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An IGP control-plane computes 
shortest paths on a shared weighted topology 
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IGP shortest paths are translated into 
forwarding paths on the data-plane 
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In Fibbing, operators can ask 
the controller to modify forwarding paths 
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The Fibbing controller injects information on 
fake nodes and links to the IGP control-plane 

node V1, 
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Informations are flooded 
to all IGP routers in the network 

node V1, 
link (V1,C), 

map (V1,C) to (C,A) 
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Fibbing messages augment  
the topology seen by all IGP routers 
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Augmented topologies translate 
into new control-plane paths 
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Augmented topologies translate 
into new data-plane paths 
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Theorem 

Fibbing can program 
arbitrary per-destination paths 

Any set of forwarding DAGs can be enforced by Fibbing 



Fibbing can program 
arbitrary per-destination paths 

paths to the same destination do not create loops 

Theorem Any set of forwarding DAGs can be enforced by Fibbing 



By achieving full per-destination control, 
Fibbing is highly flexible 

!   fine-grained traffic steering (middleboxing) 

!   per-destination load balancing (traffic engineering) 

!   backup paths provisioning (failure recovery) 

Theorem Any set of forwarding DAGs can be enforced by Fibbing 
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We implemented a Fibbing controller 
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We also propose algorithms 
to compute augmented topologies of limited size  
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For our Fibbing controller, we propose 
algorithms to be run in sequence 
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  merges	
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  Simple’s	
  output)	
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This way, Merger programs multiple 
next-hop changes with a single fake node 
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Previous SDN solutions (e.g., RCP) cannot do the same 

This way, Merger programs multiple 
next-hop changes with a single fake node 



Simple and Merger achieve different trade-offs 
in terms of time and optimization efficiency 

and up to 90% with cross-destination optimization  

!   Merger reduces fake nodes by up to 50% 

Merger takes 0.1 seconds 
!   Simple runs in milliseconds 

We ran experiments on Rocketfuel topologies, 

with at least 25% of nodes changing next-hops  



We implemented the machinery to 
listen to OSPF and augment the topology 
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Experiments on real routers show that 
Fibbing has very limited impact on routers 
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Experiments on real routers show that 
Fibbing has very limited impact on routers 
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Experiments on real routers show that 
Fibbing does not impact IGP convergence 

Upon link failure, we registered no difference in the 

(sub-second) IGP convergence with 

!   up to 100,000 fake nodes and destinations  

!   no fake nodes 



Experiments on real routers show that 
Fibbing achieves fast forwarding changes 
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•  Ahlswede et al. – Butterfly Example in “Network 
Information Flow”, IEEE Transactions on Information 
Theory, 2000 

 

 

Network Coding – Background 

Allowing routers to mix the bits in 
forwarding messages can increase 

network throughput 
(Achieves multicast capacity) 

This is the basis for Network Coding! 



Chronology of Research 
•  Li et al. – Showed that linear codes are sufficient to achieve 

maximum capacity bounds (2003) 
•  Koetter and Medard – Polynomial time algorithms for 

encoding and decoding (2003) 
•  Ho et al. – Extended previous results to a randomized 

setting (2003) 
•  Studies on wireless network coding began in 2003 as well! 

(Shows that it was a high interest research area) 
•  More work on wireless network coding with multicast 

models (2004)  
•  Lun et al. – Problem of minimizing communication cost in 

wireless networks can be formulated linearly (2005) – Used 
multicast model as well! 
So all the previous work was theoretical and assumes multicast traffic. 

•  Authors introduced the idea of opportunistic coding for 
wireless environments in 2005 

Why is it different? 
They address the common case of unicast traffic, bursty flows and other 

practical issues. 



Current Paper 
•  Explores the utility of network coding in 

improving the throughput of wireless 
networks. 

•  Authors extend the theory of their 
opportunistic coding architecture (COPE) 
by application in a practical scenario. 

•  Presents the first system architecture for 
wireless network coding. 

•  Implements the design, creating the first 
deployment of network coding in a 
wireless network. 

•  Studies the performance of COPE. 



COPE 
•  What does being opportunistic mean? 
 Each node relies on local information to detect and exploit 
coding opportunities when they arise, so as to maximize 
throughput. 

•  COPE inserts an opportunistic coding 
shim between the IP and MAC layers. 

•  Enables forwarding of multiple packets 
in a single transmission. 

•  Based on the fact that intelligently 
mixing packets increases network 
throughput. 



