
A practical guide to controlled experiments of software
engineering tools with human participants

Andrew J. Ko & Thomas D. LaToza &

Margaret M. Burnett

Published online: 27 September 2013
Springer Science+Business Media New York 2013

Abstract Empirical studies, often in the form of controlled experiments, have been widely
adopted in software engineering research as a way to evaluate the merits of new software
engineering tools. However, controlled experiments involving human participants actually
using new tools are still rare, and when they are conducted, some have serious validity
concerns. Recent research has also shown that many software engineering researchers
view this form of tool evaluation as too risky and too difficult to conduct, as they
might ultimately lead to inconclusive or negative results. In this paper, we aim both to
help researchers minimize the risks of this form of tool evaluation, and to increase
their quality, by offering practical methodological guidance on designing and running
controlled experiments with developers. Our guidance fills gaps in the empirical
literature by explaining, from a practical perspective, options in the recruitment and
selection of human participants, informed consent, experimental procedures, demo-
graphic measurements, group assignment, training, the selecting and design of tasks,
the measurement of common outcome variables such as success and time on task, and study
debriefing. Throughout, we situate this guidance in the results of a new systematic review of the
tool evaluations that were published in over 1,700 software engineering papers published from
2001 to 2011.

Keywords Research methodology . Tools . Human participants . Human subjects .

Experiments

Empir Software Eng (2015) 20:110–141
DOI 10.1007/s10664-013-9279-3

Communicated by: Premkumar Thomas Devanbu

A. J. Ko (*)
University of Washington, Seattle, WA, USA
e-mail: ajko@uw.edu

T. D. LaToza
University of California, Irvine, Irvine, CA, USA
e-mail: tlatoza@ics.uci.edu

M. M. Burnett
Oregon State University, Corvallis, OR, USA
e-mail: burnett@eecs.oregonstate.edu

1 Introduction

Over the past three decades, empirical studies have become widely accepted as a way to
evaluate the strengths and weaknesses of software engineering tools (Zannier et al. 2006;
Basili et al. 1986; Basili 1993, 2007; Rombach et al. 1992; Fenton 1993; Tichy et al. 1995;
Basili 1996; Lott and Rombach 1996; Tichy 1998, Sjøberg et al. 2007). Software engineer-
ing researchers now perform an impressively diverse array of evaluations, including appli-
cations of tools against large software repositories, observations of tools in use in the field,
surveys and interviews with developers who use the tools in practice, detailed experiences of
applying the tools to real programs, and of course, controlled experiments of tools’ effects on
human performance such as speed, correctness, and usefulness.

However, this last kind of evaluation, the controlled (quantitative) experiment1 with
human participants using the tools, is still rare. In a study of 5,453 articles published between
1993 and 2002, Sjøberg et al. (2005) found only 103 such studies; similarly, in a review of
628 papers, Ramesh et al. (2004) found that only 1.8 % were experiments with human
participants. Other reviews have found that many of these studies contain omissions that
make their results difficult to interpret and apply to practice, such as the involvement of non-
representative participants and the omission of key methodological details about the exper-
imental setting and the population sampled (Zannier et al. 2006; Dieste et al. 2011;
Kampenes et al. 2007; Glass et al. 2002; Hannay et al. 2007; Sjøberg et al. 2005). This
suggests that there is still a need for more high quality experiments that rigorously evaluate
the use of new tools, to supplement other forms of evidence available through non-
experimental methods.

Recent work has investigated the scarcity of these experiments with human participants,
finding that many software engineering researchers view them as too difficult to design, too
time consuming to conduct, too difficult to recruit for, and with too high a risk of
inconclusive results (Buse et al. 2011). In our own discussions with software engineering
researchers about these issues, many have also pointed to the lack of practical guidance on
how to design experiments in ways that minimize these problems. Methodological literature
instead focuses on other important but more general issues, providing conceptual back-
ground on experiments, measurement, and research design (e.g., Wohlin et al. 2000;
Easterbrook et al. 2008; Shull et al. 2006; Juristo and Moreno 2001; Kitchenham et al.
2002). Thus, although these resources are important, more guidance is necessary to help
overcome the complexities of designing experiments that involve developers using a tool.

To address this gap, this paper provides the reader with a compendium of alternatives for
many of the challenges that arise in designing quantitative controlled experiments with
software developers, from recruiting and informed consent, to task design and the measure-
ment of common outcome variables such as time and success on task. Our discussion of each
of these topics focuses not on the “best” choices—every experiment has limitations—but on
the range of choices and how each choice affects the risk of obtaining inconclusive results.
Throughout our guide, we draw upon experiments published in the past decade, which we
identified through a systematic review of 345 tool evaluations with human participants
reported in 1,701 articles published from 2001 to 2011. We discuss the norms in this
literature not to suggest that current practices in evaluation are best practices, but to surface
the inherent tensions that any study design must make, how researchers currently balance

1 Strictly speaking, an experiment is by definition quantitative [Basili 2007]. Other kinds of empirical studies
are not technically experiments. Thus, in this paper, when we refer to experiments, we mean quantitative
experiments.

Empir Software Eng (2015) 20:110–141 111

them, and in many cases, how researchers are still struggling to find an appropriate balance.
Our hope is that this guide, supplemented by this discussion of current evaluation practices,
provides practical and actionable methodological guidance that, combined with more gen-
eral resources on empirical software engineering methods, can prepare the reader to conduct
useful, valid, and successful experimental evaluations of tools with developers.

The outline of this paper is as follows. First, we provide an overview of the design of a
canonical tool evaluation experiment with human participants and discuss factors that can
contribute to inconclusive results. We then discuss each of the major components of this
design, the range of choices for each component, and their tradeoffs. We end with a short
discussion situating controlled experiments with developers in the broader context of
empirical evaluations, and with an appendix, detailing our systematic review of the past
decade of tool evaluations.

2 Designing Tool Evaluation Experiments

Before we begin our discussion of quantitative controlled experiments, it is first important to
note that before choosing a research method (experimental or otherwise), it is necessary to
first clearly define the research question that is driving the tool evaluation. After all, there are
many research questions that cannot be easily answered with quantitative experiments. For
example, consider the evaluation of a new debugging tool. How do developers use it? What
concepts must they understand to use it successfully? How long does it take to learn? What
kinds of defects is it most useful for? What kinds of defects is it not useful for? Experiments,
as inherently comparative methods, cannot easily answer such questions. Instead, these
questions are more easily investigated with non-experimental quantitative or qualitative
methods. Moreover, answers to these formative questions are often necessary to obtain
before one knows which comparisons, which tasks, which developers, and which measures
even make sense for an experiment (LaToza and Myers 2011a, b). Some researchers in other
fields such as HCI have even argued that the expectation of experimental evaluation before
publishing a new tool can be a hindrance to innovation, disincentivizing researchers from
gathering richer and more useful experiences with a technology through the use of qualita-
tive methods (Greenberg and Buxton 2008).

That said, there are research questions that an experiment is best suited to answer. Does a
new debugging tool increase the speed with which a developer can localize a fault? Does it
lead to improved understanding of a program’s implementation? Does it better facilitate
collaborative debugging in software teams? If one is ready to answer these questions, there
are many methods that can answer these questions (case studies, field deployments, exper-
iments, etc.). Quantitative controlled experiments allow isolation of variables through
control: more than other methods, experiments provide the most rigorous evidence that it
is the isolated variable(s), such as the particular tool, and not some other factor such as a
developer’s experience or real-world circumstances, that led to a difference in some software
engineering outcome. The tradeoff for this control, as we discuss throughout the rest of this
article, is artificiality. In essence, every empirical method has strengths and weaknesses; that
is why researchers often use a variety of empirical methods, both experimental and non-
experimental qualitative evaluation (Murphy et al. 1999; Holmes and Walker 2013).

Given that a researcher has chosen a controlled experiment to answer a research question,
let us consider Fig. 1, which portrays a common design for a tool evaluation experiment with
human participants. In the figure, the circles represent human participants, with the white
circles representing those who eventually participate in the study. This experiment design

112 Empir Software Eng (2015) 20:110–141

includes one independent variable with two conditions: a control group that uses some
baseline tool and an experimental group that uses a research tool. A key property of this
experimental design is that every participant receives the exact same materials, instruction,
tasks, and environment, except for which tool they receive. If there is a difference in the
outcomes between the two groups, one can then make a strong claim that this was due to the
research tool and nothing else. (Of course, providing the exact same materials is often not
possible without harming validity: for example, comparing a new IDE to an existing IDE by
stripping all of the features from the existing IDE that are not present in the new one would
be disorienting to users of the existing IDE and an unrealistic comparison, as occurred in Ko
and Myers (2009). An experimental design is therefore partly a compromise between realism
and control).

Designing a tool evaluation experiment involves several key components (each discussed
in later sections):

1. Recruitment (Figure 1.1, Section 3). Marketing materials, such as an e-mail, poster, or
advertisement, are commonly used to entice people to participate.

2. Selection (Figure 1.2, Section 3). Inclusion criteria are used to filter potential partic-
ipants and determine if they are part of the intended population. For example, a tool
intended for web developers might set inclusion criteria to be people with at least a
year of experience in both JavaScript and PHP.

3. Consent (Figure 1.3, Section 4.1). If a researcher is at an academic institution, they are
likely required to first obtain some form of human subjects approval that evaluates the
ethical aspects of the experiment design. Researchers must complete and submit forms
describing the experiment in detail, including a consent form that gives participants
information about the study to help them decide whether to participate.

4. Procedure (Figure 1.4, Section 4). The procedure for the experiment determines what a
participant will do from the beginning of an experiment to its end. The design of the
procedure should include a script detailing what the experimenter will (and will not) say
throughout the experiment, or alternatively, written materials that a participant will read.

5. Demographic measurements (Figure 1.5, Section 4.2). Surveys and interviews are
common ways of collecting and measuring demographic variables. This data can be

Fig. 1 A canonical design for a tool evaluation experiment with two conditions and a set of tasks. The circles
represent human participants; the white circles are those that satisfy the inclusion criteria. This design includes
one independent variable and two conditions. The resulting data set is listed at the bottom

Empir Software Eng (2015) 20:110–141 113

gathered before or after a task, or even as part of testing a potential participant against
inclusion criteria.

6. Group assignment (Figure 1.6, Section 4.3). Assignment of participants to groups is
often done randomly, to distribute variation in participant behavior across conditions
evenly, but there are alternatives.

7. Training (Figure 1.7, Section 4.4). It is often necessary to teach participants how to
use a tool before they use it in the tasks, so that they can use it at a level appropriate for
the study’s research questions. This can come before or after assigning a participant to
a group, depending on whether the training materials differ by condition.

8. Tasks (Figure 1.8, Section 5). The researcher needs to choose one or more tasks for
participants to perform with the tool they receive.

9. Outcome measurements (Figure 1.9, Section 6). Examples of outcome variables
include task success, task completion time, defects found, etc. Each outcome variable
chosen will need a method for measuring it.

10. Debrief and compensate (Figure 1.10, Section 7). Studies typically (but optionally)
end with a debriefing, helping participants better understand the purpose of the study
and telling participants the answers to the tasks they attempted. The end of the study is
also an appropriate time to compensate participants for their time.

While this may seem like a long list, most must first be described to receive human
subjects approval (as explained in Section 4.1) and will ultimately need to be described in
the “method” section of a research paper. In fact, one strategy for designing an experiment is
to draft the human subjects approval form and method section first, as a draft of an
experimental design. This can help to identify flaws and uncover details that have yet to
be defined.

