implementations use DRM, be-
cause SLM entails many more deployment hurdles. There can be a new set
of identifiers, a new global directory service, changes to both endpoints, and
even changes to the service interface that are visible to applications. The early
SLM protocol TCP Migrate [10] is probably the most deployable, requiring only
changes to the operating system at the participating endpoints, but even so it
has not had significant deployment.

Nevertheless, as noted in the introduction, the pressure for better network
mobility support is mounting. Ubiquitous computing may be a particularly
powerful motivator, because an enormous number of sensors and actuators will
require network access. This could accelerate the adoption of IPv6, enabling

33

many other changes in its wake.
For incremental deployment, an SLM-enabled host can interoperate with a

legacy host through a proxy or other middlebox. This raises many new questions
concerning how a middlebox is introduced into the path between the hosts, and
on the scalability of stateful middleboxes. These new questions must be added
to the perennial list of old interoperability questions, such as how to traverse
NAT boxes. Identifying effective ways to deploy these protocols incrementally
remains an active area of research and standards work.

8.5 Security

All mobility solutions raise important questions about security. In DRM, who
is authorized to announce routing changes for an address or address block? In
SLM, who is authorized to update the directory service and a mobile endpoint’s
correspondents? Answering these questions successfully requires unforgeable
notions of identity, and secure protocols for sending update messages to routers,
directory servers, and endpoints. Can accidental misconfigurations or malicious
attacks overload the routers, directory servers, or endpoints? Preventing denial-
of-service attacks requires effective ways to limit the work performed before
recognizing that messages are unauthorized.

As mentioned in Section 3.3, SLM protocols face greater security challenges,
because arbitrary endpoints can initiate updates to global layer state. SLM pro-
tocols that use DNS as the directory service can use a secure update protocol
for updating DNS records [37]. Some protocols, like HIP and Serval, embed an
endpoint’s public key (or a hash of the key) in the identifier, as a way to boot-
strap secure communication and secure updates to both the directory servers
and correspondents. Still, security is a rich and important topic warranting
a much deeper treatment, especially since new protocols can easily introduce
unforeseen vulnerabilities and new threats.

9 Conclusion

In this chapter we have presented an abstract framework for describing, un-
derstanding, and comparing approaches to network mobility. As illustrations,
we have covered several mobility protocols in some detail. We believe the geo-
morphic model provides a clear and precise way to understand the considerable
similarities between different mobility proposals, allowing discussions to focus
on their meaningful distinctions rather than artificial differences in terminology.

We have compared mobility proposals on both qualitative (deployment con-
straints, security) and quantitative (resource costs, latency) criteria. The basis
for making comparisons has been completely structural, in the sense of struc-
tural modeling as defined in Section 7.1. This is important because structural
comparisons are vastly easier to obtain than comparisons based on simulation,
and should always be the first step in any evaluation project.

34

In the interest of brevity, our structural discussions of quantitative criteria
have been high-level and mainly suggestive. A true understanding of metrics
such as storage cost, update cost, and path cost requires a more detailed in-
vestigation of the proposals, including supporting technologies such as routing
protocols and directory services. Scalability depends on how these costs grow
as the size of a network grows within the expected range.

Equally important, different mobility mechanisms can be composed. Even
today it would not be surprising to see dynamic-routing mobility used within
an administrative domain, while session-location mobility is used simultane-
ously across administrative boundaries. The ultimate goal would be to compose
performance models along with the mechanisms they are modeling, so that the
performance of a composed solution could be derived from the performance of
its components.

In addition, most existing mobility protocols operate at fairly low levels in a
network architecture, specifically the link, network, and transport levels of the
classic Internet stack. Yet the essence of mobility is simply a dynamic binding
of more abstract names to more concrete names. As such, mobility can be
implemented in middleware as a service to even higher-level application layers.
We believe that this is a fruitful avenue for further exploration, particularly
because it might be easier to optimize narrowly-targeted implementations of
mobility.

More generally, we believe that the geomorphic model embodies important
design principles, such as separation of concerns and the value of design pat-
terns and code reuse. While widely known to software engineers, these concepts
are not as familiar to students of networking. We believe that a deeper un-
derstanding of these concepts would be valuable for networking researchers and
practitioners alike, far beyond the treatment of any one subject like network
mobility.

References

[1] Z. Zhu, R. Wakikawa, and L. Zhang, “A survey of mobility support in the
Internet,” IETF Request for Comments 6301, July 2011.

[2] B. Abarbanel, “Implementing global network mobility using BGP,”
NANOG Presentation, http://www.nanog.org/meetings/nanog31/
abstracts.php?pt=NTk1Jm5hbm9nMzE=&nm=nanog31, May 2004.

[3] V. Jalaparti, M. Caesar, S. Lee, J. Pang, and K. van der Merwe, “SMOG:
A cloud platform for seamless wide area migration of networked games,”
in Proceedings of ACM/IEEE NetGames, November 2012.

[4] C. Kim, M. Caesar, and J. Rexford, “Floodless in SEATTLE: A scalable
Ethernet architecture for large enterprises,” in Proceedings of ACM SIG-
COMM, 2008.

