
1 . 1

[03] PROCESSES

1 . 2

OUTLINE
Process Concept

Relationship to a Program
What is a Process?

Process Lifecycle
Creation
Termination
Blocking

Process Management
Process Control Blocks
Context Switching
Threads

2 . 1

PROCESS CONCEPTS
Process Concept

Relationship to a Program
What is a Process?

Process Lifecycle
Process Management

2 . 2

WHAT IS A PROCESS?
The computer is there to execute programs, not the operating system!

Process Program≠

A program is static, on-disk
A process is dynamic, a program in execution

On a batch system, might refer to jobs instead of processes

2 . 3

WHAT IS A PROCESS?
Unit of protection and resource allocation

So you may have multiple copies of a process running
Each process executed on a virtual processor

Has a virtual address space (later)

Has one or more threads, each of which has

1. Program Counter: which instruction is executing
2. Stack: temporary variables, parameters, return addresses, etc.
3. Data Section: global variables shared among threads

2 . 4

PROCESS STATES

New: being created
Running: instructions are being executed
Ready: waiting for the CPU, ready to run
Blocked: stopped, waiting for an event to occur
Exit: has finished execution

3 . 1

PROCESS LIFECYCLE
Process Concept
Process Lifecycle

Creation
Termination
Blocking

Process Management

3 . 2

PROCESS CREATION

Nearly all systems are hierarchical:
parent processes create child processes

Resource sharing:
Parent and children share all resources
Children share subset of parent's resources
Parent and child share no resources

3 . 3

PROCESS CREATION

Nearly all systems are hierarchical:
parent processes create child processes

Resource sharing
Execution:

Parent and children execute concurrently
Parent waits until children terminate

3 . 4

PROCESS CREATION

Nearly all systems are hierarchical:
parent processes create child processes

Resource sharing
Execution
Address space:

Child duplicate of parent
Child has a program loaded into it

3 . 5

EXAMPLES
Unix:

fork() system call creates a child process, cloned from parent; then
execve() system call used to replace the process' memory space with a new
program

NT/2K/XP:

CreateProcess() system call includes name of program to be executed

3 . 6

PROCESS TERMINATION

Occurs under three circumstances

1. Process executes last statement and asks the operating system to delete it (exit):
Output data from child to parent (wait)
Process' resources are deallocated by the OS

3 . 7

PROCESS TERMINATION

Occurs under three circumstances

1. Process executes last statement and asks the operating system to delete it
2. Process performs an illegal operation, e.g.,

Makes an attempt to access memory to which it is not authorised
Attempts to execute a privileged instruction

3 . 8

PROCESS TERMINATION

Occurs under three circumstances

1. Process executes last statement and asks the operating system to delete it
2. Process performs an illegal operation
3. Parent may terminate execution of child processes (abort, kill), e.g. because

Child has exceeded allocated resources
Task assigned to child is no longer required
Parent is exiting ("cascading termination")

3 . 9

EXAMPLES
Unix

wait(), exit() and kill()

NT/2K/XP

ExitProcess() for self
TerminateProcess() for others.

3 . 10

BLOCKING
In general a process blocks on an event, e.g.,

An IO device completes an operation
Another process sends a message

Assume OS provides some kind of general-purpose blocking primitive, e.g.,
await()
Need care handling concurrency issues, e.g.,

What happens if a key is pressed at the first {?
Complicated! Next year... Ignore for now :)

 if(no key being pressed) {
 await(keypress);
 print("Key has been pressed!\n");
 }
 // handle keyboard input

3 . 11

CPU IO BURST CYCLE
Process execution consists of a cycle of CPU execution and IO wait
Processes can be described as either:
1. IO-bound: spends more time doing IO that than computation; has many short

CPU bursts
2. CPU-bound: spends more time doing computations; has few very long CPU

bursts

3 . 12

CPU IO BURST CYCLE

Observe that most processes execute for at most a few milliseconds before
blocking

We need multiprogramming to obtain decent overall CPU utilisation

4 . 1

PROCESS MANAGEMENT
Process Concept
Process Lifecycle
Process Management

Process Control Blocks
Context Switching
Threads

4 . 2

PROCESS CONTROL BLOCK

OS maintains information about every process in a
data structure called a process control block (PCB). The
Process Context (highlighted) is the machine
environment during the time the process is actively
using the CPU:

Program counter
General purpose registers
Processor status register
[Caches, TLBs, Page tables, ...]

CONTEXT SWITCHING
To switch between processes, the OS must:

Save the context of the currently
executing process (if any), and
Restore the context of that being
resumed.

Note this is wasted time — no useful work is
carried out while switching
Time taken depends on hardware support

From nothing, to
Save/load multiple registers to/from
memory, to
Complete hardware "task switch"

4 . 34 . 4

THREADS
A thread represents an individual execution context

Threads are managed by a scheduler that determines which thread to run

Each thread has an associated Thread Control Block (TCB) with metadata about the
thread: saved context (registers, including stack pointer), scheduler info, etc.

Context switches occur when the OS saves the state of one thread and restores the
state of another. If between threads in different processes, process state also
switches

Threads visible to the OS are kernel threads — may execute in kernel or address
user space

5

SUMMARY
Process Concept

Relationship to a program
What is a process?

Process Lifecycle
Creation
Termination
Blocking

Process Management
Process Control Blocks
Context Switching
Threads

