
1 . 1

[11] CASE STUDY: UNIX

1 . 2

OUTLINE
Introduction
Design Principles

Structural, Files, Directory Hierarchy
Filesystem

Files, Directories, Links, On-Disk Structures
Mounting Filesystems, In-Memory Tables, Consistency

IO
Implementation, The Buffer Cache

Processes
Unix Process Dynamics, Start of Day, Scheduling and States

The Shell
Examples, Standard IO

Summary

2 . 1

INTRODUCTION
Introduction
Design Principles
Filesystem
IO
Processes
The Shell
Summary

2 . 2

HISTORY (I)
First developed in 1969 at Bell Labs (Thompson & Ritchie) as reaction to bloated
Multics. Originally written in PDP-7 asm, but then (1973) rewritten in the "new"
high-level language C so it was easy to port, alter, read, etc. Unusual due to need
for performance

6th edition ("V6") was widely available (1976), including source meaning people
could write new tools and nice features of other OSes promptly rolled in

V6 was mainly used by universities who could afford a minicomputer, but not
necessarily all the software required. The first really portable OS as same source
could be built for three different machines (with minor asm changes)

Bell Labs continued with V8, V9 and V10 (1989), but never really widely available
because V7 pushed to Unix Support Group (USG) within AT&T

AT&T did System III first (1982), and in 1983 (after US government split Bells),
System V. There was no System IV

2 . 3

HISTORY (II)
By 1978, V7 available (for both the 16-bit PDP-11 and the new 32-bit VAX-11).
Subsequently, two main families: AT&T "System V", currently SVR4, and Berkeley:
"BSD", currently 4.4BSD

Later standardisation efforts (e.g. POSIX, X/OPEN) to homogenise

USDL did SVR2 in 1984; SVR3 released in 1987; SVR4 in 1989 which supported the
POSIX.1 standard

In parallel with AT&T story, people at University of California at Berkeley (UCB)
added virtual memory support to "32V" [32-bit V7 for VAX] and created 3BSD

2 . 4

HISTORY (III)
4BSD development supported by DARPA who wanted (among other things) OS
support for TCP/IP

By 1983, 4.2BSD released at end of original DARPA project

1986 saw 4.3BSD released — very similar to 4.2BSD, but lots of minor tweaks. 1988
had 4.3BSD Tahoe (sometimes 4.3.1) which included improved TCP/IP congestion
control. 19xx saw 4.3BSD Reno (sometimes 4.3.2) with further improved congestion
control. Large rewrite gave 4.4BSD in 1993; very different structure, includes LFS,
Mach VM stuff, stackable FS, NFS, etc.

Best known Unix today is probably Linux, but also get FreeBSD, NetBSD, and
(commercially) Solaris, OSF/1, IRIX, and Tru64

2 . 5

SIMPLIFIED UNIX FAMILY TREE
Linux arises (from Minix?) around 1991
(version 0.01), or more realistically, 1994
(version 1.0). Linux version 2.0 out 1996.
Version 2.2 was out in 1998/ early 1999?)

You're not expected to memorise this

3 . 1

DESIGN PRINCIPLES
Introduction
Design Principles

Structural, Files, Directory Hierarchy
Filesystem
IO
Processes
The Shell
Summary

3 . 2

DESIGN FEATURES
Ritchie & Thompson (CACM, July 74), identified the (new) features of Unix:

A hierarchical file system incorporating demountable volumes
Compatible file, device and inter-process IO (naming schemes, access control)
Ability to initiate asynchronous processes (i.e., address-spaces = heavyweight)
System command language selectable on a per-user basis

Completely novel at the time: prior to this, everything was "inside" the OS. In Unix
separation between essential things (kernel) and everything else

Among other things: allows user wider choice without increasing size of core OS;
allows easy replacement of functionality — resulted in over 100 subsystems
including a dozen languages

Highly portable due to use of high-level language

Features which were not included: real time, multiprocessor support

3 . 3

STRUCTURAL OVERVIEW
Clear separation between user and kernel
portions was the big difference between
Unix and contemporary systems — only
the essential features inside OS, not the
editors, command interpreters, compilers,
etc.

