
1 . 1

[06] PAGING

1 . 2

OUTLINE
Paged Virtual Memory

Concepts
Pros and Cons
Page Tables
Translation Lookaside Buffer (TLB)
Protection & Sharing

Virtual Memory
Demand Paging Details
Page Replacement
Page Replacement Algorithms

Performance
Frame Allocation
Thrashing & Working Set
Pre-paging
Page Sizes

2 . 1

PAGED VIRTUAL MEMORY
Paged Virtual Memory

Concepts
Pros and Cons
Page Tables
Translation Lookaside Buffer (TLB)
Protection & Sharing

Virtual Memory
Performance

2 . 2

PAGED VIRTUAL MEMORY
Another solution is to allow a process to exist in non-contiguous memory, i.e.,

Divide physical memory into frames, small fixed-size blocks
Divide logical memory into pages, blocks of the same size (typically 4kB)
Each CPU-generated address is a page number with page offset
Page table contains associated frame number
Usually have so also record whether mapping valid

p o
f

|p| ≫ |f |

2 . 3

PAGING PROS AND CONS

Hardware support required — frequently defines the page size, typically a power
of 2 (making address fiddling easy) ranging from 512B to 8192B (0.5kB — 8kB)
Logical address space of and page size gives bits and
bits
Note that paging is itself a form of dynamic relocation: simply change page table
to reflect movement of page in memory. This is similar to using a set of base +
limit registers for each page in memory

2m 2n p = m − n o = m

2 . 4

PAGING PROS AND CONS

Memory allocation becomes easier but OS must maintain a page table per
process

No external fragmentation (in physical memory at least), but get internal
fragmentation: a process may not use all of final page
Indicates use of small page sizes — but there's a significant per-page
overhead: the Page Table Entries (PTEs) themselves, plus that disk IO is more
efficient with larger pages
Typically 2 — 4kB nowadays (memory is cheaper)

2 . 5

PAGING PROS AND CONS
Clear separation between user (process) and system (OS) view of memory usage

Process sees single logical address space; OS does the hard work
Process cannot address memory they don't own — cannot reference a page it
doesn't have access to
OS can map system resources into user address space, e.g., IO buffer
OS must keep track of free memory; typically in frame table

Adds overhead to context switching
Per process page table must be mapped into hardware on context switch
The page table itself may be large and extend into physical memory

2 . 6

PAGE TABLES
Page Tables (PTs) rely on hardware support:

Simplest case: set of dedicated relocation registers
One register per page, OS loads registers on context switch
E.g., PDP-11 16 bit address, 8kB pages thus 8 PT registers
Each memory reference goes through these so they must be fast

Ok for small PTs but what if we have many pages (typically)
Solution: Keep PT in memory, then just one MMU register needed, the Page
Table Base Register (PTBR)
OS switches this when switching process

Problem: PTs might still be very big
Keep a PT Length Register (PTLR) to indicate size of PT
Or use a more complex structure (see later)

Problem: need to refer to memory twice for every "actual" memory reference
Solution: use a Translation Lookaside Buffer (TLB)

O()106

2 . 7

TLB OPERATION
When memory is referenced, present TLB with logical memory address

If PTE is present, get an immediate result
Otherwise make memory reference to PTs, and update the TLB
Latter case is typically 10% slower than direct memory reference

2 . 8

TLB ISSUES
As with any cache, what to do when it's full, how are entries shared?

If full, discard entries typically Least Recently Used (LRU) policy
Context switch requires TLB flush to prevent next process using wrong PTEs —
Mitigate cost through process tags (how?)

Performance is measured in terms of hit ratio, proportion of time a PTE is found in
TLB. Example:

Assume TLB search time of 20ns, memory access time of 100ns, hit ratio of 80%
Assume one memory reference required for lookup, what is the effective memory
access time?

0.8 x 120 + 0.2 x 220 = 140 ns
Now increase hit ratio to 98% — what is the new effective access time?