Design Principles: 
– COPE embraces the broadcast 

nature of the wireless channel. 
– COPE employs network coding. 



Inside COPE 

COPE incorporates three main 
techniques: 
– Opportunistic Listening 
– Opportunistic Coding 
–  Learning Neighbor State 



Opportunistic Listening 
•  Nodes are equipped with omni-

directional antennae 
•  COPE sets the nodes to a 

promiscuous mode. 
•  The nodes store the overheard 

packets for a limited period T (0.5 s) 
•  Each node also broadcasts reception 

reports to tell it’s neighbors which 
packets it has stored. 



Opportunistic Coding 

Rule: 
“A node should aim to maximize 

the number of native packets 
delivered in a single 
transmission, while ensuring 
that each intended next-hop 
has enough information to 
decode it’s native packet.” 



Issues: 
– Unneeded data should not be 

forwarded to areas where there is no 
interested receiver, wasting capacity. 

– The coding algorithm should ensure 
that all next-hops of an encoded 
packet can decode their corresponding 
native packets. 

Rule:  To transmit n packets p1 … pn to n next-hops 
r1 … rn, a node can XOR the n packets together only 
if each next-hop ri has all n - 1 packets pj for j ≠ i 



Learning Neighbor State 
•  A node cannot solely rely on reception reports, and may need 

to guess whether a neighbor has a particular packet. 
•  To guess intelligently, we can leverage routing computations. 

 The ETX metric computes the delivery probability between 
nodes and assigns each link a weight of 1/(delivery_probability) 

•  In the absence of deterministic information, 
 COPE estimates the probability that a particular neighbor has a 
packet, as the delivery probability of the link between the 
packet’s previous hop and the neighbor. 

A B C
Probability that 

C has the 
packet = p 

Delivery probability = pAC 

“p increases with pAC” 



Understanding COPE’s Gains 
Coding Gain 

–  Defined as the ratio of no. of transmissions 
required without COPE to the no. of 
transmissions used by COPE to deliver the 
same set of packets. 

–  By definition, this number is greater than 1. 
 (4/3 for Alice-Bob Example) 

–  Theorem: In the absence of opportunistic 
listening, COPE’s maximum coding gain is 2, 
and it is achievable. 

Coding Gain achievable = 
2N/(N+1) 

 
This value tends to 2 as 

N grows. 



In the presence of opportunistic listening 
 
 
 
 
 
 
 

Achievable 
Coding Gain 

= 1.33 

Achievable 
Coding Gain 

= 1.6 



Understanding COPE’s Gains 
Coding + MAC Gain 

–  It was observed that throughput improvement 
using COPE greatly exceeded the coding gain. 

–  Since it tries to be fair, the MAC layer divides the 
bandwidth equally between contending nodes. 

–  COPE allows the bottleneck nodes to XOR pairs of 
packets and drain them quicker, increasing the 
throughput of the network. 

–  For topologies with a single bottleneck, the Coding 
+ MAC Gain is the ratio if the bottleneck’s draining 
rate with COPE to it’s draining rate without COPE. 



�  Theorem: In the absence of 
opportunistic listening, COPE’s 
maximum Coding + MAC gain is 2, 
and it is achievable. 
 Node can XOR at most 2 packets together, and the 
bottleneck can drain at almost twice as fast, bounding the 
Coding + MAC Gain at 2. 

 

�  Theorem: In the presence of 
opportunistic listening, COPE’s 
maximum Coding + MAC gain is 
unbounded. For N edge 

nodes, the 
bottleneck node 
XORs N packets 
together, and the 
queue drains N 
times faster. 

 
The Gain is 
unbounded. 



•  Theoretical gains: 

•  Important to note that: 
– The gains in practice tend to be 

lower due to non-availability of 
coding opportunities, packet header 
overheads, medium losses, etc., 

– But COPE does increase actual 
information rate of the medium far 
above the bit rate. 
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  to	
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delay,	
  manage	
  complexity.	
  



Compare	
  to	
  ARQ	
  

•  Retransmit	
  lost	
  packets	
  
•  Low	
  delay,	
  queue	
  size	
  
•  Streaming,	
  not	
  blocks	
  
•  Not	
  efficient	
  on	
  broadcast	
  

links	
  
•  Link-­‐by-­‐link	
  ARQ	
  does	
  not	
  

achieve	
  network	
  mulBcast	
  
capacity.	
  