Processes are unit of scheduling and
protection: the command interpreter
("shell") just a process

No concurrency within kernel

All IO looks like operations on files: in
Unix, everything is a file

4 . 1

FILESYSTEM
Introduction
Design Principles
Filesystem

Files, Directories, Links, On-Disk Structures
Mounting Filesystems, In-Memory Tables, Consistency

IO
Processes
The Shell
Summary

4 . 2

FILE ABSTRACTION
File as an unstructured sequence of bytes which was relatively unusual at the time:
most systems lent towards files being composed of records

Cons: don't get nice type information; programmer must worry about format of
things inside file
Pros: less stuff to worry about in the kernel; and programmer has flexibility to
choose format within file!

Represented in user-space by a file descriptor (fd) this is just an opaque identifier
— a good technique for ensuring protection between user and kernel

4 . 3

FILE OPERATIONS
Operations on files are:

fd = open(pathname, mode)
fd = creat(pathname, mode)
bytes = read(fd, buffer, nbytes)
count = write(fd, buffer, nbytes)
reply = seek(fd, offset, whence)
reply = close(fd)

The kernel keeps track of the current position within the file

Devices are represented by special files:

Support above operations, although perhaps with bizarre semantics
Also have ioctl for access to device-specific functionality

4 . 4

DIRECTORY HIERARCHY
Directories map names to files (and
directories) starting from distinguished root
directory called /

Fully qualified pathnames mean performing
traversal from root

Every directory has . and .. entries: refer to
self and parent respectively. Also have
shortcut of current working directory (cwd)
which allows relative path names; and the
shell provides access to home directory as ~username (e.g. ~mort/). Note that
kernel knows about former but not latter

Structure is a tree in general though this is slightly relaxed

4 . 5

ASIDE: PASSWORD FILE
/etc/passwd holds list of password entries of the form user-
name:encrypted-passwd:home-directory:shell
Also contains user-id, group-id (default), and friendly name.
Use one-way function to encrypt passwords i.e. a function which is easy to
compute in one direction, but has a hard to compute inverse. To login:

Get user name
Get password
Encrypt password
Check against version in /etc/password
If ok, instantiate login shell
Otherwise delay and retry, with upper bound on retries

Publicly readable since lots of useful info there but permits offline attack
Solution: shadow passwords (/etc/shadow)

4 . 6

FILE SYSTEM IMPLEMENTATION

Inside the kernel, a file is represented by a data structure called an index-node or i-
node which hold file meta-data: owner, permissions, reference count, etc. and
location on disk of actual data (file contents)

4 . 7

I-NODES
Why don't we have all blocks in a simple table?
Why have first few in inode at all?
How many references to access blocks at different places in the file?
If block can hold 512 block-addresses (e.g. blocks are 4kB, block addresses are 8
bytes), what is max size of file (in blocks)?
Where is the filename kept?

4 . 8

DIRECTORIES AND LINKS
Directory is (just) a file which
maps filenames to i-nodes —
that is, it has its own i-node
pointing to its contents

An instance of a file in a
directory is a (hard) link hence
the reference count in the i-
node. Directories can have at
most 1 (real) link. Why?

Also get soft- or symbolic-
links: a 'normal' file which contains a filename

4 . 9

ON-DISK STRUCTURES

A disk consists of a boot block followed by one or more partitions. Very old disks
would have just a single partition. Nowadays have a boot block containing a
partition table allowing OS to determine where the filesystems are

Figure shows two completely independent filesystems; this is not replication for
redundancy. Also note |inode table| |superblock|; |data blocks| |inode table|≫ ≫

4 . 10

ON-DISK STRUCTURES
A partition is just a contiguous range of N fixed-size blocks of size k for some N and
k, and a Unix filesystem resides within a partition

Common block sizes: 512B, 1kB, 2kB, 4kB, 8kB

Superblock contains info such as:

Number of blocks and free blocks in filesystem
Start of the free-block and free-inode list
Various bookkeeping information

Free blocks and inodes intermingle with allocated ones

On-disk have a chain of tables (with head in superblock) for each of these.
Unfortunately this leaves superblock and inode-table vulnerable to head crashes so
we must replicate in practice. In fact, now a wide range of Unix filesystems that are
completely different; e.g., log-structure

4 . 11

MOUNTING FILESYSTEMS
Entire filesystems can be
mounted on an existing
directory in an already mounted
filesystem

At very start, only / exists so
must mount a root filesystem

Subsequently can mount other
filesystems, e.g.
mount("/dev/hda2",
"/home", options)

Provides a unified name-space: e.g. access /home/mort/ directly (contrast with
Windows9x or NT)

Cannot have hard links across mount points: why? What about soft links?

