
1 . 1

[05] VIRTUAL ADDRESSING

1 . 2

OUTLINE
Memory Management

Concepts
Relocation, Allocation, Protection, Sharing, Logical vs Physical Organisation

The Address Binding Problem
Relocation
Logical vs Physical Addresses

Allocation
Scheduling
Fragmentation
Compaction

2 . 1

MEMORY MANAGEMENT
Memory Management

Concepts
Relocation, Allocation, Protection, Sharing, Logical vs Physical Organisation

The Address Binding Problem
Allocation

2 . 2

CONCEPTS
In a multiprogramming system, have many processes in memory simultaneously

Every process needs memory for:
Instructions ("code" or "text")
Static data (in program)
Dynamic data (heap and stack)

In addition, operating system itself needs memory for instructions and data
Must share memory between OS and processesk

2 . 3

1. RELOCATION
Memory typically shared among processes, so programmer cannot know address
that process will occupy at runtime
May want to swap processes into and out of memory to maximise CPU utilisation
Silly to require a swapped-in process to always go to the same place in memory
Processes incorporate addressing info (branches, pointers, etc.)
OS must manage these references to make sure they are sane
Thus need to translate logical to physical addresses

2. ALLOCATION
This is similar to sharing below, but also related to relocation
I.e. OS may need to choose addresses where things are placed to make linking or
relocation easier

2 . 4

3. PROTECTION
Protect one process from others
May also want sophisticated RWX protection on small memory units
A process should not modify its own code (yuck)
Dynamically computed addresses (array subscripts) should be checked for sanity

4. SHARING
Multiple processes executing same binary: keep only one copy
Shipping data around between processes by passing shared data segment
references
Operating on same data means sharing locks with other processes

2 . 5

5. LOGICAL ORGANISATION
Most physical memory systems are linear address spaces from 0 to max
Doesn't correspond with modular structure of programs: want segments
Modules can contain (modifiable) data, or just code
Useful if OS can deal with modules: can be written, compiled independently
Can give different modules diff protection, and can be shared thus easy for user
to specify sharing model

6. PHYSICAL ORGANISATION
Main memory: single linear address space, volatile, more expensive
Secondary storage: cheap, non-volatile, can be arbitrarily structured
One key OS function is to organise flow between main memory and the
secondary store (cache?)
Programmer may not know beforehand how much space will be available

3 . 1

THE ADDRESS BINDING
PROBLEM

Memory Management
The Address Binding Problem

Relocation
Logical vs Physical Addresses

Allocation

3 . 2

THE ADDRESS BINDING PROBLEM
Consider the following simple program:

int x, y;
x = 5;
y = x + 3;

We can imagine that this would result in some assembly code which looks
something like:

str #5, [Rx] ; store 5 into x
ldr R1, [Rx] ; load value of x from memory
add R2, R1, #3 ; and add 3 to it
str R2, [Ry] ; and store result in y

where the expression [addr] means the contents of the memory at address addr.
Then the address binding problem is: what values do we give Rx and Ry?

Arises because we don't know where in memory our program will be loaded when
we run it: e.g. if loaded at 0x1000, then x and y might be stored at 0x2000,
0x2004, but if loaded at 0x5000, then x and y might be at 0x6000, 0x6004

3 . 3

ADDRESS BINDING AND RELOCATION
Solution requires translation between program addresses and real addresses which
can be done:

At compile time:
Requires knowledge of absolute addresses, e.g. DOS .com files

At load time:
Find position in memory after loading, update code with correct addresses
Must be done every time program is loaded
Ok for embedded systems / boot-loaders

At run-time:
Get hardware to automatically translate between program and real addresses
No changes at all required to program itself
The most popular and flexible scheme, providing we have the requisite
hardware (MMU)

3 . 4

LOGICAL VS PHYSICAL ADDRESSES
Mapping of logical to physical addresses is done at run-time by Memory
Management Unit (MMU)

1. Relocation register holds the value of the base address owned by the process
2. Relocation register contents are added to each memory address before it is sent

to memory
3. e.g. DOS on 80x86 — 4 relocation registers, logical address is a tuple

NB. Process never sees physical address — simply manipulates logical
addresses

4. OS has privilege to update relocation register

(s, o)

4 . 1

ALLOCATION
Memory Management
The Address Binding Problem
Allocation

Scheduling
Fragmentation
Compaction

4 . 2

CONTIGUOUS ALLOCATION

How do we support multiple virtual processors in a single
address space? Where do we put processes in memory?

OS typically must be in low memory due to location of interrupt vectors
Easiest way is to statically divide memory into multiple fixed size partitions:

Bottom partition contains OS, remainder each contain exactly one process
When a process terminates its partition becomes available to new processes.

e.g. OS/360 MFT
Need to protect OS and user processes from malicious programs:

Use base and limit registers in MMU
updAte values when a new processes is scheduled
NB. Solving both relocation and protection problems at the same time!

4 . 3

STATIC MULTIPROGRAMMING
Partition memory when installing OS, and allocate pieces to different job queues
Associate jobs to a job queue according to size
Swap job back to disk when:

Blocked on IO (assuming IO is slower than the backing store)
Time sliced: larger the job, larger the time slice

Run job from another queue while swapping jobs
e.g. IBM OS/360 MVT, ICL System 4

Problems: fragmentation, cannot grow partitions

4 . 4

DYNAMIC PARTITIONING
More flexibility if allow partition sizes to be dynamically chosen (e.g. OS/360 MVT):

OS keeps track of which areas of memory are available and which are occupied
e.g. use one or more linked lists:

For a new process, OS searches for a hole large enough to fit it:
First fit: stop searching list as soon as big enough hole is found
Best fit: search entire list to find "best" fitting hole
Worst fit: counterintuitively allocate largest hole (again, search entire list)

1. first and best fit perform better statistically both in time and space utilisation —
typically for allocated blocks have another 0.5 in wasted space using first fit

2. Which is better depends on pattern of process swapping
3. Can use buddy system to make allocation faster
4. When process terminates its memory returns onto the free list, coalescing holes

where appropriate

N N

4 . 5

SCHEDULING EXAMPLE
Consider a machine with total of 2560kB memory, and an OS requiring 400kB

The following jobs are in the queue:
Process Memory Time

kB

kB

kB

kB

kB

P1 600 10
P2 1000 5
P3 300 20
P4 700 8
P5 500 15

4 . 6

EXTERNAL FRAGMENTATION
Dynamic partitioning algorithms suffer from
external fragmentation: as processes are
loaded they leave little fragments which may
not be used. Can eventually block due to
insufficient memory to swap in

External fragmentation exists when the total
available memory is sufficient for a request,
but is unusable because it is split into many

holes

Can also have problems with tiny holes when keeping track of hole costs more
memory than hole! Requires periodic compaction

4 . 7

COMPACTION

Choosing optimal strategy quite tricky. Note that:
Require run-time relocation
Can be done more efficiently when process is moved into memory from a
swap
Some machines used to have hardware support (e.g., CDC Cyber)

Also get fragmentation in backing store, but in this case compaction not really
viable

5

SUMMARY
Memory Management

Concepts
Relocation, Allocation, Protection, Sharing, Logical vs Physical Organisation

The Address Binding Problem
Relocation
Logical vs Physical Addresses

Allocation
Scheduling
Fragmentation
Compaction