The ultimate, primary goal of conducting an experiment is to determine if a change in an
independent variable (e.g., condition) causes a change in a dependent variable (e.g., outcome
measurement). One goal of experimental design is thus to maximize the likelihood that an
experiment will be able to measure such changes. There are several approaches to achieving
this goal:

& Increase the effectiveness of the tool. Obviously, the more profound the effect of the tool,
the less risk the experiment has of masking the true benefits of the tool because of noise
and variation, the fewer observations one needs, and the less one will have to perfect the
experimental materials. For particularly effective tools, it can be possible to see signif-
icant differences with a small number of participants in each experimental condition
(e.g., LaToza and Myers (2011a, b) found significant differences with just 6 participants
per condition). Clearly, this is the ideal way to reduce the costs and risks of an
experiment, but not always one that is easiest to achieve.

& Increase the number of participants. With enough observations, nearly any legitimate
difference between experimental conditions can be observed statistically (although not
all such differences are meaningful (Kaptein and Robertson 2012). In Section 3, we
discuss strategies for recruiting developers, to give the experiment the best chance of
observing a difference, if one exists.

& Decrease extraneous variation in the outcome variables. Variation in the measurement
of outcome variables is the primary reason for negative experimental results: the noisier
the signal, the more difficult it is to observe underlying differences in the signal.
However, some of this variation is natural and should be preserved; developers, for
example, have different knowledge, skills, and ability to learn to a new tool. The
“unnatural” variation, or extraneous variation, is the variation to eliminate. This includes

114 Empir Software Eng (2015) 20:110–141

anything that would not normally occur in the world and is instead due to the artificiality
of the experiment. For example, the developers need to understand the tasks and
instructions given them; they should, as a group, have a comparable understanding of
the tools being tested; and the study’s measurements must be well defined and consis-
tently measured. When participants have varying understanding, they behave inconsis-
tently, making it more difficult to know if their performance varied because of the tool or
something else. We discuss sources of extraneous variation throughout the rest of this
paper.

In the remaining sections of this paper, we discuss each of the experiment design
elements in Fig. 1 in detail, identifying various design choices and strategies, with a
particular emphasis on minimizing the risk of undue negative results.

3 Recruiting

One perceived barrier to tool evaluation experiments is recruiting developers (Buse et al.
2011). Here we discuss three challenges in recruiting: (1) finding people who actually
represent the intended users of the tool, (2) convincing enough to participate that the
statistical comparison will have enough power to reveal any differences that occur, and (3)
dealing with the large variation in skill among developers. In this section, we provide
guidance for each.

3.1 Deciding Who to Recruit

Recruiting rests on the inclusion criteria for the study (Figure 1.2), which are the attributes
that participants must have to participate in a study. More generally, good inclusion criteria
reflect the characteristics of the people that a researcher believes would benefit from using
the research tool, and the work contexts in which the researcher believes the tool would be
useful (Murphy-Hill et al. 2010), such as the type of software being developed, the type of
organization developing it, and the types of processes being used.

Ideally, inclusion criteria capture the most important attributes that one expects a tool’s
users to have, such as their skills, motivations, and work practices. For example, when
Nimmer and Ernst (2002) wanted to compare a static and dynamic checker, they explicitly
focused on supporting experienced Java developers that had no experience with static and
dynamic checkers. Their hypothesis was that these developers would quickly learn how to
use these checkers to succeed on a set of annotation tasks, more so than developers without
the tools. Therefore, they restricted their participants to people with no prior experience with
ESC/Java, Houdini, and Daikon (the tools being studied), but with substantial Java pro-
gramming experience. They also decided to allow graduate students at the researchers’
universities to participate, since they fit these criteria. Nimmer and Ernst also had to develop
reliable ways of checking whether a participant fit these criteria: to check tool experience,
they simply asked a participant if they were familiar with each tool; for Java programming
experience, they asked how many years they had been writing Java code. They then
informally used these metrics to exclude students without the desired level of experience.

There are several common inclusion criteria for tool evaluation experiments:

& Programming language experience. A tool might expect developers to have expertise
with a particular programming language. Recent studies have found that self-estimation
of language experience on a scale of 1 to 10 correlates moderately with performance on

Empir Software Eng (2015) 20:110–141 115

programming tasks (Feigenspan et al. 2012), at least for undergraduate students. (There
has yet to be research on how to measure the expertise of more experienced
programmers).

& Experience with technologies related to the tool.Whether participants can learn to use
a tool might depend a lot on their prior experience with similar tools. This experience
can be measured with simple ordinal ratings of experience levels (e.g., “no experience”,
“some experience”, “significant experience”).

& Industry experience. This is typically an indicator for multiple kinds of skills and
knowledge, such as knowledge of version control systems, experience working on a
team, and expertise with languages. It may be more instructive to just ask about the
specific competencies that are relevant to the tool being evaluated, rather than asking
about overall industry experience.

& (Natural) language proficiency. Non-native speakers often have a difficult time under-
standing experiment instructions and tool features; they may also be reluctant to admit
confusion. These sources of variation may be worth eliminating from a study by
recruiting only participants with many years experience in the natural language used
by a tool.

Other common demographic variables such as age and gender might be useful to help
characterize the recruited participants in a publication, but they are often less relevant for
deciding whether someone is an intended user of a tool, since these attributes often have
little to do with a person’s level of skill.

The criteria must also be valid. For example, in our systematic review of software
engineering tool evaluation studies from the past decade (detailed in the Appendix), we
found that 62 % of studies evaluating a tool actually involved the tool’s inventors themselves
using the tool and reporting on their personal experiences (see Fig. 2 for these results by
year). These inclusion criteria are flawed from an evaluation perspective, as the tool
designers themselves would be far more likely to use their own tool successfully than
someone new to the tool. In studies like these, confirmation bias (Nickerson 1998) is at
play, as the inventors might give undue attention to tasks and results that confirm their
beliefs about the benefits of a tool, while unconsciously overlooking evidence about the
tool’s weaknesses. In general, inventors who evaluate a tool by using it themselves might
provide useful insights about the applicability of a tool, but little about whether someone
else would benefit from it in practice.

A long-standing debate on inclusion criteria is whether computer science students should
be eligible to participate in tool evaluation studies (Carver et al. 2003; Beringer 2004). In a
review of 113 experiments published from 1993 to 2002, 72 % of experiments exclusively
involved students (Sjøberg et al. 2005). In our review of the most recent decade of studies,
we only found 23 % of studies reporting the use of students. (Of the remaining studies, 56 %
of studies recruited one or more participants who were software professionals of some kind

Fig. 2 Proportion of evaluations involving human participants in which the authors themselves were the
study participants

116 Empir Software Eng (2015) 20:110–141

and 23 % provided no detail about who the participants were at all, only describing them as
“experienced programmers” of some kind.) Therefore, the field is clearly shifting away from
the use of students in studies.

The rationale for this shift has primarily to do with programming expertise, as under-
graduates, and many graduate students, are typically too inexperienced to be representative
of a tool’s intended user. Students may also pose other validity concerns, such as the subject-
expectancy effect, in which participants who expect a certain outcome behave in a way that
ensures it. For example, Nimmer and Ernst (2002) recruited graduate students from their
own institution. Even though they were careful to state that these students were not from
their research group, these students may still have been more motivated to learn how to use
the dynamic checkers because of the inherent power imbalance between faculty and students
(there is no evidence of this point in software engineering research, but it has been widely
documented in behavioral sciences involving faculty student dynamics (Rosenthal and
Rubin 1978)). The observer-expectancy effect (Rosenthal 1966) may also be at play when
involving students, where a researcher’s interest in a positive outcome may cause them to
unconsciously influence the behavior of the students in an experiment, because the students
may view the researchers as having a better understanding of how the tool works than they
do. Professional software developers may be less subject to these effects, because they may
view the researchers as having less authority or a similar level of expertise.

That said, students can be appropriate participants when their knowledge, skills, and
experiences fit within a tool’s intended user population. There are also many ways to
minimize the biases that students may introduce. For example, many students that have
returned for master’s degrees in business, computer science, and other fields have many
years of software development experience. These students may even be more consistent in
their behavior, since they may have a common educational background, helping to minimize
variation in their performance on tasks. One can also mitigate subject-expectancy effects by
presenting the experiment in a way that suggests that the researcher has no stake in the
outcome. For example, if the experiment compares Tool A against Tool B, but the exper-
imenter presents the two tools in a way that makes them appear to be other researchers’
tools, the participants will be less subject to biases. This, of course, requires that the graduate
students do not already know about the tool being developed by that researcher.

Another challenge with recruiting is the variability in software developer skill (Boehm
and Papaccio 1988). Such variability is often a challenge in experiments with small sample
sizes, as it can require a large number of samples to overcome the resulting variation in
developer performance. Of course, this variation is not necessarily something to avoid: if a
tool is really designed for developers of all skill levels in a particular programming language,
then it is appropriate to evaluate the tool with developers of varying skill. In this case, skill
can simply be a factor that is used to interpret the results of a study, providing qualitative
insights into how well the tool works for developers with different skill levels. On the other
hand, if a tool is intended for developers with a particular level of skill, one can attempt to
recruit only developers with that level of skill. As mentioned earlier, Feigenspan et al. 2012
have found that self-estimation of language experience on a scale of 1 to 10 correlates
moderately with performance on programming tasks for undergraduate students. The same
measure may also work for more experienced developers, but there has yet to be research to
validate this. Other approaches to measuring skill include having developers take skills
assessment, such as the programming tests often employed in software development job
interviews.

Although all of our recruiting discussion up to this point has concerned individuals, many
tools are meant to be used in the context of a team. There is unfortunately very little

Empir Software Eng (2015) 20:110–141 117

guidance on how to perform experiments in team contexts, let alone how to recruit for them.
In fact, in our systematic literature review, we did not find a single paper that attempted an
experiment in the context of a team, let alone an experiment that actually recruited multiple
teams to use a new software engineering tool. How to conduct such experiments is an open
question, deserving of new research methodologies. Until these exist, the most feasible
methods for studying tools used by teams are likely qualitative field evaluations that have
teams temporarily adopt a new tool and involve direct observation, logging, and other data
gathering techniques to attempt to characterize the effect of the tool’s adoption on the team.

3.2 Deciding How Many Participants to Recruit

From a statistical perspective, the more participants one recruits, the lower the chances that
legitimate differences will be masked by variation. Studies in our systematic review had a
large range of participants, from 1 to 2,600 (the latter was a field deployment) with a median
of 10. Experiments recruited a median of 36 participants, ranging from 2 to 222, with a
median of 18 participants per condition. Therefore, previously published experiments
typically have much smaller numbers of participants than other kinds of studies. While
approximately 20 participants per condition are not guaranteed to be a large enough sample
to overcome variation in measurements, it is a reasonable number to start with, provided that
appropriate statistical tests are used.

A more principled way to decide how many participants to recruit is to do a prospective
power analysis (e.g., Dybå et al. 2006), which gives an estimate of the sample size required
to detect a difference between experimental conditions. The exact calculation of this estimate
depends on the specific statistical test used to compare the groups, but it generally requires
three inputs: (1) the expected effect size (the difference in the outcome variable between
groups), (2) the expected variation in this outcome measurement, and (3) the Type I error
rate α (typically .05 in software engineering). The first two must be estimated. One source of
these estimates is to use data from previous experiments on the tool or even pilot studies
(discussed later in Section 8). Threre are also standard approaches for estimating sample size
and effect size such as Cohen’s d, odds ratio, and Abelson’s Causal Efficacy Ratio. Breaugh
(2003) provides an accessible introduction to these topics.

