
PC	
 Rev	
 1	

Fibbing,	
 coding,	
 vectoring	

April	
 21,	
 2016	

A B

C

destination source

Consider this simple network
(implemented with Cisco routers)

D1

D2

X

A B

C X

An IGP control-plane computes
shortest paths on a shared weighted topology

D1

D2

control-plane

3

1

1 10

shortest paths

IGP shortest paths are translated into
forwarding paths on the data-plane

D1

D2

data-plane

traffic flow

A B

C

X

A B

C X D1

D2

control-plane

3

1

1 10

In Fibbing, operators can ask
the controller to modify forwarding paths

requirement
(C,A,B,X,D2
)

A B

C X D1

D2

3

1

1 10

The Fibbing controller injects information on
fake nodes and links to the IGP control-plane

node V1,
link (V1,C),

map (V1,C) to (C,A)

A B

C X D1

D2

3

1

1 10

requirement
(C,A,B,X,D2
)

Informations are flooded
to all IGP routers in the network

node V1,
link (V1,C),

map (V1,C) to (C,A)

A B

C X D1

D2

3

1

1 10

requirement
(C,A,B,X,D2
)

Fibbing messages augment
the topology seen by all IGP routers

1

D2 node V1,
link (V1,C),

map (V1,C) to (C,A)

A B

C X D1

D2

3

1

1 10 V1

requirement
(C,A,B,X,D2
)

Augmented topologies translate
into new control-plane paths

A B

C X D1

D2

3

1

1 10

requirement
(C,A,B,X,D2
)

1

D2

V1

node V1,
link (V1,C),

map (V1,C) to (C,A)

Augmented topologies translate
into new data-plane paths

A B

C

D1

D2

X

A B

C X D1

D2

3

1

1 10

1

D2

V1

node V1,
link (V1,C),

map (V1,C) to (C,A)

requirement
(C,A,B,X,D2
)

Theorem

Fibbing can program
arbitrary per-destination paths

Any set of forwarding DAGs can be enforced by Fibbing

Fibbing can program
arbitrary per-destination paths

paths to the same destination do not create loops

Theorem Any set of forwarding DAGs can be enforced by Fibbing

By achieving full per-destination control,
Fibbing is highly flexible

!   fine-grained traffic steering (middleboxing)

!   per-destination load balancing (traffic engineering)

!   backup paths provisioning (failure recovery)

Theorem Any set of forwarding DAGs can be enforced by Fibbing

Central Control over Distributed Routing
fibbing.net

Manageability 1

Scalability

2 Flexibility

3

Robustness 4

We implemented a Fibbing controller

network
topology

+

path
reqs.

per-destination
forwarding DAGs

augmented
topology

reduced
topology

running
network

Compilation Augmentation Optimization
Injection/
Monitoring

We also propose algorithms
to compute augmented topologies of limited size

network
topology

+

path
reqs.

per-destination
forwarding DAGs

augmented
topology

reduced
topology

running
network

Compilation Augmentation Optimization
Injection/
Monitoring

compilation
heuristics

per-destination
augmentation

cross-destination
optimization

network
topology

+

path
reqs.

per-destination
forwarding DAGs

augmented
topology

reduced
topology

running
network

Compilation Augmentation Optimization
Injection/
Monitoring

compilation
heuristics

per-destination
augmentation

1.  simple
2. merger

cross-destination
optimization

For our Fibbing controller, we propose
algorithms to be run in sequence

A B

C D E F

1

1 10

100

1

1

original	
 shortest-­‐path	

“down	
 and	
 to	
 the	
 right”	

Consider the following example,
with a drastic forwarding path change

A B

C D E F

100 1

1 10

1

1

desired	
 shortest-­‐path	

“up	
 and	
 to	
 the	
 right”	

A B

C D E F

100 1

1 10

1

1
1 1

1

1
1

Simple adds one fake node for every
router that has to change next-hop

1

1

1
1

Merger	
 iteraBvely	
 merges	
 fake	
 nodes	

(starBng	
 from	
 Simple’s	
 output)	

A B

C D E F

100 1

1 10

1

1
1 1

1

1
1

A B

C D E F

100 1

1 10

1

1
1

Merger	
 iteraBvely	
 merges	
 fake	
 nodes	

(starBng	
 from	
 Simple’s	
 output)	