0.98 x 120 + 0.02 x 220 = 122 ns — just a 13% improvement
(Intel 80486 had 32 registers and claimed a 98% hit ratio)

2 . 9

MULTILEVEL PAGE TABLES
Most modern systems can support very large

, address spaces, leading to very
large PTs which we don't really want to keep
all of in main memory

(232)264

Solution is to split the PT into several sub-
parts, e.g., two, and then page the page table:

Divide the page number into two parts

e.g., 20 bit page number, 12 bit page offset

Then divide the page number into outer and inner parts of 10 bits each

2 . 10

EXAMPLE: VAX
A 32 bit architecture with 512 byte pages:

Logical address space divided into 4 sections of bytes
Top 2 address bits designate section
Next 21 bits designate page within section
Final 9 bits designate page offset
For a VAX with 100 pages, one level PT would be 4MB; with sectioning, it's 1MB

230

For 64 bit architectures, two-level paging is not enough: add further levels.

For 4kB pages need entries in PT using 1 level PT
For 2 level PT with 32 bit outer PT, we'd still need 16GB for the outer PT

252

Even some 32 bit machines have > 2 levels: SPARC (32 bit) has 3 level paging
scheme; 68030 has 4 level paging

2 . 11

EXAMPLE: X86

Page size is 4kB or 4MB. First lookup to the page directory, indexed using top 10
bits. The page directory address is stored in an internal processor register (cr3).
The lookup results (usually) in the address of a page table. Next 10 bits index the
page table, retrieving the page frame address. Finally, add in the low 12 bits as the
page offset. Note that the page directory and page tables are exactly one page each
themselves (not by accident)

2 . 12

PROTECTION ISSUES
Associate protection bits with each page, kept in page tables (and TLB), e.g. one bit
for read, one for write, one for execute (RWX). Might also distinguish whether may
only be accessed when executing in kernel mode, e.g.,

As the address goes through the page hardware, can check protection bits —
though note this only gives page granularity protection, not byte granularity

Any attempt to violate protection causes hardware trap to operating system code to
handle. The entry in the TLB will have a valid/invalid bit indicating whether the
page is mapped into the process address space. If invalid, trap to the OS handler to
map the page

Can do lots of interesting things here, particularly with regard to sharing,
virtualization, ...

2 . 13

SHARED PAGES
Another advantage of paged memory is code/data sharing, for example:

Binaries: editor, compiler etc.
Libraries: shared objects, DLLs

So how does this work?

Implemented as two logical addresses which map to one physical address
If code is re-entrant (i.e. stateless, non-self modifying) it can be easily shared
between users
Otherwise can use copy-on-write technique:

Mark page as read-only in all processes
If a process tries to write to page, will trap to OS fault handler
Can then allocate new frame, copy data, and create new page table mapping

(May use this for lazy data sharing too)

Requires additional book-keeping in OS, but worth it, e.g., many hundreds of MB
shared code on this laptop. (Though nowadays, see unikernels!)

3 . 1

VIRTUAL MEMORY
Paged Virtual Memory
Virtual Memory

Demand Paging Details
Page Replacement
Page Replacement Algorithms

Performance

3 . 2

VIRTUAL MEMORY
Virtual addressing allows us to introduce the idea of virtual memory

Already have valid or invalid page translations; introduce "non-resident
designation and put such pages on a non-volatile backing store
Processes access non-resident memory just as if it were "the real thing"

Virtual Memory (VM) has several benefits:

Portability: programs work regardless of how much actual memory present;
programs can be larger than physical memory
Convenience: programmer can use e.g. large sparse data structures with
impunity; less of the program needs to be in memory at once, thus potentially
more efficient multi-programming, less IO loading/swapping program into
memory
Efficiency: no need to waste (real) memory on code or data which isn't used (e.g.,
error handling)

3 . 3

VM IMPLEMENTATION
Typically implemented via demand paging:

Programs (executables) reside on disk
To execute a process we load pages in on demand; i.e. as and when they are
referenced
Also get demand segmentation, but rare (eg., Burroughs, OS/2) as it's more
difficult (segment replacement is much harder due to segments having variable
size)