3.3 Doing the Recruiting

Once inclusion criteria have been defined, recruiting participants is the next challenge.
Recruiting is essentially a marketing problem of getting the attention of a set of people with
certain characteristics. The goal is therefore to (1) find out where they put their attention and
(2) entice them to participate.

If students have been deemed a valid and representative population to recruit from,
recruitment can be straightforward if a researcher is at a university, as there are many ways
to reach students (e.g., announcing something in class, sending an announcement to an e-
mail list, placing flyers in buildings frequented by students, and so on). Enticing students to
participate is also straightforward: small amounts of compensation are often motivating and
students may have an intrinsic interest in learning about a research project.

In contrast to students, software professionals can be challenging to recruit, partly
because they are so busy. If a researcher is part of a software company, this is easier, as
participants may be more invested in helping someone part of the same organization and the
industry researcher may have a better understanding of developers concerns and interests. If
a researcher is in academia, there are many ways to recruit professionals that have been

118 Empir Software Eng (2015) 20:110–141

successful in the past (Table 1). For example, most of the studies from our systematic
review leveraged existing relationships with industry researchers or professional soft-
ware developers. Some studies had graduate students who were temporary interns at
companies, who could recruit at the companies while they were interns. Other authors
mentioned having a personal relationship to a person in a company who could help
them recruit. Other researchers established formal partnerships with companies to
evaluate tools and techniques, such as contract software development work, allowing
them to work with established teams.

Recruiting from software companies is not the only way to find participants with industry
experience. For academics, many universities staff software teams to develop in-house
software solutions for university administration or to help faculty and staff manage courses
and students. Not only are these teams nearby, but they also often have an explicit
responsibility to support the university, possibly by participating in experiments. The
developers on these teams may also have connections into the larger community of local
developers.

Many cities also have vibrant communities related to software engineering, many of
which maintain a web presence via Meetup.com, public mailing lists, or Facebook groups.
Attending these groups’ face-to-face meetings can help develop social inroads into the local
software industry. They may also be a place to advertise and recruit for experiment
participation.

Another source of prospective participants is an alumni database of recent graduates. For
example, the first author’s school maintains a LinkedIn group with nearly all of the alumni of
his school’s undergraduate program. Not only does this allow him to message all previous
alumni who are still in the local community, but it also allows him to filter his search by
developers working in specific software industries, at specific companies, or whom have
specific software development skills listed on their résumés. These features allow him to
control for variation in participants’ backgrounds. The fact that alumni are former students
provides an additional incentive them to participate, as many are interested in supporting
their former institution.

One more source of potential participants is online labor markets. In other disciplines
(Kittur et al. 2008), a popular example is Amazon’s Mechanical Turk (mTurk), which is a
site that allows “requesters” to post web-based tasks and “workers” to complete them for
pay. Studies have shown that the workers on mTurk are primarily North American and
Indian, that most are young, educated males and that up to a third even have graduate
degrees (Ross et al. 2010); most, however, do not have programming experience. Other
options are freelance developers who look for jobs on sites such as oDesk.com,
Freelancer.com, Topcoder.com, Craigslist, and other sites that host consulting job posting.
At sites like these, local developers can be hired at typical market rates for most kinds of

Table 1 Ways to recruit software
professionals Ways to recruit software professionals

Student interns in companies recruit within a company

Personal contact within a company recruits on behalf of a researcher

In-house university software teams

Meetup.com social groups related to software development

Computer science student alumni (found in alumni databases)

Online labor markets (MTurk, ODesk, Freelancer.com, etc.)

Empir Software Eng (2015) 20:110–141 119

programming jobs, enabling one to perform longitudinal experiments lasting weeks or
months (for example, at the time of this writing, there are hundreds of developers with
Java experience on oDesk.com, who charge a median of $30 per hour).

When writing recruitment materials or interviewing a potential participant, it is important to
ask about inclusion criteria in a neutral manner, so that it is not clear to recruits what the “right”
answers are. Otherwise, the risk arises that people eager to participate may provide
misinformation, threatening the study validity and potentially introducing extraneous variation.

3.4 Recruiting Remote Participants

Designing a study so that it can be performed remotely can lower barriers to participation
(Bruun et al. 2009), making possible larger sample sizes, and thereby increasing statistical
power. For example, (Ko and Wobbrock 2010) recruited hundreds of web developers online
in just 1 h, avoiding the logistics of scheduling a lab-based, in-person study. Remote
participation, depending on the study, can also allow participants to use their own worksta-
tions, their own space, their own tools, and even work at times of their choosing, potentially
making the experiment more ecologically valid by accounting for participants natural work
environments.

Examples of disadvantages of remote participants are that developers may masquerade
with levels of experience they do not really have, they may randomly check off boxes on
questionnaires to quickly complete tasks, or they may leave a task temporarily, requiring the
experimenter to monitor task activity. These can add new sources of extraneous variation.
One way to detect such variation is to first run the study in a lab environment with a small
number of users, establishing a baseline (Kittur et al. 2008). Another factor is the level of
compensation; payments that are uncharacteristically high may attract participants that are
excessively motivated by money, which may lead to unrealistic behavior in study tasks.
Analyzing the market prices for tasks of comparable scope is one way to neutralize the effect
of compensation.

If the tasks are of the kind where the correctness of the work performed cannot be judged
automatically (for instance, if developers are asked to explain how much they trust the
information produced by a tool), remote participants may have less of an incentive to
provide a thoughtful response than those who are providing a response face-to-face
(Bruun et al. 2009). To address this source of variation, one can introduce additional
measures that indicate signs of hurried work, such as comprehension tests and time-to-
respond measurements. Anomalies in these scores may indicate invalid data. Amazon’s
mTurk site details a number of other best practices for mTurk, and Kittur et al. (2008) detail
several kinds of crosschecks.

4 Pre-Task Study Procedures

The canonical pre-task activities for an experiment include consenting participants, gather-
ing demographic data, assigning participants to groups, and providing training. Each of these
pre-task activities has subtle complexities that require some planning.

4.1 Informed Consent

Before participants begin the study, it is typical to first describe the purpose of the study,
what they will be asked to do, and what risks and benefits participating might pose. This

120 Empir Software Eng (2015) 20:110–141

process, which is typically called informed consent, allows a participant to decide whether
they want to participate. Informed consent is typically administered through a document, a
few pages in length, which details the study, its procedures, and its risks and benefits (most
universities have templates for these). If a researcher is an industry employee, this is an
ethical, but ultimately optional step in the process (unless required by an employer). If the
researcher is a member of academia, however, it is likely that they are required to obtain
informed consent and that the study design itself must first be approved by an ethics
committee. In the U.S., these are called Institutional Review Boards (IRBs); all organiza-
tions that receive support from the federal government, directly or indirectly, are obligated to
conduct these reviews in order to protect human participants from undue harm.

Obtaining approval from an IRB or similar ethics board can be time-consuming. In a
recent survey of software engineering researchers (Buse et al. 2011), almost all of the
respondents who had never conducted a user evaluation perceived the IRB as a barrier,
whereas more than 20 % of respondents who had conducted a user evaluation said it was a
barrier. While it can take at least a few weeks to obtain approval (and more, depending on the
institution and study), software engineering experiments are often reviewed less rigorously
than other types of experiments. This is because most tool evaluation experiments are
eligible for expedited review because they (1) pose minimal risk, (2) they typically do not
involve intentional deception, (3) they do not concern sensitive populations or topics, and (4)
they include informed consent procedures. Minimal risk in this setting typically means that
the probability of harm is not greater than that encountered in daily life. Harm can be
physical, financial, or emotional. Therefore, some IRBs will inquire about the potential for
significant stress, embarrassment, or shame in a task. These forms of harm can occur in
software engineering experiments that ask participants to complete particularly difficult
tasks, especially if the participants do not have adequate experience to be successful. For
example, in one study run by the first author, a participant complained to the IRB that the
task made her feel like even more of a failure at computer tasks than she already believed
herself to be, harming her computer self-efficacy. (As we discuss later, it can be advanta-
geous to ensure that not all participants complete a task, to avoid ceiling effects in success
measurements, which may further increase the risk of such harm.)

To obtain IRB approval, one typically needs to complete a form detailing the design of
the experiment, much like in the “method” section of a research paper. These forms will ask
about the risks and benefits to participants, recruitment and compensation, and the informed
consent document that will be provided to participants. More cautious IRBs will ask to see
the exact study materials that a researcher will use, such as surveys, interview questions, and
recruitment text. While preparing these materials can be time consuming, one has to prepare
them anyway: the need for IRB approval will just require preparation farther in advance of
the experiment.

4.2 Gathering Demographic Data

If a participant agrees to participate, often the next step is to gather some demographic
information from them, to better understand their level of expertise, their background, their
experience with certain tools, and so on. This can be done in an interview style, which has
the advantage of possibly making the participant more comfortable, or with an online or
paper survey, which has the advantage of ensuring more consistent responses. One way to
ensure accurate and reliable responses to each survey question is to iteratively test the
survey: ask someone to fill it out, and to think aloud while they attempt to answer the
questions. If they have trouble interpreting a question, the question will probably lead to

Empir Software Eng (2015) 20:110–141 121

noisy and unreliable answers. This iterative testing can be part of pilot testing (discussed in
Section 8).

Some researchers gather demographic data during recruiting, especially if the demo-
graphic data is necessary for evaluating potential participants against inclusion criteria. For
example, suppose a researcher wants to only study developers who have worked on the
server side of enterprise web applications; it probably makes sense to ask about this and
other background details before they arrive to participate. One can do this by merging the
inclusion criteria assessment and demographic data into a single online survey that potential
participants complete to determine if they are eligible for the study. The other advantage of
gathering demographic data during recruiting is that one will have data on who did not
participate, either because they did not satisfy the inclusion criteria, or because they never
showed up to the study. This will help a researcher characterize the selection bias of the
sampling procedures, which can limit the generalizability of a study’s results.

Alternatively, researchers can gather demographic data after the participants perform the
tasks in the experiment. This choice has several advantages: it ensures that there will be
enough time to go through all of the tasks; it may also be better for participants to be fatigued
while they fill out a survey than while they are trying to complete the final task in a study.
There is also the possibility that by asking about participants’ experience just before a task,
the less experienced participants may feel less confident in their ability to succeed at it
because they will be reminded of their inexperience. This effect, known as stereotype threat,
can have a significant effect on skilled performance (Steele and Aronson 1995).

Some IRBs in the United States do not approve gathering demographic data before
obtaining consent. If this is the case, or the study design gathers demographic data after
study tasks, it may only become apparent that a participant did not satisfy the inclusion
criteria until after they have completed a task. For example, it may become evident after
observing a participant attempt to program in a particular language that they do not really
know the language. Data from participants that do not satisfy the inclusion criteria should be
excluded from analyses.

4.3 Assigning Participants to an Experimental Condition

There are many ways to assign participants to experimental conditions (Rosenthal and
Rosnow 2007). Most studies use simple random assignment, distributing random variation
in participants’ skills and behaviors across all conditions, minimizing the chance that some
observed difference in the groups’ performance is due to participant differences, rather than
differences in the tools being compared. There are alternatives to random assignment,
however, that can reduce the number of participants necessary to recruit.

