
Optimising Compilers 2013–2014

Exercise Sheet 3

The purpose of this exercise is to gain familiarity with constraint-based analyses, particularly
0CFA (zeroth-order control-flow analysis) from Lecture 11.

1. (a) What is a higher-order function?

(b) How do higher-order functions make it harder to predict control flow within a pro-
gram?

(c) How does the 0CFA help to predict control flow?

(d) Do object-oriented programs have analysis issues related to higher-order functions?

Consider the following simple λ-calculus like language, call it L:

e ::= v | c | λv.e | e1 e2 | let v = e1 in e2 | if e1 then e2 else e3 | e1 ⊕ e2

where v ranges over variables, c ranges over integer constants, and ⊕ ranges over binary
operations.

0CFA computes information about control flow in a program by computing a subset of a pro-
gram’s data flow: the flow of functions (or function pointers). In the following, the data flow of
integer constants will also be tracked to aid understanding.

2. (a) Define informally the notion of a binding site and use site and indicate the binding
and use sites in the syntax of L.

(b) The following expression has a single program point labelling the formal parameter
x of f :

let f = (λx0.x+ x) in f 2 + f 3

Label the remaining program points (it may help to write the expression as a tree).

(c) Given flow variables αi associating sets to each program point, what is the value of
set α0 following a 0CFA? What integer values flow out of the body of the λ?

(d) Write down and explain the rule for generating constraints for let-bindings and
variables v.

(e) Consider the following expression with a partial labelling of program points:

let f = (λx.x1 0) in (let g = (λy0.y + 1) in (f g) + (g 1))

Compute the flow sets for α1 and α0.

3. (a) Calculate a full 0CFA (tracking just function values, not integer values) for the
following expression:

let f = (λx.x 0) in (f (λy.y ∗ 3)) + (f (λz.z + 1))

1



(b) Write down and explain the rule for generating constraints for functions and function
application.

4. Answer the following past paper questions:

• 2004 Paper 9 Question 3

• 2007 Paper 9 Question 16 (using the constraint-based analysis approach for part (b))

In question 2007, by escaping we mean that some part of a list passed as an input may
be returned as part of the result. For example, given f(x) = tl(x), the argument x may
escape (even though it will be just some cons cell and whenever the list x is non-empty).

Think for example:

L = cons(..., []);

x = f(L);

...

use(x)

...

If we know that argument of f does not escape and the list L is not used after the function
call, then we can free all memory allocated for L (because we know that x cannot point
there). We have to be more careful if [] above is some pre-existing list.

Past exam questions can be found at:
http://www.cl.cam.ac.uk/teaching/exams/pastpapers/t-OptimisingCompilers.html

2