3 . 4

DEMAND PAGING DETAILS
When loading a new process for execution:

Create its address space (page tables, etc)
Mark PTEs as either invalid or non-resident
Add PCB to scheduler

Then whenever we receive a page fault, check PTE:

If due to invalid reference, kill process
Otherwise due to non-resident page, so "page in" the desired page:

Find a free frame in memory
Initiate disk IO to read in the desired page
When IO is finished modify the PTE for this page to show that it is now valid
Restart the process at the faulting instruction

3 . 5

DEMAND PAGING: ISSUES
Above process makes the fault invisible to the process, but:

Requires care to save process state correctly on fault
Can be particularly awkward on a CPU with pipelined decode as we need to wind
back (e.g., MIPS, Alpha)
Even worse on on CISC CPU where single instruction can move lots of data,
possibly across pages — we can't restart the instruction so rely on help from
microcode (e.g., to test address before writing). Can possibly use temporary
registers to store moved data
Similar difficulties from auto-increment/auto-decrement instructions, e.g., ARM
Can even have instructions and data spanning pages, so multiple faults per
instruction; though locality of reference tends to make this infrequent

Scheme described above is pure demand paging: don't bring in pages until needed
so get lots of page faults and IO when process begins; hence many real systems
explicitly load some core parts of the process first

3 . 6

PAGE REPLACEMENT
To page in from disk, we need a free frame of physical memory to hold the data
we're reading in — but in reality, the size of physical memory is limited so either:

Discard unused pages if total demand for pages exceeds physical memory size
Or swap out an entire process to free some frames

Modified algorithm: on a page fault we:

1. Locate the desired replacement page on disk
2. Select a free frame for the incoming page:

1. If there is a free frame use it, otherwise select a victim page to free
2. Then write the victim page back to disk
3. Finally mark it as invalid in its process page tables

3. Read desired page into the now free frame
4. Restart the faulting process

...thus, having no frames free effectively doubles the page fault service time

3 . 7

PAGE REPLACEMENT
Can reduce overhead by adding a "dirty" bit to PTEs

Can allow us to omit step (2.2) above by only writing out page was modified, or if
page was read-only (e.g., code)

How do we choose our victim page?

A key factor in an efficient VM system: evicting a page that we'll need in a few
instructions time can get us into a really bad condition
We want to ensure that we get few page faults overall, and that any we do get
are relatively quick to satisfy

We will now look at a few page replacement algorithms:

All aim to minimise page fault rate
Candidate algorithms are evaluated by (trace driven) simulation using reference
strings

3 . 8

PAGE REPLACEMENT ALGORITHMS
FIRST-IN FIRST-OUT (FIFO)
Keep a queue of pages, discard from head. Performance is hard to predict as we've
no idea whether replaced page will be used again or not: eviction is independent of
page use frequency. In general this is very simple but pretty bad:

Can actually end up discarding a page currently in use, causing an immediate
fault and next in queue to be replaced — really slows system down
Possible to have more faults with increasing number of frames (Belady's
anomaly)

OPTIMAL ALGORITHM (OPT)
Replace the page which will not be used again for longest period of time. Can only
be done with an oracle or in hindsight, but serves as a good baseline for other
algorithms

3 . 9

LEAST RECENTLY USED (LRU)
Replace the page which has not been used for the longest amount of time.
Equivalent to OPT with time running backwards. Assumes that the past is a good
predictor of the future. Can still end up replacing pages that are about to be used

Generally considered quite a good replacement algorithm, though may require
substantial hardware assistance

But! How do we determine the LRU ordering?