One alternative is the within-subjects experiment (Rosenthal and Rosnow 2007), where
all of the participants in a study use all of the tools being compared, one at a time, across
several tasks. For example, suppose a researcher had a new debugging tool and wanted to
show that developers were able to more quickly fix failed tests than without the tool. A
within-subjects design could involve two tasks, where a participant would use the new
debugging tool for one task, and then not use the tool for the other task. Because there is
significant potential for participants to learn something from the new tool that would give
them an advantage in the other task—known as a learning effect (Rosenthal and Rosnow
2007)—one must randomize both the order of tasks and on which tasks a participant gets to
use the experimental tool. This randomization is known as counterbalancing (Rosenthal and
Rosnow 2007). When there are more than two tools being compared, counterbalancing can
be achieved by mapping conditions onto a Latin Square (Martin 1996). There are, of course,

122 Empir Software Eng (2015) 20:110–141

downsides to within-subjects designs, including fatigue or boredom: giving a developer
multiple tasks to complete with multiple different tools could be exhausting and require an
impractical amount of their time.

Another alternative to random assignment is an interrupted time-series design
(McDowall et al. 1980). The idea behind this design is to make three measurements of the
outcome variable: before the tool is introduced, after the tool is introduced, and, finally, after
removing the tool from the environment. This allows one to see the potential causal effects
of the tool on a task over time while testing on only a single group of participants. For
example, a study evaluating a new debugging tool might give participants 9 small debugging
tasks, randomizing their order, and only allow the participants to use the experimental tool in
the middle three tasks. If the tool had an effect on debugging, one would expect the
participants’ debugging speed to go up after the tool was introduced and then back down
after it was taken away. This would provide quasi-experimental evidence that any improve-
ments in debugging speed were due to the introduction and removal of the tool, rather than
learning effects from success with prior tasks. This design also has the advantage of being
more natural in industry settings. For example, an interrupted time-series design can be
framed as a “trial run” of a new tool in a company setting: the tool is introduced, improving
outcomes, and then the tool is taken away, to see whether performance returns to its original
baseline. Participants in the study can then better articulate what benefit the tool provided to
their work, because they had the experience of both gaining and losing the tool’s benefit over
a period of time. A disadvantage of an interrupted time-series design is that it provides less
confidence about causality, because it is harder to rule out the effect of confounding
variables that co-occurred during the introduction and removal of the tool.

4.4 Training Participants

Before participants begin work on the experiment’s tasks, one must first ensure that the
participants know everything necessary to succeed. This includes knowledge such as:

& How to use the tools in the environment provided. The tools might include the research
tool, the tool used in the control group, and the other developer tools that the participants
will need. Note, however, that in studies evaluating whether participants can learn to use
the tool independently, the participants will need training on everything except the
research tool.

& Terminology. If participants do not understand complex concepts or terminology used to
describe the task, they may struggle with a task because of a confusing word, making it
difficult to observe the benefits of the tool.

& The design of the programs they will work with during tasks. There may be aspects of a
program’s design that would only be known after significant experience with a code
base. If this knowledge is necessary for success in the experiment’s tasks, but not
something that the tool is intended to help them acquire, then providing the knowledge
before they begin the task may reduce extraneous variation. For example, a researcher
might give them documentation on the implementation and a brief lesson on the key
components in the implementation. Large, complex software applications can often take
weeks to learn in full, and so the knowledge provided in a study needs to be tailored to
the specific information needs of the tasks.

The decision of what to teach and what to have participants learn during the tasks is a key
experimental design consideration: whatever information is provided during training be-
comes an assumption about the conditions in which the tool will be used. For example, Ko

Empir Software Eng (2015) 20:110–141 123

and Myers (2009) were evaluating a new debugging tool’s effect on debugging speed and
determined that participants would need to learn how to use the tool and also something
about the 150,000-line implementation of the program the participants would debug. One
design that Ko and Myers considered was to provide no training upfront, having the
participants learn how to use the tool and learn the application’s implementation during
the tasks themselves. This design would have tested whether the tool could be quickly
learned and applied to unfamiliar code with no training. The alternative design they
considered was to first spend 30 min teaching the participants how to use the debugging
tool, and then begin the tasks. This design would have tested whether the tool could be used
to debug unfamiliar code, under the assumption of a systematic introduction to the tool’s
features and concepts. After several pilot experiments, the authors determined that it took too
much time for the participants to learn how to use the tool independently, and so they chose
the second design. The tradeoff was that the results of the experiment assumed prior training
on the tool, which may be an unrealistic expectation in practice. As with any controlled
experiment, the challenge was in deciding whether this was too unrealistic to be a useful
evaluation. The authors decided it was not.

The design of the training materials is similar to any other kind of instructional design:
the study should provide a way to teach the concepts and skills quickly and effectively and
devise a way to ensure that the participants have successfully learned the material. To teach
the material, researchers can create videos or paper instructions, do a live walkthrough,
provide example tasks, give computer-based or tool-embedded tutorials (Kelleher and
Pausch 2005), provide command cheat-sheets, or offer any other way of delivering instruc-
tion. To test whether the participants have learned everything necessary in the training, a
study might ask them to explain the materials back to the experimenter, provide them with
an assessment of what they learned, or have a variable-length question and answer session
that ends when the researcher is confident that they understand the material.

To be more certain that the participants understand everything in the training, one
effective approach for both teaching and assessing knowledge is a mastery-learning ap-
proach (Keller 1968) (Anderson and Reiser 1985). This involves devising a series of fixed
and testable learning objectives, and only allowing the participant to move to the next
learning objective when the previous objective is met, typically through testing of some sort.
Because this may require a variable amount of time, this can affect the time remaining in the
study to complete the tasks. To avoid this variation, one option is to have participants
complete training in a separate session beforehand; for example, participants might complete
a tutorial online on their own.

There is no one right approach to training. But generally, the more formal the instruction
and the more careful the assessment, the more comparable participants’ knowledge, and the
less variation there will be in participants’ performance on the tasks (and therefore the lower
the chance of a undue negative results). These issues do, however, highlight one challenge
with software engineering tool evaluation in general: many tools may not have a
significant positive effect until a software professional knows them quite well (after
months or perhaps years of use), making it difficult to recruit or train anyone in a
manner that would allow for a meaningful evaluation. This suggests that there is an
inherent bias in controlled experiments toward evaluating tools that can be quickly
learned, and against tools that require significant practice. Future work on software
engineering evaluation methods may need to explore new forms of longitudinal
evaluation that exploit the for-hire services such as TopCoder and oDesk mentioned
in Section 3, to allow developers time to gain expertise with a tool before conducting an
experimental evaluation.

124 Empir Software Eng (2015) 20:110–141

5 Task Design

One of the challenges in controlled experimental design is the tradeoff between realism and
control (Sjøberg et al. 2003): realistic study designs provide for greater generalizability, but
involve fewer controls, making it more difficult to know with certainty what causes any
differences observed in an experiment. Task design is at the heart of this tradeoff, as tasks
represent a distillation of realistic and messy software engineering work into brief, accessi-
ble, and actionable activities. In this section, we discuss several aspects of task design and
their relationship to generalizability.

5.1 Feature Coverage

One aspect of tasks to consider is what features of the tool the task will exploit. If the tool
only takes one action or provides one kind of output, this might be a simple decision. If the
tool provides a wide range of functionality and has multiple commands, the researcher must
decide on what range of features the tasks will focus. The more features that participants
must learn and experiment with, the more diverse their approaches to the task may be. This
variation in strategy can increase variation in performance, reducing the study’s ability to
detect the tool’s benefits. However, tasks that encourage developers to use only part of a tool
will limit ecological validity, as in any realistic setting, developers would have all of the
features available to them and have to decide which features to use for a task. The more
coverage one chooses, the more realistic the study, but the higher the risk of undue negative
results.

5.2 Experimental Setting

The physical or virtual location in which participants complete a task is another aspect of
task design that can affect the generalizability of a controlled experiment’s results. For
example, a study that is performed in a developer’s actual workspace or using a developer’s
familiar toolset is likely to be more realistic than a setting that a developer is entirely
unfamiliar with. On the other hand, a developer’s workspace can be difficult to control.
Note, however, that even lab settings raise some control difficulties: the lab may have
distractions that affect participant behavior, such as people walking into the lab and
interrupting the study; some of the lab’s chairs could be uncomfortable; or computers may
use different computing platforms at different seats. If an experiment involves multiple
participants in the same room (as in (Rothermel et al. 2000)), participants might “follow the
crowd” and finish early simply because other participants are leaving. If the study allows
remote or asynchronous participation, these problems can multiply, because the experiment-
er might not be aware of interruptions or if the tool even worked correctly. The tradeoff here
is the same as in the previous section: the more realistic the setting, the less control, and the
higher the risk of undue negative results.

For controlled experiments, software engineering researchers generally favor control in
such tradeoffs. In our systematic review, we found that only 14 % of the 345 experiments
with human participants were performed outside of a lab environment. This trend has not
changed in the past decade (χ2(10,N=345) = 3.89, p=.952). Experiments were also signif-
icantly less likely to be performed outside of the lab when compared to non-experiments
(χ2(1,N=345) = 3.70, p<.05). In fact, in the literature we surveyed, only two experiments
were performed outside of a lab environment (Kersten and Murphy 2006; Dig et al. 2008).
Both compensated for this lack of control by recruiting a large sample of observations. Of

Empir Software Eng (2015) 20:110–141 125

course, whether favoring control is appropriate depends on the nature of the research
question being asked and what is already known about an approach: if a tool is entirely
new, it may be more valuable to observe a tool being used in more realistic conditions with
fewer controls in order to better understand the benefits of the tool in practice.

5.3 Task Origin

Tasks can vary in their origin. Some researchers select “found” tasks from real software
development projects and then adapt them to suit a study’s needs, while others design tasks
from scratch.

The benefit of a “found” task is that the study’s results may be more ecologically valid,
illustrating a tool’s benefits (or lack thereof) on a real software engineering activity
taken from practice. For example, many of the studies in our systematic review
searched for bug reports in open source projects, as they define some problem that
must be solved and are closely linked with a real code base. This practice is not yet
dominant, however: in the past decade, only 15 % of studies have used this approach
(and in our survey, the evidence does not suggest that this has not changed over time
(χ2(10,N=345) = 9.61, p=.476)).

The benefit of designing a task from scratch is that it can be tailored specifically to
exercise the features of the tool. The risk in doing this is that the task will not adequately
reflect the types of tasks that occur in practice. There is also a risk that the new task gives the
tool an unrealistic advantage over the baseline tool in the study. Therefore, creating a custom
task may be necessary when a tool supports tasks that do not yet occur in real software
engineering projects or there is evidence that a type of task occurs in practice, but not
suitable actual tasks. For example, LaToza and Myers (2011a, b) wanted tasks that involved
participants answering code reachability questions, but it was almost impossible to
determine, simply from bug report descriptions in open source projects, which bugs
might have the right characteristics. They did have evidence from previous studies
that the tasks occurred in practice, however, and so they created their own tasks based
on the properties of previously observed tasks (LaToza and Myers 2010). Ultimately,
judgments about whether a task is “typical” are difficult to make. Recent studies of tasks in
various software development contexts are one basis, however, for determining how frequently
certain types of tasks occur in practice (e.g., Sillito et al. 2006; Ko et al. 2007; LaToza and
Myers 2010).

