
Mathematical Methods
for

Computer Science

lectures on Fourier and related methods

Professor J. Daugman

Computer Laboratory
University of Cambridge

Computer Science Tripos, Part IB
Michaelmas Term 2015/16

1 / 100

Outline

I Probability methods (10 lectures, Dr R.J. Gibbens, notes separately)
I Probability generating functions. (2 lectures)
I Inequalities and limit theorems. (3 lectures)
I Stochastic processes. (5 lectures)

I Fourier and related methods (6 lectures, Prof. J. Daugman)

I Fourier representations. Inner product spaces and orthonormal
systems. Periodic functions and Fourier series. Results and
applications. The Fourier transform and its properties. (3 lectures)

I Discrete Fourier methods. The Discrete Fourier transform, efficient
algorithms implementing it, and applications. (2 lectures)

I Wavelets. Introduction to wavelets, with applications in signal
processing, coding, communications, and computing. (1 lecture)

2 / 100

Reference books

I Pinkus, A. & Zafrany, S.
Fourier series and integral transforms.
Cambridge University Press, 1997

I Oppenheim, A.V. & Willsky, A.S.
Signals and systems.
Prentice-Hall, 1997

Related on-line video demonstrations:

A tuned mechanical resonator (Tacoma Narrows Bridge): http://www.youtube.com/watch?v=j-zczJXSxnw

Interactive demonstrations of convolution: http://demonstrations.wolfram.com/ConvolutionOfTwoDensities/

3 / 100

Why Fourier methods are important and ubiquitous

The decomposition of functions (signals, data, patterns, ...) into
superpositions of elementary sinusoidal functions underlies much of
science and engineering. It allows many problems to be solved.

One reason is Physics: many physical phenomena such as wave
propagation (e.g. sound, water, radio waves) are governed by linear
differential operators whose eigenfunctions (unchanged by propagation)
are the complex exponentials: e iωx = cos(ωx) + i sin(ωx)

Another reason is Engineering: the most powerful analytical tools are
those of linear systems analysis, which allow the behaviour of a linear
system in response to any input to be predicted by its response to just
certain inputs, namely those eigenfunctions, the complex exponentials.

A further reason is Computational Mathematics: when phenomena,
patterns, data or signals are represented in Fourier terms, very powerful
manipulations become possible. For example, extracting underlying forces
or vibrational modes; the atomic structure revealed by a spectrum; the
identity of a pattern under transformations; or the trends and cycles in
economic data, asset prices, or medical vital signs.

4 / 100

Simple example of Fourier analysis: analogue filter circuits

Signals (e.g. audio signals expressed as a time-varying voltage) can be
regarded as a combination of many frequencies. The relative amplitudes
and phases of these frequency components can be manipulated.

Simple linear analogue circuit elements have a complex impedance, Z,
which expresses their frequency-dependent behaviour and reveals what
sorts of filters they will make when combined in various configurations.

Resistors (R in ohms) just have a constant impedance: Z = R; but...

Capacitors (C in farads) have low impedance at high frequencies ω, and
high impedance at low frequencies: Z(ω) = 1

iωC

Inductors (L in henrys) have high impedance at high frequencies ω, and
low impedance at low frequencies: Z(ω) = iωL

5 / 100

(Simple example of Fourier analysis: filter circuits, con’t)

The equations relating voltage to current flow through circuit elements with

impedance Z (of which Ohm’s Law is a simple example) allow systems to be

designed with specific Fourier (frequency-dependent) properties, including

filters, resonators, and tuners. Today these would be implemented digitally.

Low-pass filter: higher frequencies are attenuated. High-pass filter: lower frequencies are rejected.

Band-pass filter: only middle frequencies pass. Band-reject filter: middle frequencies attenuate.
6 / 100

So who was Fourier and what was his insight?

Jean Baptiste Joseph Fourier (1768 – 1830)

7 / 100

(Quick biographical sketch of a lucky/unlucky Frenchman)

Orphaned at 8. Attended military school hoping to join the artillery but
was refused and sent to a Benedictine school to prepare for Seminary.

The French Revolution interfered. Fourier promoted it, but he was
arrested in 1794 because he had then defended victims of the Terror.
Fortunately, Robespierre was executed first, and so Fourier was spared.

In 1795 his support for the Revolution was rewarded by a chair at the
École Polytechnique. Soon he was arrested again, this time accused of
having supported Robespierre. He escaped the guillotine twice more.

Napoleon selected Fourier for his Egyptian campaign and later elevated
him to a barony. Fourier was elected to the Académie des Sciences but
Louis XVII overturned this because of his connection to Napoleon.