This way, Merger programs multiple
next-hop changes with a single fake node

A B

C D E F

100 1

1 10

1

1

1

A B

C D E F

100 1

1 10

1

1

1

Previous SDN solutions (e.g., RCP) cannot do the same

This way, Merger programs multiple
next-hop changes with a single fake node

Simple and Merger achieve different trade-offs
in terms of time and optimization efficiency

and up to 90% with cross-destination optimization

!   Merger reduces fake nodes by up to 50%

Merger takes 0.1 seconds
!   Simple runs in milliseconds

We ran experiments on Rocketfuel topologies,

with at least 25% of nodes changing next-hops

We implemented the machinery to
listen to OSPF and augment the topology

network
topology

+

path
reqs.

per-destination
forwarding DAGs

augmented
topology

reduced
topology

running
network

Compilation Augmentation Optimization
Injection/
Monitoring

OSPF interaction
module

Experiments on real routers show that
Fibbing has very limited impact on routers

router
memory (MB)

fake
nodes

1 000

5 000

10 000

0.7

76.0

153

50 000

100 000

6.8

14.5

DRAM is cheap

>> # real routers

Experiments on real routers show that
Fibbing has very limited impact on routers

1 000

5 000

10 000

router
memory (MB)

0.7

76.0

153

50 000

100 000

6.8

14.5

fake
nodes

DRAM is cheap

CPU utilization always under 4%

Experiments on real routers show that
Fibbing does not impact IGP convergence

Upon link failure, we registered no difference in the

(sub-second) IGP convergence with

!   up to 100,000 fake nodes and destinations

!   no fake nodes

Experiments on real routers show that
Fibbing achieves fast forwarding changes

installation
time (seconds)

0.9

44.7

89.50

4.5

8.9

894.50	
 μs/entry	

fake
nodes

1 000

5 000

10 000

50 000

100 000

•  Ahlswede et al. – Butterfly Example in “Network
Information Flow”, IEEE Transactions on Information
Theory, 2000

Network Coding – Background

Allowing routers to mix the bits in
forwarding messages can increase

network throughput
(Achieves multicast capacity)

This is the basis for Network Coding!

Chronology of Research
•  Li et al. – Showed that linear codes are sufficient to achieve

maximum capacity bounds (2003)
•  Koetter and Medard – Polynomial time algorithms for

encoding and decoding (2003)
•  Ho et al. – Extended previous results to a randomized

setting (2003)
•  Studies on wireless network coding began in 2003 as well!

(Shows that it was a high interest research area)
•  More work on wireless network coding with multicast

models (2004)
•  Lun et al. – Problem of minimizing communication cost in

wireless networks can be formulated linearly (2005) – Used
multicast model as well!
So all the previous work was theoretical and assumes multicast traffic.

•  Authors introduced the idea of opportunistic coding for
wireless environments in 2005

Why is it different?
They address the common case of unicast traffic, bursty flows and other

practical issues.

Current Paper
•  Explores the utility of network coding in

improving the throughput of wireless
networks.

•  Authors extend the theory of their
opportunistic coding architecture (COPE)
by application in a practical scenario.

•  Presents the first system architecture for
wireless network coding.

•  Implements the design, creating the first
deployment of network coding in a
wireless network.

•  Studies the performance of COPE.

COPE
•  What does being opportunistic mean?
 Each node relies on local information to detect and exploit
coding opportunities when they arise, so as to maximize
throughput.

•  COPE inserts an opportunistic coding
shim between the IP and MAC layers.

•  Enables forwarding of multiple packets
in a single transmission.

•  Based on the fact that intelligently
mixing packets increases network
throughput.

Design Principles:
– COPE embraces the broadcast

nature of the wireless channel.
– COPE employs network coding.

Inside COPE

COPE incorporates three main
techniques:
– Opportunistic Listening
– Opportunistic Coding
–  Learning Neighbor State

Opportunistic Listening
•  Nodes are equipped with omni-

directional antennae
•  COPE sets the nodes to a

promiscuous mode.
•  The nodes store the overheard

packets for a limited period T (0.5 s)
•  Each node also broadcasts reception

reports to tell it’s neighbors which
packets it has stored.