It is also possible to allow participants to choose their own tasks for a study. This would
have strong ecological validity, since all of the tasks would be real, but it would also
introduce so much variation that it might be difficult to statistically detect differences
between one tool and another. Some researchers perform these studies, but rarely make
quantitative comparisons of the results (see Atkins et al. 2002 for a rare example of a study
that does).

5.4 Programs and Data

Another dimension of task design is the data and source code used. Like the tasks them-
selves, real programs and data from open source projects ensure that the study results reflect
real benefits. The downside to using realistic programs is that they can be messy and
complex. This can lead to additional engineering work to scale the tool to supporting such
programs. At the same time, it can also make it more challenging for study participants to
understand the system, requiring either more time in the study design to teach the system or

126 Empir Software Eng (2015) 20:110–141

introducing the risk that the system will be too complex for participants to complete any
task. To work around this complexity, one can choose a real system, but focus participants
attention (and tutorial materials) on a piece of the system that is less complex. Most software
engineering studies in the past decade have used this approach, finding real programs from
open source projects or other sources: 75 % of all studies used artifacts drawn from practice.
This trend does not appear to have changed over the past decade (χ2(10,N=345) = 8.84,
p=.547).

5.5 Task Duration

Deciding on a task duration is essentially a choice between two options: unlimited
time to work on a task (allowing either the participant or the experimenter to decide
when the task is complete) or a time limit. A disadvantage of long or unlimited work
times is that this requires recruiting participants willing to work for such time periods.
This challenge might be avoided if one wants to allow participants to complete the
task remotely; they can then work on the task when they have time, completing it on
their own schedule. For example, Hanenberg (2010) used a variable task duration in a
comparison of static and dynamic typing, having participants work for up to 27 h
across 4 days. The advantage of these long or unlimited task durations is that they
allow larger and more realistic tasks. A disadvantage is loss of control over how
participants allocate their time and what quality and quantity of data the experiment
can collect: for example, they may rush to complete the task as quickly as possible,
or they may spend so long on one task that they do not have much time to consider
the others.

Of the 51 studies in our survey that reported task duration, most were lab studies, with a
median length of nearly 2 h (see Table 2). These 2 h, however, included every part of the
experiment, not just the tasks; thus so these likely included only 60–90 min of work time, to
leave time for consent, surveys, debriefing, and other experiment activities.

These times are similar to the 1–2 h task durations reported for lab studies published from
1993 to 2002 (Sjøberg et al. 2005).

Time limits can also introduce a variation issue: tasks may be so easy that almost
everyone completes them before the time expires. This can lead to ceiling effects
(Rosenthal and Rosnow 2007) on outcome measures, making it difficult to statistically
discriminate between the outcomes of two groups because everyone does so well. Tasks
may also be so difficult that no one can complete them in the allotted time no matter which
tool they use (called a floor effect (Rosenthal and Rosnow 2007)). Neither type of task shows
the true differences between tools because of too little variation within and between
conditions.

Table 2 For the studies that re-
ported task durations, the mini-
mum, median, and maximum task
duration reported across the five
types of studies, in minutes

Type N Min Median Max

Field 6 107 min 45 days 173 days

Interview 1 – – –

Lab 39 18 min 110 min 10 days

Survey 0 – – –

Application 5 240 min 3.5 days 10 days

Overall 51 18 min 145 min 173 days

Empir Software Eng (2015) 20:110–141 127

The number of tasks a participant completes is obviously constrained by how much of
their time an experimenter has. However, the more tasks a participant completes, the more
the study will be able to say about which types of tasks the tool is most effective in
supporting and the more data can be collected to substantiate these benefits. Clearly, there
is a complex interplay between the number of tasks, study duration, task difficulty, and
recruiting. One way to inform these tradeoffs is through data: piloting the tasks (discussed in
Section 8) can help determine how long they take participants to complete.

5.6 Task Difficulty

One challenging aspect of task design is predicting how difficult a task will be. One solution is to
test potential tasks, observing their difficulty before committing to one. For example, one might
select a variety of tasks and have several participants attempt all of them as part of piloting
(Section 8). This will provide a sense of which tasks are least and most difficult. Alternatively, if a
task is described as a bug report, it may be possible to infer the task’s difficulty by looking at how
long the bug took to be closed and what information was required to resolve it.

6 Measuring Outcomes

A central choice in designing a tool evaluation experiment is selecting and measuring the
outcomes of developers’ work on a task. Other work has addressed the basics of measure-
ment (e.g., in software engineering, the goal-question-metric approach advocated by Basili
et al. (1994) is a good place to start). In this paper, we focus on practical advice for
measuring specific outcomes in clean and valid ways.

In our systematic review, we found a wide range of outcomes beingmeasured, including task
completion, time on task, failure detection, search effort, accuracy, precision, correctness,
solution quality, program comprehension, confidence, usability, utility, mistakes, and many
other measures specific to the tools being evaluated. In this section, we focus specifically on the
three most common outcome variables: success on task, time on task, and tool usefulness.

6.1 Measuring Success on Task

For software engineering tasks, defining success involves determining three things: (1) the
goal state or states that a participant must reach to be counted as successful, (2) a method for
determining when a goal state has been reached, and (3) a method of communicating the
goal to participants that all participants will interpret similarly. If not defined clearly or not
followed consistently, each of these are potential sources of extraneous variation which can
lead to undue negative results.

6.1.1 Identifying Goal States

A challenge in identifying goal states is that there are often many ways for a participant to be
successful. To illustrate, let us consider (Ko and Myers 2009), in which participants were given
30 min per bug report and asked to use a new debugging tool to diagnose problems reported in
two bug reports, each taken from an open source project. The conceptual definition of success
used in this studywas the elimination of the undesirable behavior described in the bug report. This
conceptual definition was not sufficient to measure success, however. For example, one of the
bug reports required a checkbox to be removed from a dialog box. There were multiple changes

128 Empir Software Eng (2015) 20:110–141

that could have achieved this, including hiding the checkbox, removing the code that added the
checkbox but keeping the checkbox construction, or commenting all code out that was related to
the checkbox. The patch that was actually committed removed all traces of the checkbox from the
implementation. The most ecologically valid definition of success would have been to require
participants to write the patch exactly as submitted to the open source project. This would also
have been quite restrictive, as most participants did not make exactly this change.

Even after preliminary analysis, pilot studies revealed that there were in fact many more
possible changes than those the authors had anticipated. Therefore, rather than try to
enumerate them all, the authors chose a more relaxed notion of success: the developers
would write an explanation of the failure in terms of a sequence of events leading to failure
and then propose a modification to the source code. To judge these explanations and
proposed changes, the authors developed a grading rubric for comparing the proposed change
to the patch submitted in the actual project. This approach introduced variation in the judges’
ability to consistently score the responses, but allowed for variability in participants’
solutions. It was also the only goal state that was both easy to explain to participants
and feasible to achieve in a 30-min task. To ensure that the scoring rubric was reliable, the
authors evaluated the inter-rater reliability of the judges’ scores (Gwet 2010),.

Whether participants fix a bug, find a part of a program, make a decision, collaborate, or
perform any other kind of software engineering activity, identifying goal states that count as
success requires a careful analysis of the possible choices that participants might make.
Again, a standard way to identify possible outcomes is through piloting (Section 8), allowing
the experimenter to observe choices participants may make in the real study.

6.1.2 Determining When a Goal State is Reached

The second part of defining success on task is to define how the goal states will be observed.
One decision here is whether the experimenter will make the determination (either by
watching the participant work or via automated detection) or whether the participant will
be responsible for telling the experimenter when they believe they have succeeded.

If the experimenter will monitor for success, it is helpful to know in advance the possible
states that count as success. Detecting goal states through observation, such as by watching
over the shoulder of a developer, can be error prone, and so it can be helpful for experi-
menters to practice. Experimenters may practice during piloting (Section 8); to train multiple
experimenters to detect success, the pilots can be screen captured, so that the participants’
paths to success can be observed repeatedly. Another approach to detecting success is to
automate it, gathering data from a tool or integrated development environment that can
reliably indicate when someone has succeeded. For example, one might use an automated
test suite that can be run by the participant and define success as when all of the test cases
pass, as was done in Ko and Wobbrock’s study (2010) and in Holmes and Walker (2013).
These automated approaches can be more precise by avoiding noise in manual detection, but
require a researcher to identify all of the goal states in advance. This can be difficult, as
developers often behave unexpectedly and achieve success in many ways.

Alternatively, the participants may determine for themselves when they believe they have
succeeded. This is the most ecologically valid choice, since, in practice, developers do not
have an oracle that notifies them when they have succeeded. This also ensures that the goal
state will be easily observable, because it requires participants to explicitly communicate
their success to the experimenter. This choice has the tradeoff, however, of introducing
variation in how long a participant might take to complete a task, as individual participants
may vary in the confidence they feel to be necessary to determine that they have succeeded.

Empir Software Eng (2015) 20:110–141 129

One can try to influence this by providing guidance, but this can be difficult to convey
unambiguously. Another approach is to give participants a fixed time period in which to
work and ask them to use any remaining time to increase their confidence in their answer.
However, this does not allow capturing time on task as an outcome measure.

6.1.3 Defining Success to Participants

The third aspect of defining success on task is unambiguously communicating the goal to
participants. When participants themselves determine when they are successful, participants
confused about what counts as success will tend to ask the experimenter if they are done. In
this case, it is helpful to repeat the definition of success to them in a way that does not
artificially influence their ability to succeed (which would confound the results of the study).
When the experimenter is monitoring for success, participants may still ask if they have
succeeded with the task simply because they want to be done. In this case, the experimenter
can say, “I am unable to answer that question” and ask them to continue until they are done.
Both of these scenarios can be frustrating for participants, and so it can be valuable to invest
time in effectively and unambiguously communicating the task goal to participants.

6.2 Measuring Time on Task

Another popular outcome measure is time on task. To define it, one must precisely detail: (1)
when a task starts and ends and (2) who will determine when the participant has finished.

The choice of a start and end point is really a choice about what constitutes “the task.” For
example, a task could start immediately after the experimenter hands the participant a written
description of the task. This would include the time required to read and comprehend the
description, introducing the variability in participants’ reading speed and the uncertainty as
to whether they read all the information, skimmed it, or glanced at just the first few lines.
One study mitigated this variation by giving participants a packet of task instructions to read
silently while the experimenter read the same instructions aloud (Golden et al. 2005); the
participant was encouraged to ask questions when something was unclear. In this study, time
on task did not start until after the experimenter had finished reading the packet. This
ensured that every participant spent the time required to at least hear the instructions, but
it could not guarantee that they understood them. Another way to provide similar assurance
is to present task instructions in a wizard-like interface, prohibiting the participant from
advancing until an appropriate minimum reading time has elapsed or comprehension
questions are successfully answered. If the study gives developers unlimited time to read a
task before time begins, developers may be able to start planning a solution, artificially
decreasing the amount of time on task.

One must also define the end of a task; this decision is complicated by definitions of task
success. If the task has an easily identifiable goal state, one could define the end of the task
to be when the participant reaches it. However, if the participant succeeds but does not know
it, one must decide whether to tell them that they have; similarly, if they fail but believe they
have succeeded, one must decide whether to tell them that they have not succeeded. The
decision here is ultimately on whether the time on task should include the time it takes for
developers to both be successful and know they are successful. To claim that a tool helps
developers succeed in a real-world context, the definition should probably also include the
time it takes for a developer to decide they are done. This definition, however, threatens
ecological validity, since the participant may say they have succeeded, when in fact they
have not (in real life, the developer would only find out through later testing). All of these

130 Empir Software Eng (2015) 20:110–141

options introduce variation into time measurements; the definition one chooses should
therefore account for other variables being measured.