3 . 10

IMPLEMENTING LRU: COUNTERS
Give each PTE a time-of-use field and give the CPU a logical clock (counter)
Whenever a page is referenced, its PTE is updated to clock value
Replace page with smallest time value

Problems:

Requires a search to find minimum counter value
Adds a write to memory (PTE) on every memory reference
Must handle clock overflow

Impractical on a standard processor

3 . 11

IMPLEMENTING LRU: PAGE STACK
Maintain a stack of pages (doubly linked list) with most-recently used (MRU)
page on top
Discard from bottom of stack

Problem:

Requires changing (up to) 6 pointers per [new] reference (max 6 pointers)
This is very slow without extensive hardware support

Also impractical on a standard processor

3 . 12

APPROXIMATING LRU
Many systems have a reference bit in the PTE, initially zeroed by OS, and then set
by hardware whenever the page is touched. After time has passed, consider those
pages with the bit set to be active and implement Not Recently Used (NRU)
replacement:

Periodically (e.g. 20ms) clear all reference bits
When choosing a victim to evict, prefer pages with clear reference bits
If also have a modified or dirty bit in the PTE, can use that too

Referenced? Dirty? Comment

no no best type of page to replace

no yes next best (requires writeback)

yes no probably code in use

yes yes bad choice for replacement

3 . 13

IMPROVING THE APPROXIMATION
Instead of just a single bit, the OS:

Maintains an 8-bit value per page, initialised to zero
Periodically (e.g. 20ms) shifts reference bit onto high order bit of the byte, and
clear reference bit

Then select lowest value page (or one of) to replace

Keeps the history for the last 8 clock sweeps
Interpreting bytes as u_ints, then LRU page is min(additional_bits)
May not be unique, but gives a candidate set

3 . 14

FURTHER IMPROVMENT: SECOND-CHANCE FIFO

Store pages in queue as per FIFO
Before discarding head, check reference bit
If reference bit is 0, discard else reset reference bit, and give page a second
chance (add it to tail of queue)

Guaranteed to terminate after at most one cycle, with the worst case having the
second chance devolve into a FIFO if all pages are referenced. A page given a
second chance is the last to be replaced

3 . 15

IMPLEMENTING SECOND-CHANCE FIFO
Often implemented with a circular queue and a current pointer; in this case usually
called clock

If no hardware is provided, reference bit can emulate:

To clear "reference bit", mark page no access
If referenced then trap, update PTE, and resume
To check if referenced, check permissions
Can use similar scheme to emulate modified bit

3 . 16

OTHER REPLACEMENT SCHEMES
Counting Algorithms: keep a count of the number of references to each page

Least Frequently Used (LFU): replace page with smallest count
Takes no time information into account
Page can stick in memory from initialisation
Need to periodically decrement counts

Most Frequently Used (MFU): replace highest count page
Low count indicates recently brought in

3 . 17

PAGE BUFFERING ALGORITHMS
Keep a minimum number of victims in a free pool
New page read in before writing out victim, allowing quicker restart of process
Alternative: if disk idle, write modified pages out and reset dirty bit

Improves chance of replacing without having to write dirty page

(Pseudo) MRU: Consider accessing e.g. large array.

The page to replace is one application has just finished with, i.e. most recently
used
Track page faults and look for sequences
Discard the th in victim sequencek

Application-specific: stop trying to second-guess what's going on and provide hook
for application to suggest replacement, but must be careful with denial of service

4 . 1

PERFORMANCE
Paged Virtual Memory
Virtual Memory
Performance

Frame Allocation
Thrashing & Working Set
Pre-paging
Page Sizes

4 . 2

PERFORMANCE COMPARISON
This plot shows page-fault
rate against number of
physical frames for a
pseudo-local reference
string (note offset x origin).
We want to minimise area
under curve. FIFO could
exhibit Belady's Anomaly
(but doesn't here). Can see
that getting frame
allocation right has major
impact — much more than
which algorithm you use!

4 . 3

FRAME ALLOCATION
A certain fraction of physical memory is reserved per-process and for core OS code
and data. Need an allocation policy to determine how to distribute the remaining
frames. Objectives:

Fairness (or proportional fairness)?
E.g. divide frames between processes as , remainder in free pool
E.g. divide frames in proportion to size of process (i.e. number of pages used)

Minimize system-wide page-fault rate?
E.g. allocate all memory to few processes

Maximize level of multiprogramming?
E.g. allocate min memory to many processes

m n m/n

Could also allocate taking process priorities into account, since high-priority
processes are supposed to run more readily. Could even care which frames we give
to which process ("page colouring")

4 . 4

FRAME ALLOCATION: GLOBAL SCHEMES
Most page replacement schemes are global: all pages considered for replacement

Allocation policy implicitly enforced during page-in
Allocation succeeds iff policy agrees
Free frames often in use so steal them!