35

[5] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, V. Subramanya, and A. Vahdat, “PortLand: A scalable fault-
tolerant layer 2 data center network fabric,” in Proceedings of ACM SIG-
COMM, August 2009.

[6] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz, P. Patel,
and S. Sengupta, “VL2: A scalable and flexible data center network,” in
Proceedings of ACM SIGCOMM, 2009.

[7] Nicira, “It’s time to virtualize the network,” http://nicira.com/en/
network-virtualization-platform, 2012.

[8] R. Perlman, “Rbridges: Transparent routing,” in Proceedings of IEEE IN-
FOCOM, 2004.

[9] J. Touch and R. Perlman, “Transparent Interconnection of Lots of Links
(TRILL): Problem and applicability statement,” IETF Request For Com-
ments 5556, May 2009.

[10] A. C. Snoeren and H. Balakrishnan, “An end-to-end approach to host mo-
bility,” in Proceedings of MOBICOM, 2000.

[11] E. Nordström, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Ko, J. Rex-
ford, and M. J. Freedman, “Serval: An end-host stack for service-centric
networking,” in Proceedings of the 9th Symposium on Networked Systems
Design and Implementation, April 2012.

[12] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet indi-
rection infrastructure,” in Proceedings of ACM SIGCOMM. ACM, August
2002.

[13] H. Schulzrinne and E. Wedlund, “Application-layer mobility using SIP,”
Mobile Computing and Communications Review, vol. 4, no. 3, pp. 47–57,
July 2000.

[14] J. Day, Patterns in Network Architecture: A Return to Fundamentals.
Prentice Hall, 2008.

[15] D. D. Clark, “The design philosophy of the DARPA Internet protocols,”
in Proceedings of SIGCOMM, August 1988.

[16] ITU, “Information Technology—Open Systems Interconnection—Basic
Reference Model: The basic model,” ITU-T Recommendation X.200, 1994.

[17] T. Roscoe, “The end of Internet architecture,” in Proceedings of the 5th
Workshop on Hot Topics in Networks, 2006.

[18] O. Spatscheck, “Layers of success,” IEEE Internet Computing, vol. 17,
no. 1, pp. 3–6, 2013.

36

[19] I. F. Akyildiz, J. Xie, and S. Mohanty, “A survey of mobility management
in next-generation all-IP-based wireless systems,” IEEE Wireless Commu-
nications, vol. 11, no. 4, pp. 16–28, August 2004.

[20] A. Gupta, B. Liskov, and R. Rodrigues, “One hop lookups for peer-to-peer
overlays,” in HotOS, Lihue, HI, May 2003.

[21] C. E. Perkins, “Mobile IP,” IEEE Communications, May 1997.

[22] ——, “IP mobility support for IPv4,” IETF Network Working Group Re-
quest for Comments 3344, 2002.

[23] J. Mysore and V. Bharghavan, “A new multicasting-based architecture
for Internet host mobility,” in Proceedings of the 3rd Annual ACM/IEEE
International conference on Mobile Computing and Networking, 1997.

[24] R. Moskovitz and P. Nikander, “Host identity protocol HIP architecture,”
IETF Network Working Group Request for Comments 4423, 2006.

[25] P. Nikander, A. Gurtov, and T. R. Henderson, “Host identity protocol
(HIP): Connectivity, mobility, multi-homing, security, and privacy over
IPv4 and IPv6 networks,” IEEE Communications Surveys and Tutorials,
vol. 12, no. 2, pp. 186–204, April 2010.

[26] R. J. Atkinson and S. N. Bhatti, “ILNP architectural description,” This
document appears as a sequence of IETF Internet Drafts beginning in 2012,
2013.

[27] D. Farinacci, D. Lewis, D. Meyer, and C. White, “LISP mobile node,” IETF
Internet Draft draft-meyer-lisp-mn-08, work in progress, October 2012.

[28] D. Johnson, C. Perkins, and J. Arkko, “Mobility support in IPv6,” IETF
Request for Comments 3775, June 2004.

[29] C. Perkins, D. Johnson, and J. Arkko, “Mobility support in IPv6,” IETF
Request for Comments 6275, July 2011.

[30] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “The locator/ID separation
protocol (LISP),” IETF Request for Comments 6830, January 2013.

[31] M. Arye, E. Nordstrom, R. Kiefer, J. Rexford, and M. J. Freedman, “A
formally-verified migration protocol for mobile, multi-homed hosts,” in
Proceedings of the International Conference on Network Protocols, Octo-
ber/November 2012.

[32] D. Jackson, Software Abstractions: Logic, Language, and Analysis. MIT
Press, 2006, 2012.

[33] G. J. Holzmann, The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, 2004.

37

[34] P. Zave and J. Rexford, “Compositional network mobility,” in Proceedings
of the 5th Working Conference on Verified Software: Theories, Tools, and
Experiments. Springer-Verlag LNCS to appear, May 2013.

[35] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP extensions
for multipath operation with multiple addresses,” IETF Request For Com-
ments 6824, January 2013.

[36] R. Stewart, “Stream Control Transmission Protocol,” IETF Network Work-
ing Group Request for Comments 4960, September 2007.

[37] D. Eastlake, “Secure domain name system dynamic update,” IETF Net-
work Working Group Request for Comments 2137, April 1997.

38