Clearly, time on task and success on task trade off with each other (Wickelgren 1977).
Participants can often work faster and less carefully, reducing time, but also lowering the
quality of their work; they may also work more slowly and carefully, increasing time and
success. Because of this tradeoff, it is helpful to measure both, so that one can see how each
developer managed speed and quality. If variation in developer performance is a concern, it
can be helpful to communicate to participants whether speed or quality is more important, so
they behave more consistently as a group, minimizing variation in measurements. To
communicate this tradeoff,, the study can manipulate the incentive structure in the experi-
ment. For example, a study can encourage participants to work more quickly by providing
bonus pay for lower time on task. Or, alternatively, a study could encourage higher quality
work by providing a bonus for a correct answer. Of course, all of these measures can threaten
the realism of the study, since developers in practice likely make their own individual
choices about speed and quality, independent of their work environment. These challenges
again highlight the importance of considering other sources of evaluation insight, such as
qualitative data, to help interpret the quantitative results of an experiment.

6.3 Measuring Usefulness

Many of the papers in our systematic review attempted to measure participants’ opinions of
the usefulness of a tool, which generally means that the tool provides functionality that
satisfies a need or provides a benefit. Many experiments measured this by directly asking
developers whether they found the tool “useful”, whether they would “consider using it in
the future”, and of course, asking more qualitative questions about what was useful and why.
These and related measures attempt to assess the likelihood of the experimental tool being
used in a hypothetical future in which a tool was widely available.

Unfortunately, attempting to quantify usefulness is difficult and these self-report mea-
surements often fail to capture the multidimensional nature of usefulness. Whether a tool is
useful depends on developer’s expectations about what it can accomplish for them, how
motivated they are to use a new tool, how problematic their alternative tools are, and of
course, the nature of their software engineering work. Whether a developer reports a tool as
useful can also depend on whether they feel obligated to please an experimenter. For
example, Dell et al. (2012) found that when interviewing participants about a novel system,
they were 2.5 times more likely to prefer the technology they believed to be designed by the
interviewer, even when the technology was inferior. Therefore, simply asking a developer
whether they find a tool “useful” is likely not to produce meaningful data.

Despite these validity concerns, self-report data is a common way to assess usefulness
that can be measured through validated instruments. Rather than simply ask if they find a
tool “useful”, one can instead use a previously validated instrument, such as the Technology
Acceptance Model (embodied as a questionnaire), which has been studied extensively
(Chuttur 2009). This model and its standard questionnaire (Davis 1989) prompts users to
rate their agreement with several specific aspects of utility, such as “Using this tool improves
the quality of the work that I do,” “Using this tool gives me greater control over my work,”
“I am more productive with this tool”, and “This tool makes my job easier”. These questions
focus on concrete aspects of the tool’s applicability to the developer’s work context.

Note that the usefulness of a tool and its usability are entirely different constructs. A
useful tool provides functionality that satisfies a need or provides a benefit, whereas a usable
tool is accessible, learnable, understandable, etc., but not necessarily useful. Therefore, a tool

Empir Software Eng (2015) 20:110–141 131

could be both very usable and useless; a tool could also be useful but entirely unusable. That
said, if the goal is to measure usefulness, the usability of a tool must be good enough for a
developer to successfully exploit the utility of a tool, especially in the context of a brief
experiment. If the usability is poor, participants may not have enough time to find, under-
stand, and use the useful functionality to accomplish a task. Participants’ opinions about the
tools may also be affected by poor usability, making it difficult to know whether the tool
would be useful in the absence of usability problems. There are many ways to assess
usability before running a study, including validated instruments such as the System
Usability Scale (SUS) (Bangor et al. 2008) and a wide range of lab-based usability methods
(Rubin and Chisnell 2008), including methods that have been adapted to be specifically
useful for preparing software development tools for controlled experiments (Ko et al. 2002).

7 Debriefing and Compensation

After a participant has completed the tasks, it is common practice in human subjects research
to debrief the participant about the study and compensate them. The debriefing may also
include other topics, including those that the experimenter did not detail during informed
consent. These include:

& Explaining to the participant what the study investigating.
& Explaining why was the study was important to conduct.
& Explaining how the participant’s data will be used to investigate the question.
& Explaining the correct solutions to the tasks? (Participants should not leave a study

feeling as if they “failed,” especially when tasks may have been designed to ensure that
not every participant would succeed. Many ethicists feel that is a necessary part of
research with human participants (Walther 2002)).

& If the participant did not use the experimental tool, it may be instructive for them to try it
and provide feedback.

& Providing contact information so that the participant can ask further questions if they
want to know more about the research.

& Instructions about information that they should not share with others. For example, if
one is recruiting from a student population, students might share the answers to the tasks
with their friends, who may later participate in the study.

Debriefing can also be an opportunity to get speculative feedback from participants about
how they felt about the tool. One can solicit such feedback more formally through a semi-
structured interview, gathering data on the participants’ perceptions of the tool, the strategies
it supported, and the features that they thought were most helpful.

8 Piloting

Designing a study with human participants is necessarily an iterative process. Running an
experiment for the first time, like testing software for the first time, will reveal a range of
problems, which might include confusing study materials, bugs in the tool, confusion about
the tasks, and unanticipated choices made by participants. Therefore, a critical step in
preparing an experiment is to run pilots (Keppel 1982): test runs of a study intended to find
sources of extraneous variation. Our systematic review suggests that pilots may not yet be
standard practice in software engineering research. We found that only 11 of the 345 studies

132 Empir Software Eng (2015) 20:110–141

explicitly mentioned performing a pilot with human participants prior to running the
experiment.

Some researchers like to begin with a series of “sandbox” pilots. Sandbox pilots are pre-
pilots in which the researchers themselves are the participants. Sandbox pilots are easy to
schedule and can reveal problems with the experiment without the trouble of recruiting
outsiders. These can be particularly helpful when testing a novel tool that may still have
bugs, performance problems, or serious usability problems that make it impossible to
complete the tasks; but they can be helpful in catching a wide range of problems with the
tool, tasks, materials, and measures. Sandbox pilots are an optional optimization: they help
find and remove problems before bringing in the true pilot participants, thereby saving
participant time and potentially saving experimenters’ money.

Another optional pre-pilot step is to do analytical evaluations, which do not require
participants. The Cognitive Walkthrough (CW) (Polson et al. 1992) is one such method that
is accessible to researchers who are not HCI specialists (John and Packer 1995; Ko et al.
2002). One can use the CW to “walk through” an experiment from the perspective of a
participant to find problems that could cause extraneous variation in developer behavior. For
example, Ko et al. (2002) describe how the CW was used to improve an experimental
evaluation of a testing tool for spreadsheet users. The original (pre-CW) experiment had
failed to produce clear outcomes of any sort. The CW revealed several possible causes,
uncovering problems in the design of the task; problems in the task instructions; and user
interface problems with the tool and its environment that were so distracting, participants
were likely to veer off into areas of no relevance to the experimental hypotheses. When the
researchers resolved these problems and re-ran a new version of the experiment, it produced
clean, clear outcomes that demonstrated the efficacy of the tool (Rothermel et al. 2000).

Whether or not one first begins with pre- piloting, the most important phase of piloting is
testing the study design with the actual setup in which the study will be conducted, with as
close to the same participants, physical set-up, handouts, tutorials, questionnaires, proce-
dures, and experimenters as possible (although running pilots with lower fidelity is appro-
priate if one is still developing tasks and materials). Piloting can help reveal problems with
all of these aspects, including the tool itself. For novel tools, it can be particularly important
to find usability problems with a tool’s user interface that interfere with participants’ ability
to succeed on the tasks. After conducting each pilot run, the problems discovered in the tool
or study design should be fixed. Any data collected should be discarded, as the purpose of a
pilot is to find problems in the experiment that need to be fixed, not to gather data (as the
study setup is in flux, such data would have much extraneous variation).. After the problems
have been fixed, another pilot run is conducted to test the fixes and discover other problems
that may emerge. (Note that the presence of usability problems does not mean that the tool is
not useful, nor is it necessary that a research tool be perfectly polished or industrial strength:
rather, usability problems can simply make it difficult to successfully observe and measure a
tool’s impact, and so they often must be fixed in order to ensure the best chance of observing
differences, if such differences exist). Determining when piloting stops and conducting the
study begins requires balancing the benefits of pilots – lowering the risk of an undue negative
result – against the costs – additional time and recruiting.

9 Conclusion

Clearly, there is more to designing software engineering tool evaluation experiments with
human participants than we have described. For example, we have not addressed the

Empir Software Eng (2015) 20:110–141 133

complexities of statistical hypothesis testing (for instance, many distributions are not
normally distributed, requiring non-parametric tests). There are also sources of variation
due to language and cultural differences that require special attention (Lazar et al. 2010).
There are also many study design considerations that may only come with significant
experience with a certain domain and the software developers who work in it.

While we believe that controlled experiments are a critical part of generating robust
knowledge about the efficacy of software engineering tools, they are not a panacea. Because
of the necessary loss of realism in experiments, they are inherently more difficult to generalize
to real-world contexts. There is also a strong tendency in many research communities (e.g., HCI
(Kaptein and Robertson 2012)), to overemphasize the importance of statistical significance,
ignoring other arguably more important outcomes, such as effect size. After all, it is not only the
difference between two technologies that is significant to both researchers and practitioners, but
also the magnitude and meaning of that difference (Aranda 2011).

Other empirical methods can effectively complement controlled experiments and make
up for their deficiencies. For example, case studies, when performed rigorously (Flyvbjerg
2006; Runeson and Höst 2009; Yin 2003), can produce rich, real-world data as to how
software engineering tools can or cannot be integrated into practice. Case studies have little
ability to isolate variables (the strength of controlled experiments), but because they are not
controlled, they avoid the necessarily artificial and narrow view of the controlled experi-
ment, which have been criticized for failing to integrate knowledge into more general and
powerful explanations (Newell 1973), and even for inhibiting innovation (Olsen 2007,
Greenburg and Buxton 2008). Readers are encouraged to consult the many high quality
introductions to case studies and other methods (Runeson and Höst 2009; Dybå et al. 2011;
Dittrich 2007) and empirical software engineering more broadly (Wohlin et al. 2000; Juristo
and Moreno 2001; Shull et al. 2006).

We hope that the methodological guidance we have provided, combined with the existing
empirical software engineering literature, will better arm researchers with practical guidance
in using quantitative controlled experiments to evaluate software engineering tools with
human participants.

Acknowledgments We thank Bonnie E. John for her early contributions to this work. This material is based
in part upon work supported by the NSF Grant CCF-0952733 and AFOSR FA9550-0910213 and FA9550-10-
1-0326. Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the sponsors.

Appendix

Past literature has considered the role of human participants in software engineering research
before 2002 (Sjøberg et al. 2005). We still know little, however, about the trends in empirical
evaluations with human participants in software engineering from the past decade. To

0%

25%

50%

75%

100%

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Fig. 3 Proportion of papers contributing software engineering tools

134 Empir Software Eng (2015) 20:110–141

address this gap, and to support the methodological discussion in this paper, we conducted a
systematic literature review (Kitchenham et al. 2010) of research from the past decade.