•  Transmit	
  linear	
  
combinaBons	
  of	
  packets	
  

•  Achieves	
  min-­‐cut	
  
mulBcast	
  capacity	
  

•  Extends	
  to	
  broadcast	
  links	
  
•  CongesBon	
  control	
  

requires	
  feedback	
  
•  Decoding	
  delay:	
  block-­‐

based	
  

Context:	
  	
  	
  Reliable	
  communica1on	
  over	
  a	
  (wireless)	
  network	
  of	
  packet	
  erasure	
  channels	
  

ARQ	
   Network	
  Coding	
  



Goals	
  

•  Devise	
  a	
  system	
  that	
  behaves	
  as	
  close	
  to	
  TCP	
  as	
  
possible,	
  while	
  masking	
  non-­‐congesBon	
  wireless	
  
losses	
  from	
  congesBon	
  control	
  where	
  possible.	
  
–  Standard	
  TCP/wireless	
  problem.	
  

•  Stream-­‐based,	
  not	
  block-­‐based.	
  
•  Low	
  delay.	
  
•  Focus	
  on	
  wireless	
  secng.	
  

– Where	
  network	
  coding	
  can	
  offer	
  biggest	
  benefits.	
  
–  Not	
  necessarily	
  a	
  universal	
  soluBon.	
  



Main	
  Idea	
  :	
  Coding	
  ACKs	
  

•  What	
  does	
  it	
  mean	
  to	
  “see”	
  a	
  packet?	
  
•  Standard	
  noBon:	
  	
  we	
  have	
  a	
  copy	
  of	
  the	
  packet.	
  

–  Doesn’t	
  work	
  well	
  in	
  coding	
  secng.	
  
–  Implies	
  must	
  decode	
  to	
  see	
  a	
  packet.	
  

•  New	
  definiBon:	
  	
  we	
  have	
  a	
  packet	
  that	
  will	
  allow	
  us	
  
to	
  decode	
  once	
  enough	
  useful	
  packets	
  arrive.	
  
–  Packet	
  is	
  useful	
  if	
  linearly	
  independent.	
  
– When	
  enough	
  useful	
  packets	
  arrive	
  can	
  decode.	
  



Coding	
  ACKs	
  

•  For	
  a	
  message	
  of	
  size	
  n,	
  need	
  n	
  useful	
  packets.	
  
•  Each	
  coded	
  packet	
  corresponds	
  to	
  a	
  degree	
  of	
  
freedom.	
  

•  Instead	
  of	
  acknowledging	
  individual	
  packets,	
  
acknowledge	
  newly	
  arrived	
  degrees	
  of	
  
freedom.	
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When	
  c1	
  comes	
  in,	
  you’ve	
  “seen”	
  packet	
  1;	
  eventually	
  	
  
you’ll	
  be	
  able	
  to	
  decode	
  it.	
  	
  And	
  so	
  on…	
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Use	
  Gaussian	
  eliminaBon	
  as	
  packets	
  arrive	
  to	
  check	
  for	
  
a	
  new	
  seen	
  packet.	
  



Formal	
  DefiniBon	
  

•  A	
  node	
  has	
  seen	
  a	
  packet	
  pk	
  if	
  it	
  can	
  compute	
  
a	
  linear	
  combinaBon	
  pk+q	
  where	
  q	
  is	
  a	
  linear	
  
combinaBon	
  of	
  packets	
  with	
  index	
  larger	
  than	
  
k.	
  

•  When	
  all	
  packets	
  have	
  been	
  seen,	
  decoding	
  is	
  
possible.	
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  control	
  

Network	
  layer	
  (RouBng)	
  

Medium	
  access,	
  
channel	
  coding	
  



TCP	
  using	
  Network	
  Coding	
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The	
  Sender	
  Module	
  

•  Buffers	
  packets	
  in	
  the	
  current	
  window	
  from	
  
the	
  TCP	
  source,	
  sends	
  linear	
  combinaBons.	
  

•  Need	
  for	
  redundancy	
  factor	
  R.	
  
– Sending	
  rate	
  should	
  account	
  for	
  loss	
  rate.	
  
– Send	
  a	
  constant	
  factor	
  more	
  packets.	
  
– Open	
  issue	
  :	
  determine	
  R	
  dynamically?	
  



Redundancy	
  	
  

•  Too	
  low	
  R	
  
– TCP	
  Bmes	
  out	
  and	
  backs	
  off	
  drasBcally.	
  