For example, on a system with 64 frames and 5 processes:

If using fair share, each processes will have 12 frames, with four left over (maybe)
When a process dies, when the next faults it will succeed in allocating a frame
Eventually all will be allocated
If a new process arrives, need to steal some pages back from the existing
allocations

4 . 5

FRAME ALLOCATION: COMPARISON TO LOCAL
Also get local page replacement schemes: victim always chosen from within
process

In global schemes the process cannot control its own page fault rate, so
performance may depend entirely on what other processes page in/out

In local schemes, performance depends only on process behaviour, but this can
hinder progress by not making available less/unused pages of memory

Global are optimal for throughput and are the most common

4 . 6

THE RISK OF THRASHING
More processes entering the system
causes the frames-per-process allocated
to reduce. Eventually we hit a wall:
processes end up stealing frames from
each other, but then need them back so
fault. Ultimately the number of runnable
processes plunges

A process can technically run with
minimum-free frames available but will
have a very high page fault rate. If we're
very unlucky, OS monitors CPU utilisation and increases level of multiprogramming
if utilisation is too low: machine dies

Avoid thrashing by giving processes as many frames as they "need" and, if we can't,
we must reduce the MPL — a better page-replacement algorithm will not help

4 . 7

LOCALITY OF REFERENCE

In a short time interval, the locations referenced by a process tend to be grouped
into a few regions in its address space:

Procedure being executed
Sub-procedures
Data access
Stack variables

4 . 8

AVOIDING THRASHING
We can use the locality of reference principle to help determine how many frames a
process needs:

Define the Working Set (WS) (Denning, 1967)

Set of pages that a process needs in store at "the same time" to make any progress

Varies between processes and during execution
Assume process moves through phases
In each phase, get (spatial) locality of reference
From time to time get phase shift

4 . 9

CALCULATING WORKING SET
Then OS can try to prevent thrashing by maintaining sufficient pages for current
phase:

Sample page reference bits every, e.g., 10ms
Define window size of most recent page references
If a page is "in use", say it's in the working set
Gives an approximation to locality of program
Given the size of the working set for each process , sum working set sizes
to get total demand
If we are in danger of thrashing — suspend a process

Δ

WSSi
D

D > m

This optimises CPU util but has the need to compute (moving window across
stream). Can approximate with periodic timer and some page reference script. After
some number of intervals (i.e., of bits of state) consider pages with count < 0 to be
in WS. In general, a working set can be used as a scheme to determine allocation
for each process

WSSi

4 . 10

PRE-PAGING

Pure demand paging causes a large number of PF when process starts

Can remember the WS for a process and pre-page the required frames when
process is resumed (e.g. after suspension)

When process is started can pre-page by adding its frames to free list

Increases IO cost: How do we select a page size (given no hardware constraints)?

4 . 11

PAGE SIZES

Trade-off the size of the PT and the degree of fragmentation as a result

Typical values are 512B to 16kB — but should be reduce the numbers of queries,
or ensure that the window is covered

Larger page size means fewer page faults

Historical trend towards larger page sizes
Eg., 386: 4kB, 68030: 256B to 32kB

So, a page of 1kB, 56ms for 2 pages of 512B but smaller page allows us to watch
locality more accurately. Page faults remain costly because CPU and memory much
much faster than disk

5

SUMMARY
Paged Virtual Memory

Concepts
Pros and Cons
Page Tables
Translation Lookaside Buffer (TLB)
Protection & Sharing

Virtual Memory
Demand Paging Details
Page Replacement
Page Replacement Algorithms

Performance
Frame Allocation
Thrashing & Working Set
Pre-paging
Page Sizes