4 . 12

IN-MEMORY TABLES
Recall process sees files as file
descriptors

In implementation these are just
indices into process-specific open file
table

Entries point to system-wide open file
table. Why?

These in turn point to (in memory)
inode table

4 . 13

ACCESS CONTROL

Access control information held in each inode

Three bits for each of owner, group and world: read, write and execute
What do these mean for directories? Read entry, write entry, traverse directory

In addition have setuid and setgid bits:

Normally processes inherit permissions of invoking user
Setuid/setgid allow user to "become" someone else when running a given
program
E.g. prof owns both executable test (0711 and setuid), and score file (0600)

4 . 14

CONSISTENCY ISSUES
To delete a file, use the unlink system call — from the shell, this is rm
<filename>

Procedure is:

Check if user has su cient permissions on the file (must have write access)
Check if user has su cient permissions on the directory (must have write access)
If ok, remove entry from directory
Decrement reference count on inode
If now zero: free data blocks and free inode

If crash: must check entire filesystem for any block unreferenced and any block
double referenced

Crash detected as OS knows if crashed because root fs not unmounted cleanly

4 . 15

UNIX FILESYSTEM: SUMMARY
Files are unstructured byte streams
Everything is a file: "normal" files, directories, symbolic links, special files
Hierarchy built from root (/)
Unified name-space (multiple filesystems may be mounted on any leaf directory)
Low-level implementation based around inodes
Disk contains list of inodes (along with, of course, actual data blocks)
Processes see file descriptors: small integers which map to system file table
Permissions for owner, group and everyone else
Setuid/setgid allow for more flexible control
Care needed to ensure consistency

5 . 1

IO
Introduction
Design Principles
Filesystem
IO

Implementation, The Buffer Cache
Processes
The Shell
Summary

5 . 2

IO IMPLEMENTATION
Everything accessed via the file system
Two broad categories: block and character; ignoring low-level gore:

Character IO low rate but complex — most functionality is in the "cooked"
interface
Block IO simpler but performance matters — emphasis on the buffer cache

5 . 3

THE BUFFER CACHE
Basic idea: keep copy of some parts of disk in memory for speed

On read do:

Locate relevant blocks (from inode)
Check if in buffer cache
If not, read from disk into memory
Return data from buffer cache

On write do same first three, and then update version in cache, not on disk

"Typically" prevents 85% of implied disk transfers
But when does data actually hit disk?

Call sync every 30 seconds to flush dirty buffers to disk

Can cache metadata too — what problems can that cause?

6 . 1

PROCESSES
Introduction
Design Principles
Filesystem
IO
Processes

Unix Process Dynamics, Start of Day, Scheduling and States
The Shell
Summary

6 . 2

UNIX PROCESSES
Recall: a process is a program in execution

Processes have three segments: text, data
and stack. Unix processes are heavyweight

Text: holds the machine instructions for the
program

Data: contains variables and their values

Stack: used for activation records (i.e.
storing local variables, parameters, etc.)

6 . 3

UNIX PROCESS DYNAMICS
Process is represented by an opaque process id (pid), organised hierarchically with
parents creating children. Four basic operations:

pid = fork ()
reply = execve(pathname, argv, envp)
exit(status)
pid = wait(status)

fork() nearly always
followed by exec()
leading to vfork()
and/or copy-on-write
(COW). Also makes a copy
of entire address space
which is not terribly
efficient

6 . 4

START OF DAY
Kernel (/vmunix) loaded from disk (how — where's the filesystem?) and execution
starts. Mounts root filesystem. Process 1 (/etc/init) starts hand-crafted

init reads file /etc/inittab and for each entry:

Opens terminal special file (e.g. /dev/tty0)
Duplicates the resulting fd twice.
Forks an /etc/tty process.

Each tty process next: initialises the terminal; outputs the string login: & waits
for input; execve()'s /bin/login

login then: outputs "password:" & waits for input; encrypts password and checks it
against /etc/passwd; if ok, sets uid & gid, and execve() shell

Patriarch init resurrects /etc/tty on exit

6 . 5

UNIX PROCESS SCHEDULING (I)
Priorities 0-127; user processes PUSER = 50. Round robin within priorities,
quantum 100ms.
Priorities are based on usage and nice, i.e.

gives the priority of process j at the beginning of interval i where:

and is a (partially) user controllable adjustment parameter in the range

 is the sampled average length of the run queue in which process resides,
over the last minute of operation