Opportunistic Coding

Rule:
“A node should aim to maximize

the number of native packets
delivered in a single
transmission, while ensuring
that each intended next-hop
has enough information to
decode it’s native packet.”

Issues:
– Unneeded data should not be

forwarded to areas where there is no
interested receiver, wasting capacity.

– The coding algorithm should ensure
that all next-hops of an encoded
packet can decode their corresponding
native packets.

Rule: To transmit n packets p1 … pn to n next-hops
r1 … rn, a node can XOR the n packets together only
if each next-hop ri has all n - 1 packets pj for j ≠ i

Learning Neighbor State
•  A node cannot solely rely on reception reports, and may need

to guess whether a neighbor has a particular packet.
•  To guess intelligently, we can leverage routing computations.

 The ETX metric computes the delivery probability between
nodes and assigns each link a weight of 1/(delivery_probability)

•  In the absence of deterministic information,
 COPE estimates the probability that a particular neighbor has a
packet, as the delivery probability of the link between the
packet’s previous hop and the neighbor.

A B C
Probability that

C has the
packet = p

Delivery probability = pAC

“p increases with pAC”

Understanding COPE’s Gains
Coding Gain

–  Defined as the ratio of no. of transmissions
required without COPE to the no. of
transmissions used by COPE to deliver the
same set of packets.

–  By definition, this number is greater than 1.
 (4/3 for Alice-Bob Example)

–  Theorem: In the absence of opportunistic
listening, COPE’s maximum coding gain is 2,
and it is achievable.

Coding Gain achievable =
2N/(N+1)

This value tends to 2 as

N grows.

In the presence of opportunistic listening

Achievable
Coding Gain

= 1.33

Achievable
Coding Gain

= 1.6

Understanding COPE’s Gains
Coding + MAC Gain

–  It was observed that throughput improvement
using COPE greatly exceeded the coding gain.

–  Since it tries to be fair, the MAC layer divides the
bandwidth equally between contending nodes.

–  COPE allows the bottleneck nodes to XOR pairs of
packets and drain them quicker, increasing the
throughput of the network.

–  For topologies with a single bottleneck, the Coding
+ MAC Gain is the ratio if the bottleneck’s draining
rate with COPE to it’s draining rate without COPE.

�  Theorem: In the absence of
opportunistic listening, COPE’s
maximum Coding + MAC gain is 2,
and it is achievable.
 Node can XOR at most 2 packets together, and the
bottleneck can drain at almost twice as fast, bounding the
Coding + MAC Gain at 2.

�  Theorem: In the presence of
opportunistic listening, COPE’s
maximum Coding + MAC gain is
unbounded. For N edge

nodes, the
bottleneck node
XORs N packets
together, and the
queue drains N
times faster.

The Gain is
unbounded.

•  Theoretical gains:

•  Important to note that:
– The gains in practice tend to be

lower due to non-availability of
coding opportunities, packet header
overheads, medium losses, etc.,

– But COPE does increase actual
information rate of the medium far
above the bit rate.

The	
 Problem	

P3	
 P2	
 P1	

Sender	
 Buffer	

Network

Receiver	
 Buffer	

P1	
 +	
 P2	

P2	
 +	
 P3	

P1	
 +	
 P2	
 +	
 P3	

Can’t	
 acknowledge	
 a	
 packet	
 unBl	
 you	
 can	
 decode.	

Usually,	
 decoding	
 requires	
 a	
 number	
 of	
 packets.	

Code	
 /	
 acknowledge	
 over	
 small	
 blocks	
 to	
 avoid	
 	

delay,	
 manage	
 complexity.	

Compare	
 to	
 ARQ	

•  Retransmit	
 lost	
 packets	

•  Low	
 delay,	
 queue	
 size	

•  Streaming,	
 not	
 blocks	

•  Not	
 efficient	
 on	
 broadcast	

links	

•  Link-­‐by-­‐link	
 ARQ	
 does	
 not	

achieve	
 network	
 mulBcast	

capacity.	

