
1 . 1

[02] PROTECTION



1 . 2

OUTLINE
Protection

Motivation, Requirements, Subjects & Objects
Design of Protection Systems
Covert Channels

Low-level Mechanisms
IO, Memory, CPU

Authentication
User to System, System to User
Mutual Suspicion

Access Matrix
Access Control Lists (ACLs) vs Capabilities

OS Structures
Dual-mode Operation, Kernels & Microkernels
Mandatory Access Control, pledge(2)



2 . 1

PROTECTION
Protection

Motivation, Requirements, Subjects & Objects
Design of Protection Systems
Covert Channels

Low-level Mechanisms
Authentication
Access Matrix
OS Structures



2 . 2

WHAT ARE WE PROTECTING AGAINST?
Unauthorised release of information

Reading or leaking data
Violating privacy legislation
Covert channels, traffic analysis

Unauthorised modification of information

Changing access rights
Can do sabotage without reading information

(Unauthorised) denial of service

Causing a crash
Causing high load (e.g. processes or packets)

Also protection against effects of errors: e.g., isolate for debugging, damage control

Impose controls on access by subjects (e.g. users) to objects (e.g. files)



2 . 3

COVERT CHANNELS
Information leakage by side-effects: lots of fun! At the hardware level:

Wire tapping
Monitor signals in machine
Modification to hardware
Electromagnetic radiation of devices

By software:

File exists or not
Page fault or not
Compute or sleep
1 or 0
System provided statistics

E.g., lowest layer of recent OCaml TLS library in C to avoid side channel through
garbage collector



2 . 4

ASPECTS OF PROTECTION SYSTEM
Physical, e.g.,

Lock the computer room
Restrict access to system software

Social, e.g.,

De-skill systems operating staff
Keep designers away from final system!
Legislate

Technical, e.g.,

Use passwords (in general challenge/response)
Use encryption



2 . 5

DESIGN OF PROTECTION SYSTEMS
From [Saltzer & Schroeder, Proc. IEEE, Septempber 1975]:

Design should be public
Default should be no access
Check for current authority
Give each process minimum possible authority
Mechanisms should be simple, uniform and built in to lowest layers
Should be psychologically acceptable
Cost of circumvention should be high
Minimize shared access



3 . 1

LOW-LEVEL PROTECTION
Protection
Low-level Mechanisms

IO, Memory, CPU
Authentication
Access Matrix
OS Structures



3 . 2

PROTECTING IO & MEMORY
Initially, try to make IO instructions privileged:

Applications can't mask interrupts (that is, turn one or many off)
Applications can't control IO devices

But!

Some devices are accessed via memory, not special instructions
Applications can rewrite interrupt vectors

Hence protecting IO means also protecting memory,
e.g. define a base and a limit for each program, and
protect access outside allowed range



3 . 3

IMPLEMENTING MEMORY PROTECTION

Have hardware check every memory reference:

Access out of range causes vector into OS (as for an interrupt)
Only allow update of base and limit registers when in kernel mode
May disable memory protection in kernel mode (although a bad idea)

In reality, more complex protection hardware is used (see Paging and Segmentation)



3 . 4

PROTECTING THE CPU
Need to ensure that the OS stays in control:

I.e., must prevent any application from "hogging" the CPU the whole time
Means using a timer, usually a countdown timer, e.g.,

Set timer to initial value (e.g. 0xFFFF)
Every tick (e.g. 1 s or, nowadays, programmable), timer decrements value
When value hits zero, interrupt

Ensures the OS runs periodically

μ

Requires that only OS can load timer, and that interrupt cannot be masked:

Use same scheme as for other devices
Re-use to implement time-sharing (later)



4 . 1

AUTHENTICATION
Protection
Low-level Mechanisms
Authentication

User to System, System to User
Mutual Suspicion

Access Matrix
OS Structures



4 . 2

AUTHENTICATING USER TO SYSTEM
Current practice: passwords

But people pick badly
And what about security of password file?