We focused on publications from four of the top software engineering research venues:
the International Conference on Software Engineering (ICSE), the ACM SIGSOFT
Symposium on Foundations of Software Engineering (and associated European Software
Engineering Conference in alternating years), ACM Transactions on Software Engineering
and Methodology, and IEEE Transactions on Software Engineering. We chose these
primarily because of their status as flagship software engineering journals and con-
ferences, but also because of their focus on software engineering tools (as opposed to
studies focused on understanding software engineering practice). Our sample included
all of the research publications in these four venues that were published from 2001 to
2011. For conferences, we included only the technical proceedings, excluding experience
reports and software engineering education research papers. The resulting set included 1,701
publications.

To begin, we first sought to identify the subset of these papers that reported on new
technologies, methods, formalisms, design patterns, metrics, or other techniques
intended to be used by a software professional of some kind. The first two authors redundantly
classified a random sample of 99 of the 1,701 papers (the Cohen’s Kappa of this classification
was 0.8, considered near perfect agreement). We then split the remaining papers and
classified them independently in random order, identifying 1,392 papers (81 % of all
publications) describing some form of software engineering “tool.” As seen in Fig. 3, the
proportion of papers contributing tools has not changed significantly in the past decade
(χ2(10,N=1,701) = 11.1, p=.35).

To narrow the sample of “tool papers” to “tool papers with evaluations,” we checked each
paper for an evaluation of the tool (including evaluations of both internal properties such as
performance or accuracy and external properties of how the tool is used by people). We
counted an evaluation as “empirical” if it included any quantitative or qualitative data from
observation of the tool’s behavior or use. Therefore, if the paper only described a task that
could be performed with a tool, but was not actually performed, the paper was not included.
Achieving high reliability when redundantly classifying the same 99 papers (Kappa=0.83),

0%

25%

50%

75%

100%

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Fig. 4 Proportion of papers contributing tools that also reported an empirical evaluation of the tool

0%
10%
20%
30%
40%
50%

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Fig. 5 Proportion of studies contributing evaluations examining how the authors or recruited participants
used the tool. Contrary to the graph in Fig. 4, this graph shows a significant decline, suggesting that papers are
increasingly evaluating the non-human use of tools

Empir Software Eng (2015) 20:110–141 135

we split and classified the remaining papers, identifying 1,065 reporting on both a tool and
empirical evaluation of it; 77 % of tool papers included an empirical evaluation. As seen in
Fig. 4, the proportion of papers contributing tools and reporting empirical evaluations of
them has increased significantly in the past decade from about 50 % to over 90 % (χ2(10,N=
1,392) = 117.9, p<.001). This shows that empirical evaluations are now widely adopted and
perhaps even expected for publication of novel tool contributions.

To further narrow our sample to tool papers that evaluated some aspect of the use of a
tool, we identified the individual studies reported in each paper. We counted any study with a
unique method within a paper as a separate study (lab studies that were run multiple times or
case studies run on multiple programs were counted as a single study). After achieving high
reliability on this definition (Kappa=0.62), we found 1,141 studies across 1,065 papers.

With the studies in each paper identified, we then classified each of these studies as either
involving the human use of the tool or not. Any person using the tool for some task, including
the paper authors themselves if they described their own use of the tool, was included. After
achieving high reliability on this classification (Kappa=.70), we classified the papers, finding
345 studies across 289 papers that involved human use of a tool. As shown in Fig. 5, the
proportion of studies that involve developers or other software professionals using a tool is
actually on a slow decline in our sample, from a peak in 2002 of 44% to only 26 % of papers in
2011 (χ2(10,N = 1141) = 21.0, p<.05). This means that although more evaluations are being
done, a smaller proportion of them are evaluating a tool’s use by humans (instead evaluating its
internal characteristics such as speed, accuracy, or correctness).

The subset of tool evaluations of human use that recruited human participants and did not
use authors is shown in Fig. 6. This plot shows that although studies evaluating tool use are
less common (Fig. 5), an increasing proportion of these studies involve human participants.
Therefore, when software engineering researchers are studying how a tool is used, they are
increasingly recruiting participants rather than using themselves.

Most of the studies instead used lab studies (conducting an study in a controlled setting
with participants), interviews (demonstrating the tool and asking participants to respond to
spoken questions about it), surveys (demonstrating the tool and asking participants to
respond to written questions about it), field deployments (observations of the use of the tool

0%
10%
20%
30%
40%
50%

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Fig. 6 Proportion of studies evaluating tool use that involved non-author human participants. Although
studies of use are less common (Fig. 5), they are increasingly involving human participants

0%
20%
40%
60%
80%

100%

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

experience report lab field interview survey

Fig. 7 Proportion of methods used in studies evaluating human use of a tool

136 Empir Software Eng (2015) 20:110–141

in real settings on real tasks), and a method we will call tool use experience reports2 (the use
of the tool with a specific program or data set, either by the authors or some other person).
As shown in Fig. 7, the most common method by far was the tool use experience report,
which was the method of 67 % of the 345 studies evaluating human use of a tool. As seen in
Fig. 7, the other four methods were much less common. The relative proportion of tool
application studies compared to other types has not changed significantly in the past decade
(χ2(10,N=345) = 9.6, p=.473). The frequency of experiments per year has also not changed
significantly over the past decade (χ2(10,N=345) = 8.2, p=.611). Figure 8 shows that only a
small subset of these studies are controlled experiments. In fact, the number of experiments
evaluating tool use has ranged from 2 to 9 studies per year in these four venues, for a total of
only 44 controlled experiments with human participants over 10 years.

These results indicate several major trends in the methods that software engineering
researchers use to evaluate tools: (1) empirical evaluations are now found in nearly every
paper contributing a tool, (2) the proportion of these evaluations that evaluate the human use
of the tool is on the decline, (3) an increasing proportion of human use evaluations involve
non-author participants, but (4) experiments evaluating human use are still quite rare.

These findings are subject to several threats to validity. We considered only 4 journals and
conference proceedings in our review, focusing on those with a strong reputation for contributing
new tools. There are many other software engineering publication venues where such work
appears. It is possible that the trends we observed are particular to the venues we chose; for
example, Buse et al. (2011) found that while ICSE and FSE showed no signs of increases in user
evaluations, OOSPLA, ISSTA, and ASE did. There may also be evaluations with human
participants that were never published or that were published in other venues after being rejected
by the venues that we did analyze.

References

Anderson JR, Reiser BJ (1985) The LISP tutor. Byte 10:159–175
Aranda J (2011) How do practitioners perceive Software Engineering Research? http://catenary.wordpress.com/

2011/05/19/how-do-practitioners-perceive-software-engineering-research/. Retrieved: 08-01-2011
Atkins DL, Ball T, Graves TL, Mockus A (2002) Using version control data to evaluate the impact of software

tools: A case study of the version editor. IEEE Trans Softw Eng 28(7):625–637
Bangor A, Kortum PT, Miller JT (2008) An empirical evaluation of the system usability scale. Int J Human-

Comput Interact 24(6):574–594
Basili VR (1993) The experimental paradigm in software engineering. Int Work Exp Eng Issues: Crit Assess

Futur Dir 706:3–12

2 Studies using this last method were often referred to by authors as “case studies,” but this usage conflicts
with the notion of case studies as empirical investigations of some phenomenon within a real-life context (Yin
2003), as the tool use experience reports in these papers were not performed in real life contexts. “Case study”
was also used to refer to evaluations without human use.

0%

10%

20%

30%

40%

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Fig. 8 Proportion of papers evaluating use that were experiments. The number of experiments ranged from 2
to 9 per year

Empir Software Eng (2015) 20:110–141 137

http://catenary.wordpress.com/2011/05/19/how-do-practitioners-perceive-software-engineering-research/
http://catenary.wordpress.com/2011/05/19/how-do-practitioners-perceive-software-engineering-research/

Basili VR (1996) The role of experimentation in software engineering: Past, current, and future. International
Conference on Software Engineering, 442–449

Basili VR (2007) The role of controlled experiments in software engineering research. Empirical Software
Engineering Issues, LNCS 4336, Basili V et al. (Eds.), Springer-Verlag, 33–37

Basili VR, Selby RW, Hutchens DH (1986) Experimentation in software engineering. IEEE Trans Softw Eng,
733–743, July

Basili VR, Caldiera G, Rombach HD (1994) The goal question metric approach. In Encyclopedia of Software
Engineering, John Wiley and Sons, 528–532

Beringer P (2004) Using students as subjects in requirements prioritization. International Symposium on
Empirical Software Engineering, 167–176

Boehm BW, Papaccio PN (1988) Understanding and controlling software costs. IEEE Trans Softw Eng SE-
14(10):1462–1477

Breaugh JA (2003) Effect size estimation: factors to consider and mistakes to avoid. J Manag 29(1):79–97
Bruun A, Gull P, Hofmeister L, Stage J (2009) Let your users do the testing: a comparison of three remote

asynchronous usability testing methods. ACM Conference on Human Factors in Computing Systems,
1619–1628

Buse RPL, Sadowski C, Weimer W (2011) Benefits and barriers of user evaluation in software engineering
research. ACM Conference on Systems, Programming, Languages and Applications

Carver J, Jaccheri L, Morasca S, Shull F (2003). Issues in using students in empirical studies in software
engineering education. Software Metrics Symposium, 239–249

Chuttur MY (2009). Overview of the technology acceptance model: Origins, developments and future
directions. Indiana University, USA, Sprouts: Working Papers on Information Systems

Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology.
MIS Q 13(3):319

Dell N, Vaidyanathan V, Medhi I, Cutrell E, Thies W (2012) “Yours is better!” Participant response bias in
HCI. ACM Conference on Human Factors in Computing Systems, 1321–1330

Dieste O, Grim´n A, Juristo N, Saxena H (2011) Quantitative determination of the relationship between
internal validity and bias in software engineering experiments: Consequences for systematic literature
reviews. International Symposium on Empirical Software Engineering and Measurement, 285–294

Dig D, Manzoor K, Johnson R, Nguyen TN (2008) Effective software merging in the presence of object-
oriented refactorings. IEEE Trans Softw Eng 34(3):321–335

Dittrich Y (ed) (2007) Special issue on qualitative software engineering research. Inf Softw Technol,
49(6):531–694. doi:10.1016/j.infsof.2007.02.009

Dybå T, Kampenes V, Sjøberg D (2006) A systematic review of statistical power in software engineering
experiments. Inf Softw Technol 48(8):745–755

Dybå T, Prikladnicki R, Rönkkö K, Seaman C, Sillito J (2011) Qualitative research in software engineering.
Empir Softw Eng 16(4):425–429

Easterbrook S, Singer J, Storey M, Damian D (2008) Selecting empirical methods for software engineering
research, in Guide to Advanced Empirical Software Engineering, Springer, 285–311

Feigenspan J, Kastner C, Liebig J, Apel S, Hanenberg S (2012). Measuring programming experience.
International Conference on Program Comprehension, 73–82

Fenton N (1993) How effective are software engineering methods? J Syst Softw 22(2):141–146
Flyvbjerg B (2006) Five misunderstandings about case study research. Qual Inq 12(2):219–245
Glass RL, Vessey I, Ramesh V (2002) Research in software engineering: an analysis of the literature. Inf

Softw Technol 44(8):491–506
Golden E, John BE, Bass L (2005) The value of a usability-supporting architectural pattern in software

architecture design: a controlled experiment. ACM/IEEE International Conference on Software Engineering
Greenberg S, Buxton B (2008) Usability evaluation considered harmful (some of the time). ACM Conference

on Human Factors in Computing Systems, 111–120
Gwet KL (2010) Handbook of inter-rater reliability, 2nd edn. Advanced Analytics, Gaithersburg
Hanenberg S (2010) An experiment about static and dynamic type systems: doubts about the positive impact

of static type systems on development time. ACM International Conference on Object-Oriented Pro-
gramming Systems Languages and Applications (OOPSLA), 22–35