•  Transmit	
 linear	

combinaBons	
 of	
 packets	

•  Achieves	
 min-­‐cut	

mulBcast	
 capacity	

•  Extends	
 to	
 broadcast	
 links	

•  CongesBon	
 control	

requires	
 feedback	

•  Decoding	
 delay:	
 block-­‐

based	

Context:	
 	
 	
 Reliable	
 communica1on	
 over	
 a	
 (wireless)	
 network	
 of	
 packet	
 erasure	
 channels	

ARQ	
 Network	
 Coding	

Goals	

•  Devise	
 a	
 system	
 that	
 behaves	
 as	
 close	
 to	
 TCP	
 as	

possible,	
 while	
 masking	
 non-­‐congesBon	
 wireless	

losses	
 from	
 congesBon	
 control	
 where	
 possible.	

–  Standard	
 TCP/wireless	
 problem.	

•  Stream-­‐based,	
 not	
 block-­‐based.	

•  Low	
 delay.	

•  Focus	
 on	
 wireless	
 secng.	

– Where	
 network	
 coding	
 can	
 offer	
 biggest	
 benefits.	

–  Not	
 necessarily	
 a	
 universal	
 soluBon.	

Main	
 Idea	
 :	
 Coding	
 ACKs	

•  What	
 does	
 it	
 mean	
 to	
 “see”	
 a	
 packet?	

•  Standard	
 noBon:	
 	
 we	
 have	
 a	
 copy	
 of	
 the	
 packet.	

–  Doesn’t	
 work	
 well	
 in	
 coding	
 secng.	

–  Implies	
 must	
 decode	
 to	
 see	
 a	
 packet.	

•  New	
 definiBon:	
 	
 we	
 have	
 a	
 packet	
 that	
 will	
 allow	
 us	

to	
 decode	
 once	
 enough	
 useful	
 packets	
 arrive.	

–  Packet	
 is	
 useful	
 if	
 linearly	
 independent.	

– When	
 enough	
 useful	
 packets	
 arrive	
 can	
 decode.	

Coding	
 ACKs	

•  For	
 a	
 message	
 of	
 size	
 n,	
 need	
 n	
 useful	
 packets.	

•  Each	
 coded	
 packet	
 corresponds	
 to	
 a	
 degree	
 of	

freedom.	

•  Instead	
 of	
 acknowledging	
 individual	
 packets,	

acknowledge	
 newly	
 arrived	
 degrees	
 of	

freedom.	