Restrict access to login programme (CAP, TITAN)
Store scrambled (Unix) using one-way function

Often now prefer key-based systems (e.g., SSH)

E.g., in Unix:

Password is DES-encrypted 25 times using a 2-byte per-user "salt" to produce a
11 byte string
Salt followed by these 11 bytes are then stored

Enhance with: biometrics, smart cards, etc.

...though most of these can be stolen



4 . 3

AUTHENTICATING USER TO SYSTEM
 https://xkcd.com/936/

https://xkcd.com/936/


4 . 4

AUTHENTICATION OF SYSTEM TO USER
Want to avoid user talking to:

Wrong computer
Right computer, but not the login program

Partial solution in old days for directly wired terminals:

Make login character same as terminal attention, or
Always do a terminal attention before trying login
E.g., Windows NT's Ctrl-Alt-Del to login — no-one else can trap it

But, today micros used as terminals

Local software may have been changed — so carry your own copy of the terminal
program
...but hardware / firmware in public machine may also have been modified
Wiretapping is easy

(When your bank phones, how do you know it's them?)



4 . 5

MUTUAL SUSPICION
Encourage lots and lots of suspicion:

System of user
Users of each other
User of system

Also, called programs should be suspicious of caller

E.g., OS calls always need to check parameters

And caller should be suspicious of called program

E.g., Trojan horse: a "useful" looking program, a game perhaps
When called by user (in many systems), inherits their privileges
Can then copy files, modify files, change password, send mail, etc...
E.g. Multics editor trojan horse, copied files as well as edited.



5 . 1

ACCESS MATRIX
Protection
Low-level Mechanisms
Authentication
Access Matrix

Access Control Lists (ACLs) vs Capabilities
OS Structures



5 . 2

ACCESS MATRIX
A matrix of subjects against objects.

Subject (or principal) might be:

Users e.g. by uid, or sets thereof
Executing process in a protection domain, or sets thereof

Objects are things like:

Files, devices
Domains, processes
Message ports (in microkernels)

Matrix is large and sparse so don't store it all. Two common representations:

1. By object: store list of subjects and rights with each object: Access Control List
(ACL)

2. By subject: store list of objects and rights with each subject: Capabilities



5 . 3

ACCESS CONTROL LISTS
Often used in storage systems:

System naming scheme provides for ACL to be inserted in naming path, e.g. files
If ACLs stored on disk, check is made in software, so use only on low duty cycle
For higher duty cycle must cache results of check
E.g. Multics: open file is a memory "segment" (see later) — on first reference,
causes a fault which raises an interrupt which allows OS to check against ACL

ACL is checked when file opened for read or write, or when code file is to be
executed

In (e.g.) Unix, access control is by program, allowing arbitrary policies



5 . 4

CAPABILITIES
Associated with active subjects, so:

Store in address space of subject
Must make sure subject can't forge capabilities
Easily accessible to hardware
Can be used with high duty cycle e.g. as part of addressing hardware

Hardware capabilities:

Have special machine instructions to modify (restrict) capabilities
Support passing of capabilities on procedure (program) call

Software capabilities:

Checked by encryption
Nice for distributed systems



6 . 1

OS STRUCTURES
Protection
Low-level Mechanisms
Authentication
Access Matrix
OS Structures

Dual-mode Operation, Kernels & Microkernels
Mandatory Access Control, pledge(2)



6 . 2

DUAL-MODE OPERATION

Simply want to stop buggy (or malicious) program from doing bad things

Trust boundary between user application and the OS
Use hardware support to differentiate between (at least) two modes of operation
1. User Mode : when executing on behalf of a user (i.e. application programs).
2. Kernel Mode : when executing on behalf of the OS

Make certain instructions only possible in kernel mode, indicated by mode bit

E.g., x86: Rings 0--3, ARM has two modes plus IRQ, Abort and FIQ

Often "nested" (per x86 rings): further inside can do strictly more. Not ideal — e.g.,
stop kernel messing with applications — but disjoint/overlapping permissions hard



6 . 3

KERNEL-BASED OPERATING SYSTEMS
Applications can't do IO due to protection so the OS
does it on their behalf

This means we need a secure way for application to
invoke OS: a special (unprivileged) instruction to
transition from user to kernel mode

Generally called a trap or a software interrupt since
operates similarly to (hardware) interrupt...

