
Optimising Compilers 2012–2013

Exercise Sheet 2

The purpose of this exercise sheet is to practise register allocation, strength reduction, static
single assignment, abstract interpretation and strictness analysis.

1. (a) Briefly describe the concept of abstract interpretation, making particular mention of
safety.

Consider a form of abstract interpretation in which our abstraction function cap-
tures the possible intervals of integer arithmetic. For example given a variable x
the abstraction function α returns the interval [lx, hx] where lx is the lowest possi-
ble value of x and hx is the highest possible value of x. For variables x and y the
following properties hold for our abstraction function:

f(x + y) =[lx + ly, hx + hy]
f(x− y) =[lx − hy, hx − ly]

(b) Given the following function calculate the interval of its return value in terms of the
intervals of x and y.

int g(x, y) {
int a = x-y;
int b = x+x;
return b+a;

}

(c) An abstract interpretation of a program containing the function g ascertains the
interval of the parameters to g as α(x) = [5, 10] and α(y) = [0, 2]. Given this
information can g return 0? Give the interval of g.

2. (a) Explain the notion of a 3-argument function being strict in its second parameter,
considering both mathematical view of functions (an extra value ⊥ representing non-
termination, and the operational view of looping behaviour).

(b) Do the functions f(x, y) = f(x, y) and g(x, y) = x + y have different strictness? Do
they allow different strictness optimisations? Explain any differences between ‘strict’
in a parameter, and needing to evaluate it.

(c) Give the strictness function for f(x, y, z) = if x = 0 then y else y + z and justify it.

(d) Consider a weaker form of strictness analysis where the abstract value of an n-
argument function is just an n− argument bit vector where bit k is 1 if and only if
the concrete function is strict in parameter k. Why is this weaker? Give a program
for which strictness optimisation optimises a parameter to call-by-value but which
this weaker analysis fails to optimise.

1



3. (a) Describe the purpose of register allocation and how graph colouring can help.

(b) Describe a possible downside of a graph colouring approach in the context of JIT
compilers.

(c) Research an alternative register allocation algorithm (hint: linear scan) and briefly
contrast it with the graph colouring approach.

Please also complete the following past exam questions:

• 2002 Paper 7 Question 4

• 2004 Paper 8 Question 7

• 2005 Paper 8 Question 7 (part (b))

Past exam questions can be found at:
http://www.cl.cam.ac.uk/teaching/exams/pastpapers/t-OptimisingCompilers.html

2