Coding	
 ACKs	

4	
 	
 2	
 	
 5	
 	
 0	
 	
 0	
 	
 0	
 	
 0	

3	
 	
 1	
 	
 2	
 	
 5	
 	
 0	
 	
 0	
 	
 0	

1	
 	
 2	
 	
 3	
 	
 4	
 	
 1	
 	
 0	
 	
 0	

3	
 	
 3	
 	
 1	
 	
 2	
 	
 1	
 	
 0	
 	
 0	

1	
 	
 2	
 	
 5	
 	
 4	
 	
 5	
 	
 0	
 	
 0	

4	
 	
 2	
 	
 5	
 	
 0	
 	
 0	
 	
 0	
 	
 0	

3	
 	
 1	
 	
 2	
 	
 5	
 	
 0	
 	
 0	
 	
 0	

1	
 	
 2	
 	
 3	
 	
 4	
 	
 1	
 	
 0	
 	
 0	

3	
 	
 3	
 	
 1	
 	
 2	
 	
 1	
 	
 0	
 	
 0	

1	
 	
 2	
 	
 5	
 	
 4	
 	
 5	
 	
 0	
 	
 0	

4p1	
 +	
 2p2	
 +	
 5p3	

Original	
 message	
 :	
 p1,	
 p2,	
 p3…	
 	

Coded	

Packets	

c1	

c2	

c3	

c4	

c5	

Coding	
 ACKs	

4	
 	
 2	
 	
 5	
 	
 0	
 	
 0	
 	
 0	
 	
 0	

3	
 	
 1	
 	
 2	
 	
 5	
 	
 0	
 	
 0	
 	
 0	

1	
 	
 2	
 	
 3	
 	
 4	
 	
 1	
 	
 0	
 	
 0	

3	
 	
 3	
 	
 1	
 	
 2	
 	
 1	
 	
 0	
 	
 0	

1	
 	
 2	
 	
 5	
 	
 4	
 	
 5	
 	
 0	
 	
 0	

4	
 	
 2	
 	
 5	
 	
 0	
 	
 0	
 	
 0	
 	
 0	

3	
 	
 1	
 	
 2	
 	
 5	
 	
 0	
 	
 0	
 	
 0	

1	
 	
 2	
 	
 3	
 	
 4	
 	
 1	
 	
 0	
 	
 0	

3	
 	
 3	
 	
 1	
 	
 2	
 	
 1	
 	
 0	
 	
 0	

1	
 	
 2	
 	
 5	
 	
 4	
 	
 5	
 	
 0	
 	
 0	

4p1	
 +	
 2p2	
 +	
 5p3	

Original	
 message	
 :	
 p1,	
 p2,	
 p3…	
 	

Coded	

Packets	

c1	

c2	

c3	

c4	

c5	

When	
 c1	
 comes	
 in,	
 you’ve	
 “seen”	
 packet	
 1;	
 eventually	
 	

you’ll	
 be	
 able	
 to	
 decode	
 it.	
 	
 And	
 so	
 on…	

Coding	
 ACKs	

1	
 	
 4	
 	
 5	
 	
 3	
 	
 0	
 	
 0	
 	
 0	

0	
 	
 1	
 	
 3	
 	
 2	
 	
 6	
 	
 0	
 	
 0	

0	
 	
 0	
 	
 1	
 	
 6	
 	
 2	
 	
 0	
 	
 0	

0	
 	
 0	
 	
 0	
 	
 1	
 	
 5	
 	
 0	
 	
 0	

0	
 	
 0	
 	
 0	
 	
 0	
 	
 1	
 	
 0	
 	
 0	

4	
 	
 2	
 	
 5	
 	
 0	
 	
 0	
 	
 0	
 	
 0	

3	
 	
 1	
 	
 2	
 	
 5	
 	
 0	
 	
 0	
 	
 0	

1	
 	
 2	
 	
 3	
 	
 4	
 	
 1	
 	
 0	
 	
 0	

3	
 	
 3	
 	
 1	
 	
 2	
 	
 1	
 	
 0	
 	
 0	

1	
 	
 2	
 	
 5	
 	
 4	
 	
 5	
 	
 0	
 	
 0	

4p1	
 +	
 2p2	
 +	
 5p3	

Original	
 message	
 :	
 p1,	
 p2,	
 p3…	
 	

Coded	

Packets	

c1	

c2	

c3	

c4	

c5	

Use	
 Gaussian	
 eliminaBon	
 as	
 packets	
 arrive	
 to	
 check	
 for	

a	
 new	
 seen	
 packet.	

Formal	
 DefiniBon	

•  A	
 node	
 has	
 seen	
 a	
 packet	
 pk	
 if	
 it	
 can	
 compute	

a	
 linear	
 combinaBon	
 pk+q	
 where	
 q	
 is	
 a	
 linear	

combinaBon	
 of	
 packets	
 with	
 index	
 larger	
 than	

k.	

•  When	
 all	
 packets	
 have	
 been	
 seen,	
 decoding	
 is	

possible.	

Layered	
 Architecture	

Data	
 ACK	

Application

TCP

MAC / PHY

Application

TCP

MAC / PHY

SOURCE	
 SIDE	
 RECEIVER	
 SIDE	

IP IP

Physical	
 medium	

Eg.	
 HTTP,	
 FTP	

Transport	
 layer:	
 Reliability,	
 	

flow	
 and	
 congesBon	
 control	

Network	
 layer	
 (RouBng)	

Medium	
 access,	

channel	
 coding	

TCP	
 using	
 Network	
 Coding	

Data	
 ACK	

ApplicaBon	

TCP	

IP	

ApplicaBon	

TCP	

IP	

SOURCE	
 SIDE	
 RECEIVER	
 SIDE	

Network	
 coding	
 layer	
 Network	
 coding	
 layer	

Lower	
 layers	

The	
 Sender	
 Module	

•  Buffers	
 packets	
 in	
 the	
 current	
 window	
 from	

the	
 TCP	
 source,	
 sends	
 linear	
 combinaBons.	

