
Quantum Computing
Lecture 4

Models of Quantum Computation

Anuj Dawar

Quantum Circuits

A quantum circuit is a sequence of unitary operations and measurements
on an n-qubit state.

U1 U2 U3

M

Input State



















Note: each Ui is described by a 2n × 2n matrix.

Algorithms

A quantum algorithm specifies, for each n, a sequence

On = O1 . . .Ok

of n-qubit operations.

The map n→ On must be computable.
i.e. the individual circuits must be generated from a common
pattern.

All measurements can be deferred to the end (possibly, at the expense of
increasing the number of qubits).

Model of Computation

As a model of computation, this is parasitic on classical models.
what is computable is not independently determined

Purely quantum models can be defined. We will see more on this in
Lecture 8.

What computations can be performed in the model as defined?
What functions can be computed?
What decision problems are decidable?

Can all such computations be performed with some fixed set of unitary
operations?

Simulating Boolean Gates

Could we find a quantum circuit to simulate a classical And gate?

a

b

a ∧ b

And

This would require And : |00〉 7→ |0x〉, |01〉 7→ |0y〉
|10〉 7→ |0z〉, |11〉 7→ |1w〉

There is no unitary operation of this form.
Unitary operations are reversible. No information can be lost in the
process.

Computing a Function

If f : {0, 1}n → {0, 1}m is a Boolean function, the map

|x〉 7→ |f (x)〉

may not be unitary.

We will, instead seek to implement

|x〉 ⊗ |0〉 7→ |x〉 ⊗ |f (x)〉

Exercise: Describe a unitary operation that implements the Boolean And
in this sense.

One-Qubit Gates

We have already seen the Pauli Gates:

X =

[
0 1
1 0

]
,Y =

[
0 −i
i 0

]
,Z =

[
1 0
0 −1

]
Another useful one-qubit gate is the Hadamard gate:

H =
1√
2

[
1 1
1 −1

]

H

Gates on a Multi-Qubit State

When we draw a circuit with a one-qubit gate, this must be read as a
unitary operation on the entire state.

U

U ⊗ I

This does not change measurement outcomes on the second qubit.

Controlled Not

The Controlled Not is a 2-qubit gate:

|a〉|a〉

|b〉 |a ⊕ b〉

The controlled not flips the second
qubit if the first qubit is |1〉 and
leaves it unchanged if it’s |0〉

C =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Controlled U

More generally, we can define, for any single qubit operation U, the
Controlled U gate:

U |0x〉 7→ |0x〉
|1x〉 7→ |1,Ux〉

Particularly useful is the controlled-Z gate:

Z

Z

Toffoli Gate

|a2〉|a2〉

|a1〉|a1〉

|b〉 |(a1 · a2)⊕ b〉

The Toffoli Gate is a 3-qubit
gate.
It has a classical counterpart
which can be used to simulate
standard Boolean operations

A permutation matrix is a unitary matrix where all entries are
0 or 1.

Any 2n × 2n permutation matrix can be implemented using only Toffoli
gates.

Classical Reversible Computation

A Boolean function f : {0, 1}n → {0, 1}n is reversible if it’s described by
a 2n × 2n permutation matrix.

For any function g : {0, 1}n → {0, 1}m, there is a reversible function
g ′ : {0, 1}m+n → {0, 1}m+n with

g ′(x , 0) = (x , g(x)).

Toffoli gates are universal for reversible computation.

The Toffoli gate cannot be implemented using 2-bit reversible classical
gates.

Quantum Toffoli Gate

The Toffoli gate can be implemented using 2-qubit quantum gates.

P

Q

QQ

Q†Q†

Q†Q† HH

where, P =

[
1 0
0 i

]
,Q =

[
1 0
0 e iπ/4

]
.

Universal Set of Gates

Fact: Any unitary operation on n qubits can be implemented by a
sequence of 2-qubit operations.

Fact: Any unitary operation can be implemented by a combination of
C-NOTs and single qubit operations.

Fact: Any unitary operation can be approximated to any required degree
of accuracy using only C-NOTs, H, P and Q.

These can serve as our finite set of gates for quantum computation.

Deutsch-Jozsa Problem

Given a function f : {0, 1} → {0, 1}, determine whether f is constant or
balanced.

Classically, this requires two calls to the function f .

But, if we are given the quantum black box:

|a〉

|b〉

|a〉
Uf

|b ⊕ f (a)〉

One use of the box suffices

Deutsch-Jozsa Algorithm

|0〉

1√
2
(|0〉 − |1〉)

Uf

HH

Uf with input |x〉 and |0〉 − |1〉 is just a phase shift.
It changes phase by (−1)f (x).
When |x〉 = H|0〉, this gives (−1)f (0)|0〉+ (−1)f (1)|1〉.

Final result is [(−1)f (0) + (−1)f (1)]|0〉+ [(−1)f (0) − (−1)f (1)]|1〉
which is |0〉 if f is constant and |1〉 if f is balanced.