Hannay JE, Sjøberg DIK, Dyba T (2007) A systematic review of theory use in software engineering
experiments. IEEE Trans Softw Eng 33(2):87–107

Holmes R, Walker RJ (2013) Systematizing pragmatic software reuse. ACM Trans Softw Eng Methodol
21(4), Article 20: 44 pages

John B, Packer H (1995) Learning and using the cognitive walkthrough method: a case study approach. ACM
Conference on Human Factors in Computing Systems, 429–436

Juristo N, Moreno AM (2001) Basics of software engineering experimentation. Springer

138 Empir Software Eng (2015) 20:110–141

http://dx.doi.org/10.1016/j.infsof.2007.02.009

Kampenes V, Dybå T, Hannay J, Sjøberg D (2007) A systematic review of effect size in software engineering
experiments. Inf Softw Technol 49(11–12):1073–1086

Kaptein M, Robertson J (2012) Rethinking statistical analysis methods for CHI. ACM Conference on Human
Factors in Computing Systems, 1105–1114

Kelleher C, Pausch R (2005). Stencils-based tutorials: design and evaluation. ACM Conference on Human
Factors in Computing Systems, 541–550

Keller FS (1968) Good-bye teacher. J Appl Behav Anal 1:79–89
Keppel G (1982) Design and analysis: a researcher’s handbook, 2nd edn. Prentice-Hall, Englewood Cliffs
Kersten M, Murphy G (2006) Using task context to improve programmer productivity. ACM Symposium on

Foundations of Software Engineering, 1–11
Kitchenham BA, Pfleeger SL, Pickard LM, Jones PW, Hoaglin DC, Emam, K.E., Rosenberg J (2002)

Preliminary guidelines for empirical research in software engineering. IEEE Trans Softw Eng
28(8):721–734

Kitchenham BA, Brereton P, Turner M, Niazi MK, Linkman S, Pretorius R, Budgen D (2010) Refining the
systematic literature review process—two participant-observer case studies. Empir Softw Eng 15(6):618–653

Kittur A, Chi EH, Suh B (2008) Crowdsourcing user studies with Mechanical Turk. ACM Conference on
Human Factors in Computing Systems, 453–456

Ko AJ, Myers BA (2009) Finding causes of program output with the Java Whyline. ACM Conference on
Human Factors in Computing Systems, 1569–1578

Ko AJ, Wobbrock JO (2010) Cleanroom: edit-time error detection with the uniqueness heuristic. IEEE
Symposium on Visual Languages and Human-Centric Computing, 7–14

Ko AJ, Burnett MM, Green TRG, Rothermel KJ, Cook CR (2002) Using the Cognitive Walkthrough to
improve the design of a visual programming experiment. J Vis Lang Comput 13:517–544

Ko AJ, DeLine R, Venolia G (2007) Information needs in collocated software development teams. Interna-
tional Conference on Software Engineering (ICSE)

LaToza TD, Myers BA (2010) Developers ask reachability questions. International Conference on Software
Engineering (ICSE), 185–194

LaToza, TD, Myers BA (2011) Visualizing call graphs. IEEE Visual Languages and Human-Centric Com-
puting (VL/HCC), Pittsburgh, PA

LaToza TD, Myers BA (2011) Designing useful tools for developers. ACM SIGPLAN Workshop on
Evaluation and Usability of Programming Languages and Tools (PLATEAU), 45–50

Lazar J, Feng JH, Hochheiser H (2010) Research methods in human-computer interaction. Wiley
Lott C, Rombach D (1996) Repeatable software engineering experiments for comparing defect-detection

techniques. Empir Softw Eng 1:241–277
Martin DW (1996) Doing psychology experiments, 4th edn. Brooks/Cole, Pacific Grove
McDowall D, McCleary R, Meidinger E, Hay RA (1980) Interrupted Time Series Analysis, 1st Edition.

SAGE Publications
Murphy GC, Walker RJ, Baniassad ELA (1999) Evaluating emerging software development technologies:

lessons learned from assessing aspect-oriented programming. IEEE Trans Softw Eng 25(4):438–455
Murphy-Hill E, Murphy GC, Griswold WG (2010). Understanding context: creating a lasting impact in

experimental software engineering research. FSE/SDP Workshop on Future of Software Engineering
Research

Newell A (1973) You can’t play 20 questions with nature and win: projective comments on the papers of this
symposium. In: Chase WG (ed) Visual information processing. Academic, New York

Nickerson RS (1998) Confirmation bias: a ubiquitous phenomenon in many guises. Rev Gen Psychol
2(2):175–220

Nimmer JW, Ernst MD (2002) Invariant inference for static checking: an empirical evaluation. SIGSOFT
Softw Eng Notes 27(6):11–20

Olsen DR (2007) Evaluating user interface systems research. ACM Symposium on User Interface Software
and Technology, 251–258

Polson P, Lewis C, Rieman J, Wharton C (1992) Cognitive walkthroughs: a method for theory-based
evaluation of user interfaces. Int J Human-Comput Interact 36:741–773

Ramesh V, Glass RL, Vessey I (2004) Research in computer science: an empirical study. J Syst Softw 70(1–
2):165–176

Rombach HD, Basili VR, Selby RW (1992) Experimental software engineering issues: critical assessment and
future directions. International Workshop Dagstuhl Castle (Germany), Sept. 14–18

Rosenthal R (1966) Experimenter effects in behavioral research. Appleton, New York
Rosenthal R, Rosnow R (2007) Essentials of behavioral research: methods and data analysis. McGraw-Hill,

3rd edition

Empir Software Eng (2015) 20:110–141 139

Rosenthal R, Rubin DB (1978) Interpersonal expectancy effects: the first 345 studies. Behav Brain Sci
1(3):377–386

Ross J, Irani L, Silberman MS, Zaldivar A, Tomlinson B (2010) Who are the crowdworkers? Shifting demo-
graphics in Mechanical Turk. ACM Conference on Human Factors in Computing Systems, 2863–2872

Rothermel KJ, Cook C, Burnett MM, Schonfeld J, Green TRG, Rothermel G (2000) WYSIWYT testing in the
spreadsheet paradigm: an empirical evaluation. ACM International Conference on Software Engineering, 230–239

Rubin J, Chisnell D (2008) Handbook of usability testing: how to plan, design, and conduct effective tests. Wiley
Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software engineer-

ing. Empir Softw Eng 14(2):131–164
Shull F, Singer J, Sjøberg DIK (2006) Guide to advanced empirical software engineering. Springer
Sillito J, Murphy G, De Volder K (2006) Questions programmers ask during software evolution tasks. ACM

SIGSOFT/FSE, 23–34
Sjoberg DIK, Dyba T, Jorgensen M (2007) The future of empirical methods in software engineering research.

In 2007 Future of Software Engineering (FOSE ’07), 358–378
Sjøberg D, Anda B, Arisholm E, Dyba T, Jorgensen M, Karahasanovic A, Koren E, Voka M (2003) Conducting

realistic experiments in software engineering. Empirical Software Engineering and Measurement
Sjøberg DIK, Hannay JE, Hansen O, Kampenes VB, Karahasanović A, Liborg N-K, Rekdal AC (2005) A

survey of controlled experiments in software engineering. IEEE Trans Softw Eng 31(9):733–753
Steele CM, Aronson J (1995) Stereotype threat and the intellectual test performance of African-Americans. J

Personal Soc Psychol 69:797–811
Tichy WF (1998) Should computer scientists experiment more? 16 excuses to avoid experimentation. IEEE

Comput 31(5):32–40
Tichy WF, Lukowicz P, Prechelt L, Heinz EA (1995) Experimental evaluation in computer science: a

quantitative study. J Syst Softw 28(1):9–18
Walther JB (2002) Research ethics in internet-enabled research: human subjects issues and methodological

myopia. Ethics Inf Technol 4(3):205–216
WickelgrenWA (1977) Speed-accuracy tradeoff and information processing dynamics. Acta Psychol 41(1):67–85
Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in software

engineering: an introduction. Springer
Yin RK (2003) Case study research: design and methods. Sage Publications
Zannier C, Melnik G, Maurer F (2006) On the success of empirical studies in the international conference on

software engineering. ACM/IEEE International Conference on Software Engineering, 341–350

Andrew Ko is an Assistant Professor at the University of Washington Information School and an Adjunct
Assistant Professor in Computer Science and Engineering. His research areas are human-computer interaction,
computing education, and software engineering. His research specifically focuses on software defects and how
people and society discover, diagnose, repair and recover from them, spanning everyone from the people use
software to the people who develop it. He is the author of over 60 peer-reviewed publications, 6 of which
received best paper awards. In 2010, he was awarded an NSF CAREER award to support his research and
teaching on evidence-based bug triage. He received his Ph.D at the Human-Computer Interaction Institute at
Carnegie Mellon University in 2008. He received degrees in Computer Science and Psychology from Oregon
State University in 2002.

140 Empir Software Eng (2015) 20:110–141

Thomas LaToza is an Asst. Project Scientist in the Department of Informatics at the University of California,
Irvine. His research has included a number of studies of software developers, published in conferences such as
ICSE and FSE. His current research focuses on information needs in software development, software design at
the whiteboard, and crowdsourcing software engineering. He has degrees in psychology and computer science
from the University of Illinois and a PhD in software engineering from Carnegie Mellon University.

Margaret Burnett is a professor in Oregon State University’s School of Electrical Engineering and Computer
Science. She has over 20 years experience in research that includes empirical components. Her current
research focuses on end-user programming, end-user software engineering, information foraging theory as
applied to programming, and gender differences in those contexts. She is also the principal architect of the
Forms/3 and the FAR visual programming languages and, together with Gregg Rothermel, of the WYSIWYT
testing methodology for end-user programmers. She was the founding project director of the EUSES
Consortium, is currently on the Editorial Board of ACM Trans. Interactive Intelligent Systems and of IEEE
Trans. Software Engineering, is on the ACM/IEEE ICSE'14 (International Conference on Software Engineer-
ing) Program Board and the ACM DIS '14 (ACM Conference on Designing Interactive Systems) Program
Committee, and has in prior years served on a variety of other ACM and IEEE conference program
committees, chairing a few of them. She also co-chairs the Academic Alliance of the National Center for
Women In Technology (NCWIT), and her photo includes the NCWIT signature "red chair".

Empir Software Eng (2015) 20:110–141 141

	A practical guide to controlled experiments of software engineering tools with human participants
	Abstract
	Introduction
	Designing Tool Evaluation Experiments
	Recruiting
	Deciding Who to Recruit
	Deciding How Many Participants to Recruit
	Doing the Recruiting
	Recruiting Remote Participants

	Pre-Task Study Procedures
	Informed Consent
	Gathering Demographic Data
	Assigning Participants to an Experimental Condition
	Training Participants

	Task Design
	Feature Coverage
	Experimental Setting
	Task Origin
	Programs and Data
	Task Duration
	Task Difficulty

	Measuring Outcomes
	Measuring Success on Task
	Identifying Goal States
	Determining When a Goal State is Reached
	Defining Success to Participants

	Measuring Time on Task
	Measuring Usefulness

	Debriefing and Compensation
	Piloting
	Conclusion
	Appendix
	References