•  Need	
 for	
 redundancy	
 factor	
 R.	

– Sending	
 rate	
 should	
 account	
 for	
 loss	
 rate.	

– Send	
 a	
 constant	
 factor	
 more	
 packets.	

– Open	
 issue	
 :	
 determine	
 R	
 dynamically?	

Redundancy	
 	

•  Too	
 low	
 R	

– TCP	
 Bmes	
 out	
 and	
 backs	
 off	
 drasBcally.	

•  Too	
 high	
 R	

– Losses	
 recovered	
 –	
 TCP	
 window	
 advances	

smoothly.	

– Throughput	
 reduced	
 due	
 to	
 low	
 code	
 rate.	

– CongesBon	
 increases.	

•  Right	
 R	
 is	
 1/(1-p), where p is the loss rate.	

BGP-4
•  BGP = Border Gateway Protocol
•  Is a Policy-Based routing protocol

•  Is the de facto EGP of today’s global Internet

•  Relatively simple protocol, but configuration is complex and the
entire world can see, and be impacted by, your mistakes.

•  1989 : BGP-1 [RFC 1105]
– Replacement for EGP (1984, RFC 904)

•  1990 : BGP-2 [RFC 1163]
•  1991 : BGP-3 [RFC 1267]
•  1995 : BGP-4 [RFC 1771]

– Support for Classless Interdomain Routing (CIDR)

BGP Operations (Simplified)
Establish session on

 TCP port 179

 Exchange all
 active routes

Exchange incremental
 updates

AS1

AS2

While connection
is ALIVE exchange

route UPDATE messages

BGP session

Two Types of BGP Neighbor Relationships

•  External Neighbor (eBGP) in a different
Autonomous Systems

•  Internal Neighbor (iBGP) in the same
Autonomous System

AS1

AS2

eBGP	

iBGP	

iBGP is routed (using IGP!)

iBGP Mesh Does Not Scale
eBGP update

iBGP updates

•  N border routers means N(N-1)/2
peering sessions

•  Each router must have N-1 iBGP
sessions configured

•  The addition a single iBGP speaker
requires configuration changes to all

other iBGP speakers

•  Size of iBGP routing table can be
order N larger than number of best

routes (remember alternate routes!)

•  Each router has to listen to update
noise from each neighbor

Currently four solutions:
(0) Buy bigger routers!

(1)  Break AS into smaller ASes
(2)  BGP Route reflectors
(3)  BGP confederations

•  Route reflectors can pass on
iBGP updates to clients

•  Each RR passes along ONLY
best routes

•  ORIGINATOR_ID and
CLUSTER_LIST attributes are

needed to avoid loops
RR RR

RR

Route Reflectors

BGP Confederations

AS 65501

AS 65502

AS 65503 AS 65504
AS 65500

AS 1

From the outside, this looks like AS 1

Confederation eBGP (between member ASes) preserves
LOCAL_PREF, MED, and BGP NEXTHOP.

Four Types of BGP Messages

•  Open : Establish a peering session.
•  Keep Alive : Handshake at regular intervals.
•  Notification : Shuts down a peering session.
•  Update : Announcing new routes or

withdrawing previously announced routes.

 announcement
 =

 prefix + attributes values

BGP Attributes

Value Code Reference
----- --------------------------------- ---------
 1 ORIGIN [RFC1771]
 2 AS_PATH [RFC1771]
 3 NEXT_HOP [RFC1771]
 4 MULTI_EXIT_DISC [RFC1771]
 5 LOCAL_PREF [RFC1771]
 6 ATOMIC_AGGREGATE [RFC1771]
 7 AGGREGATOR [RFC1771]
 8 COMMUNITY [RFC1997]
 9 ORIGINATOR_ID [RFC2796]
 10 CLUSTER_LIST [RFC2796]
 11 DPA [Chen]
 12 ADVERTISER [RFC1863]
 13 RCID_PATH / CLUSTER_ID [RFC1863]
 14 MP_REACH_NLRI [RFC2283]
 15 MP_UNREACH_NLRI [RFC2283]
 16 EXTENDED COMMUNITIES [Rosen]

 ...
 255 reserved for development

From IANA: http://www.iana.org/assignments/bgp-parameters

Most
important
attributes

Not all attributes
need to be present in
every announcement

Attributes are Used to Select
Best Routes

192.0.2.0/24
pick me!