•  Too	
  high	
  R	
  
– Losses	
  recovered	
  –	
  TCP	
  window	
  advances	
  
smoothly.	
  

– Throughput	
  reduced	
  due	
  to	
  low	
  code	
  rate.	
  
– CongesBon	
  increases.	
  

•  Right	
  R	
  is	
  1/(1-p), where p is the loss rate.	





BGP-4 
•  BGP = Border Gateway Protocol  
•  Is a Policy-Based routing protocol  

•  Is the de facto EGP of today’s global Internet 

•  Relatively simple protocol, but configuration is complex and the 
entire world can see, and be impacted by, your mistakes.  

•  1989 : BGP-1 [RFC 1105] 
– Replacement for EGP (1984, RFC 904)  

•  1990 : BGP-2 [RFC 1163] 
•  1991 : BGP-3 [RFC 1267] 
•  1995 : BGP-4 [RFC 1771]  

– Support for Classless Interdomain Routing (CIDR)  



BGP Operations (Simplified)  
Establish session on 

     TCP port 179 

        Exchange all 
        active routes  

Exchange incremental 
           updates 

AS1 

AS2 

While connection  
is ALIVE exchange 

route UPDATE messages 

BGP session 



Two Types of BGP Neighbor Relationships 

•  External Neighbor (eBGP) in a different 
Autonomous Systems  

•  Internal Neighbor (iBGP) in the same 
Autonomous System  

AS1 

AS2 

eBGP	
  

iBGP	
  

iBGP is routed (using IGP!)  



iBGP Mesh Does Not Scale 
eBGP update 

iBGP updates 

•  N border routers means N(N-1)/2 
peering sessions  

•  Each router must have N-1 iBGP 
sessions configured 

•  The addition a single iBGP speaker 
requires configuration changes to all 

other iBGP speakers 

•  Size of iBGP routing table can be 
order N larger than number of best 

routes (remember alternate routes!) 

•  Each router has to listen to update 
noise from each neighbor 

Currently four solutions:  
(0)  Buy bigger routers! 

(1)  Break AS into smaller ASes 
(2)  BGP Route reflectors 
(3)  BGP confederations 



•  Route reflectors can pass on 
iBGP updates to clients 

•  Each RR passes along ONLY 
best routes  

•  ORIGINATOR_ID and 
CLUSTER_LIST attributes are 

needed to avoid loops 
RR RR 

RR 

Route Reflectors 



BGP Confederations 

AS 65501 

AS 65502 

AS 65503 AS 65504 
AS 65500 

AS 1 

From the outside, this looks like AS 1 

Confederation eBGP (between member ASes) preserves  
LOCAL_PREF, MED, and BGP NEXTHOP.  



Four Types of BGP Messages 

•  Open : Establish a peering session.  
•  Keep Alive : Handshake at regular intervals.  
•  Notification : Shuts down a peering session.  
•  Update : Announcing new routes or 

withdrawing previously announced routes.   

           announcement  
                     =  

   prefix + attributes values 



BGP Attributes 
 
 

Value      Code                              Reference 
-----      --------------------------------- --------- 
   1       ORIGIN                            [RFC1771] 
   2       AS_PATH                           [RFC1771] 
   3       NEXT_HOP                          [RFC1771] 
   4       MULTI_EXIT_DISC                   [RFC1771] 
   5       LOCAL_PREF                        [RFC1771] 
   6       ATOMIC_AGGREGATE                  [RFC1771] 
   7       AGGREGATOR                        [RFC1771] 
   8       COMMUNITY                         [RFC1997] 
   9       ORIGINATOR_ID                     [RFC2796] 
  10       CLUSTER_LIST                      [RFC2796] 
  11       DPA                                  [Chen] 
  12       ADVERTISER                        [RFC1863] 
  13       RCID_PATH / CLUSTER_ID            [RFC1863] 
  14       MP_REACH_NLRI                     [RFC2283]   
  15       MP_UNREACH_NLRI                   [RFC2283]   
  16       EXTENDED COMMUNITIES                [Rosen] 

 ... 
 255       reserved for development 

 

From IANA: http://www.iana.org/assignments/bgp-parameters 

Most 
important 
attributes 

Not all attributes 
need to be present in 
every announcement  



Attributes are Used to Select 
Best Routes  

192.0.2.0/24 
pick me! 

192.0.2.0/24 
pick me! 

192.0.2.0/24 
pick me! 