≥

(i) = + + 2 ×Pj Basej
(i − 1)CPUj

4
nicej

(i) = (i − 1) +CPUj
2 × loadj

(2 ×) + 1loadj
CPUj nicej

nicej
[−20, 20]
loadj j

6 . 6

UNIX PROCESS SCHEDULING (II)
Thus if e.g. load is 1 this means that roughly 90% of 1s CPU usage is "forgotten"
within 5s
Base priority divides processes into bands; CPU and nice components prevent
processes moving out of their bands. The bands are:

Swapper; Block IO device control; File manipulation; Character IO device
control; User processes
Within the user process band the execution history tends to penalize CPU
bound processes at the expense of IO bound processes

6 . 7

UNIX PROCESS STATES

ru = running
(user-
mode)

rk = running
(kernel-
mode)

z = zombie p = pre-
empted

sl = sleeping rb = runnable

c = created

NB. This is simplified — see Concurrent
Systems section 23.14 for detailed
descriptions of all states/transitions

7 . 1

THE SHELL
Introduction
Design Principles
Filesystem
IO
Processes
The Shell

Examples, Standard IO
Summary

7 . 2

THE SHELL
Shell just a process like everything else.
Needn't understand commands, just files

Uses path for convenience, to avoid needing
fully qualified pathnames

Conventionally & specifies background

Parsing stage (omitted) can do lots: wildcard
expansion ("globbing"), "tilde" processing

7 . 3

SHELL EXAMPLES
$ pwd
/Users/mort/src
$ ls -F
awk-scripts/ karaka/ ocamllint/ sh-scripts/
backup-scripts/ mrt.0/ opensharingtoolkit/ sockman/
bib2x-0.9.1/ ocal/ pandoc-templates/ tex/
c-utils/ ocaml/ pttcp/ tmp/
dtrace/ ocaml-libs/ pyrt/ uon/
exapraxia-gae/ ocaml-mrt/ python-scripts/ vbox-bridge/
external/ ocaml-pst/ r/
junk/ ocaml.org/ scrapers/
$ cd python-scripts/
/Users/mort/src/python-scripts
$ ls -lF
total 224
-rw-r--r-- 1 mort staff 17987 2 Jan 2010 LICENSE
-rw-rw-r-- 1 mort staff 1692 5 Jan 09:18 README.md
-rwxr-xr-x 1 mort staff 6206 2 Dec 2013 bberry.py*
-rwxr-xr-x 1 mort staff 7286 14 Jul 2015 bib2json.py*
-rwxr-xr-x 1 mort staff 7205 2 Dec 2013 cal.py*
-rw-r--r-- 1 mort staff 1860 2 Dec 2013 cc4unifdef.py
-rwxr-xr-x 1 mort staff 1153 2 Dec 2013 filebomb.py*
-rwxr-xr-x 1 mort staff 1059 2 Jan 2010 forkbomb.py*

Prompt is $. Use man to find out about commands. User friendly?

7 . 4

STANDARD IO
Every process has three fds on creation:

stdin: where to read input from
stdout: where to send output
stderr: where to send diagnostics

Normally inherited from parent, but shell allows redirection to/from a file, e.g.,

ls >listing.txt
ls >&listing.txt
sh <commands.sh

Consider: ls >temp.txt; wc <temp.txt >results

Pipeline is better (e.g. ls | wc >results)
Unix commands are often filters, used to build very complex command lines
Redirection can cause some buffering subtleties

8 . 1

SUMMARY
Introduction
Design Principles
Filesystem
IO
Processes
The Shell
Summary

8 . 2

MAIN UNIX FEATURES
File abstraction

A file is an unstructured sequence of bytes
(Not really true for device and directory files)

Hierarchical namespace
Directed acyclic graph (if exclude soft links)
Thus can recursively mount filesystems

Heavy-weight processes
IO: block and character
Dynamic priority scheduling

Base priority level for all processes
Priority is lowered if process gets to run
Over time, the past is forgotten

But V7 had inflexible IPC, ine cient memory management, and poor kernel
concurrency
Later versions address these issues.

9

SUMMARY
Introduction
Design Principles

Structural, Files, Directory Hierarchy
Filesystem

Files, Directories, Links, On-Disk Structures
Mounting Filesystems, In-Memory Tables, Consistency

IO
Implementation, The Buffer Cache

Processes
Unix Process Dynamics, Start of Day, Scheduling and States

The Shell
Examples, Standard IO

Summary