192.0.2.0/24
pick me!

192.0.2.0/24
pick me!

192.0.2.0/24
pick me!

Given multiple
routes to the same

prefix, a BGP speaker
must pick at most

one best route

(Note: it could reject
them all!)

Route Selection Summary

Highest Local Preference

Shortest ASPATH

Lowest MED

i-BGP < e-BGP

Lowest IGP cost
to BGP egress

Lowest router ID

traffic engineering

Enforce relationships

Throw up hands and
break ties

BGP Route Processing

Best	
 Route	

	
 	
 SelecBon	
 	

Apply	
 Import	

	
 	
 Policies	

Best	
 Route	
 	

	
 	
 Table	

Apply	
 Export	

	
 	
 Policies	

Install	
 forwarding	

Entries	
 for	
 best	

Routes.	
 	

Receive
BGP

Updates

Best
Routes

Transmit
BGP

Updates

Apply Policy =
filter routes &

tweak attributes

Based on
Attribute
Values

IP	
 Forwarding	
 Table	

Apply Policy =
filter routes &

tweak attributes

 Open ended programming.
Constrained only by vendor configuration language

BGP Next Hop Attribute

Every time a route announcement crosses an AS boundary, the Next Hop
attribute is changed to the IP address of the border router that announced

the route.

AS 6431
AT&T Research

135.207.0.0/16
Next Hop = 12.125.133.90

AS 7018
AT&T

AS 12654
RIPE NCC
RIS project

12.125.133.90	

135.207.0.0/16
Next Hop = 12.127.0.121

12.127.0.121	

Forwarding Table

Forwarding Table

Join EGP with IGP For
Connectivity

AS 1 AS 2
192.0.2.1	

135.207.0.0/16	

10.10.10.10	

EGP

192.0.2.1	
 135.207.0.0/1
6	

des<na<on	
 next	
 hop	

10.10.10.10	
 192.0.2.0/30	

des<na<on	
 next	
 hop	

135.207.0.0/16
Next Hop = 192.0.2.1

192.0.2.0/30	

135.207.0.0/1
6	

des<na<on	
 next	
 hop	

10.10.10.10	

+

192.0.2.0/30	
 10.10.10.10	

Implementing Customer/
Provider and Peer/Peer

relationships

•  Enforce transit relationships
– Outbound route filtering

•  Enforce order of route
preference
– provider < peer < customer

Two parts:

Import Routes

From
peer

From
peer

From
provider

From
provider

From
customer

From
customer

provider route customer route peer route ISP route

Export Routes

To
peer

To
peer

To
customer

To
customer

To
provider

From
provider

provider route customer route peer route ISP route

filters
block

How Can Routes be
Colored?

BGP Communities! A community value is 32 bits

By convention,
first 16 bits is

ASN indicating
who is giving it

an interpretation

community
number

Very powerful
BECAUSE it

has no (predefined)
meaning

Community Attribute = a list of community values.
(So one route can belong to multiple communities)

RFC 1997 (August 1996)

Used for signally
within and between

ASes

Two reserved communities

 no_advertise 0xFFFFFF02: don’t pass to BGP neighbors

no_export = 0xFFFFFF01: don’t export out of AS

Communities Example

•  1:100
–  Customer routes

•  1:200
–  Peer routes

•  1:300
–  Provider Routes

•  To Customers
–  1:100, 1:200,

1:300
•  To Peers

–  1:100
•  To Providers

–  1:100

AS 1

Import Export

So Many Choices

Which route should
Frank pick to 13.13.0.0./16?

AS 1

AS 2

AS 4

AS 3

13.13.0.0/16

Frank’s
Internet Barn

peer peer

customer provider

LOCAL PREFERENCE

AS 1 AS 2

AS 4

AS 3

13.13.0.0/16

local pref = 80

local pref = 100

local pref = 90

Higher Local
preference values
are more preferred

Local
preference
used ONLY

in iBGP