OS services accessible via software interrupt
mechanism called system calls

OS has vectors to handle traps, preventing application from leaping to kernel mode
and then just doing whatever it likes

Alternative is for OS to emulate for application, and check every instruction, as used
in some virtualization systems, e.g., QEMU



6 . 4

MICROKERNEL OPERATING SYSTEMS
We've protected "privileged instructions" via dual-mode operation, memory via
special hardware, and the CPU via use of a timer. But now applications can't do
much directly and must use OS to do it on their behalf

OS must be very stable to support apps, so becomes hard to extend

Alternative is microkernels: move OS services into
(local) servers, which may be privileged

Increases both modularity and extensibility

Still access kernel via system calls, but need new ways
to access servers: Inter-Process Communication (IPC)
schemes

Given talking to servers (largely) replaces trapping,
need IPC schemes to be extremely efficient



6 . 5

KERNELS VS MICROKERNELS
So why isn't everything a microkernel?

Lots of IPC adds overhead, so microkernels (perceived as) usually performing less
well
Microkernel implementation sometimes tricky: need to worry about
synchronisation
Microkernels often end up with redundant copies of OS data structures

Thus many common OSs blur the distinction between kernel and microkernel.

E.g. Linux is "kernel", but has kernel modules and certain servers.
E.g. Windows NT was originally microkernel (3.5), but now (4.0 onwards) pushed
lots back into kernel for performance
Unclear what the best OS structure is, or how much it really matters...



6 . 6

VIRTUAL MACHINES AND CONTAINERS
More recently, trend towards encapsulating applications differently. Roughly aimed
towards making applications appear as if they're the only application running on
the system. Particularly relevant when building systems using microservices.
Protection, or isolation at a different level

Virtual Machines encapsulate an entire running system, including the OS, and
then boot the VM over a hypervisor

E.g., Xen, VMWare ESX, Hyper-V

Containers expose functionality in the OS so that each container acts as a
separate entity even though they all share the same underlying OS functionality

E.g., Linux Containers, FreeBSD Jails, Solaris Zones



6 . 7

MANDATORY ACCESS CONTROL
https://xkcd.com/1200/From a user point of view, nowadays one often wants to

protect applications from each other, all owned by a
single user. Indeed, with personal single-user machines
now common (phones, tablets, laptops), arguable that
protection model is mismatched

Mandatory Access Control (MAC) mandates expression
of policies constraining interaction of system users

E.g., OSX and iOS Sandbox uses subject/object labelling
to implement access-control for privileges and various
resources (filesystem, communication, APIs, etc)

https://xkcd.com/1200/


6 . 8

PLEDGE(2)
One way to reduce the ability of a compromised program to do Bad Things™ is to
remove access to unnecessary system calls

Several attempts in different systems, with varying (limited) degrees of success:

Hard to use correctly (e.g., Capsicum), or
Introduce another component that needs to be watched (e.g., seccomp)

Observation:

Most programs follow a pattern of initialization() then main_loop(),
and
The main_loop() typically uses a much narrower class of system calls than
initialization()

Result? pledge(2) — ask the programmer to indicate explicitly which classes of
system call they wish to use at any point, e.g., stdio, route, inet



7

SUMMARY
Protection

Motivation, Requirements, Subjects & Objects
Design of Protection Systems
Covert Channels

Low-level Mechanisms
IO, Memory, CPU

Authentication
User to System, System to User
Mutual Suspicion

Access Matrix
Access Control Lists (ACLs) vs Capabilities

OS Structures
Dual-mode Operation, Kernels & Microkernels
Mandatory Access Control, pledge(2)