192.0.2.0/24 
pick me! 

Given multiple 
routes to the same 

prefix, a BGP speaker 
must pick at most 

one best route 
 

(Note: it could reject  
them all!) 



Route Selection Summary 

Highest Local Preference 

Shortest ASPATH 

Lowest MED 

i-BGP < e-BGP 

Lowest IGP cost  
to BGP egress 

Lowest router ID 

traffic engineering  

Enforce relationships 

Throw up hands and 
break ties 



BGP Route Processing 

Best	
  Route	
  
	
  	
  SelecBon	
  	
  

Apply	
  Import	
  
	
  	
  Policies	
  

Best	
  Route	
  	
  
	
  	
  Table	
  

Apply	
  Export	
  
	
  	
  Policies	
  

Install	
  forwarding	
  
Entries	
  for	
  best	
  

Routes.	
  	
  

Receive 
BGP 

Updates 

Best 
Routes 

Transmit 
BGP  

Updates 

Apply Policy = 
filter routes &  

tweak attributes 

Based on 
Attribute 
Values 

IP	
  Forwarding	
  Table	
  

Apply Policy = 
filter routes &  

tweak attributes 

                 Open ended programming. 
Constrained only by vendor configuration language 



BGP Next Hop Attribute 

Every time a route announcement crosses an AS boundary, the Next Hop 
attribute is changed to the IP address of the border router that announced 

the route.  

AS 6431 
AT&T Research 

135.207.0.0/16 
Next  Hop = 12.125.133.90 

AS 7018 
AT&T  

AS 12654 
RIPE NCC 
RIS project  

12.125.133.90	
  

135.207.0.0/16 
Next  Hop = 12.127.0.121 

12.127.0.121	
  



Forwarding Table 

Forwarding Table 

Join EGP with IGP For 
Connectivity 

AS 1 AS 2 
192.0.2.1	
  

135.207.0.0/16	
  

10.10.10.10	
  

EGP 

192.0.2.1	
  135.207.0.0/1
6	
  

des<na<on	
   next	
  hop	
  

10.10.10.10	
  192.0.2.0/30	
  

des<na<on	
   next	
  hop	
  

135.207.0.0/16 
Next  Hop = 192.0.2.1 

192.0.2.0/30	
  

135.207.0.0/1
6	
  

des<na<on	
   next	
  hop	
  

10.10.10.10	
  

+ 

192.0.2.0/30	
   10.10.10.10	
  



Implementing Customer/
Provider and Peer/Peer 

relationships 

•  Enforce  transit relationships  
– Outbound route filtering  

•  Enforce order of route 
preference 
– provider < peer < customer 

 
 

Two parts:  



Import Routes  

From 
peer 

From 
peer 

From 
provider 

From 
provider 

From  
customer 

From  
customer 

provider route customer route peer route ISP route 



Export Routes  

To 
peer 

To 
peer 

To 
customer 

To 
customer 

To 
provider 

From  
provider 

provider route customer route peer route ISP route 

filters 
block  



How Can Routes be 
Colored? 

BGP Communities! A community value is 32 bits 

By convention,  
first 16 bits is  

ASN indicating  
who is giving it 

an interpretation 

community 
number 

Very powerful  
BECAUSE it  

has no (predefined) 
meaning 

Community Attribute = a list of community values. 
(So one route can belong to multiple communities) 

RFC 1997 (August 1996) 

Used for signally 
within and between 

ASes  

Two reserved communities 
 
 no_advertise 0xFFFFFF02: don’t pass to BGP neighbors 

no_export = 0xFFFFFF01: don’t export out of AS 



Communities Example 

•  1:100 
–  Customer routes 

•  1:200 
–  Peer routes 

•  1:300 
–  Provider Routes 

•  To Customers 
–  1:100, 1:200, 

1:300 
•  To Peers 

–  1:100 
•  To Providers 

–  1:100 

AS 1 

Import Export 



So Many Choices 

Which route should 
Frank pick to 13.13.0.0./16?  

AS 1 

AS 2 

AS 4 

AS 3 

13.13.0.0/16 

Frank’s  
Internet Barn 

peer peer 

customer provider 



LOCAL PREFERENCE 

AS 1 AS 2 

AS 4 

AS 3 

13.13.0.0/16 

local pref = 80 

local pref = 100 

local pref = 90 

Higher Local 
preference values 
are more preferred 

Local  
preference  
used ONLY  

in iBGP 