He proposed his famous sine series in a paper on the theory of heat,
which was rejected at first by Lagrange, his own doctoral advisor. He
proposed the “greenhouse effect.” Believing that keeping one’s body
wrapped in blankets to preserve heat was beneficial, in 1830 Fourier died
after tripping in this condition and falling down his stairs. His name is
inscribed on the Eiffel Tower.

8 / 100

Mathematical foundations and general framework:

Vector spaces, bases, linear combinations, span, linear independence,

inner products, projections, and norms

Inner product spaces

9 / 100

Introduction

In this section we shall consider what it means to represent a function
f (x) in terms of other, perhaps simpler, functions.

One example among many is to construct a Fourier series of the form

f (x) =
a0

2
+
∞∑

n=1

[an cos(nx) + bn sin(nx)] .

How are the coefficients an and bn related to the given function f (x),
and how can we determine them?

What other representations might be used?

We shall take a quite general approach to these questions and derive the
necessary framework that underpins a wide range of such representations.

We shall discuss why it is useful to find such representations for functions
(or for data), and we will examine some applications of these methods.

10 / 100

Linear space

Definition (Linear space)
A non-empty set V of vectors is a linear space over a field F of scalars if
the following are satisfied.

1. Binary operation + such that if u, v ∈ V then u + v ∈ V

2. + is associative: for all u, v ,w ∈ V then (u + v) + w = u + (v + w)

3. There exists a zero vector, written ~0 ∈ V , such that ~0 + v = v for
all v ∈ V .

4. For all v ∈ V , there exists an inverse vector, written −v , such
that v + (−v) = ~0

5. + is commutative: for all u, v ∈ V then u + v = v + u

6. For all v ∈ V and a ∈ F then av ∈ V is defined

7. For all a ∈ F and u, v ∈ V then a(u + v) = au + av

8. For all a, b ∈ F and v ∈ V then (a + b)v = av + bv
and a(bu) = (ab)u

9. For all v ∈ V then 1v = v , where 1 ∈ F is the unit scalar.

11 / 100

Choice of scalars

Two common choices of scalar fields, F, are the real numbers, R, and the
complex numbers, C, giving rise to real and complex linear spaces,
respectively.

The term vector space is a synonym for linear space.

Determining the scalars (from R or C) which are the representation of a
function or data in a particular linear space, is what is accomplished by
“taking a transform” such as a Fourier transform, wavelet transforms, or
any of an infinitude of other linear transforms.

The different transforms can be regarded as “projections” into particular
vector spaces.

12 / 100

Linear subspace

Definition (Linear subspace)
A subset W ⊂ V is a linear subspace of V if the W is again a linear
space over the same field F of scalars.

Thus W is a linear subspace if W 6= ∅ and for all u, v ∈W and a, b ∈ F
any linear combination of them is also in the subspace: au + bv ∈W .

Finding the representation of a function or of data in a linear subspace
is to project it onto only that subset of vectors. This may amount to
finding an approximation, or to extracting (say) just the low-frequency
structure of the data or signal.

Projecting onto a subspace is sometimes called dimensionality reduction.

13 / 100

Linear combinations and spans

Definition (Linear combinations)
If V is a linear space and v1, v2, . . . , vn ∈ V are vectors in V
then u ∈ V is a linear combination of v1, v2, . . . , vn if there exist
scalars a1, a2, . . . , an ∈ F such that

u = a1v1 + a2v2 + · · ·+ anvn .

We also define the span of a set of vectors as all such linear combinations:

span{v1, v2, . . . , vn} = {u ∈ V : u is a linear combination of v1, v2, . . . , vn} .

Thus, W = span{v1, v2, . . . , vn} is a linear subspace of V .

The span of a set of vectors is “everything that can be represented” by
linear combinations of them.

14 / 100

Linear independence

Definition (Linear independence)
Let V be a linear space. The vectors v1, v2, . . . , vn ∈ V are linearly
independent if whenever

a1v1 + a2v2 + · · ·+ anvn = ~0 a1, a2, . . . , an ∈ F

then a1 = a2 = · · · = an = 0

The vectors v1, v2, . . . , vn are linearly dependent otherwise.

Linear independence of the vectors in V means that none of them can be
represented by any linear combination of others. They are non-redundant:
no combination of some of them can “do the work” of another.

15 / 100

Bases

Definition (Basis)
A finite set of vectors v1, v2, . . . , vn ∈ V is a basis for the linear space V
if v1, v2, . . . , vn are linearly independent and V = span{v1, v2, . . . , vn}.
The number n is called the dimension of V , written n = dim(V).

A geometric interpretation and example: any point in the familiar 3 dim
Euclidean space R3 around us can be reached by a linear combination of
3 linearly independent vectors, such as the canonical “(x , y , z) axes.”
But this would not be possible if the 3 vectors were co-planar; then they
would not be linearly independent because any one of them could be
represented by a linear combination of the other two, and they would
span a space whose dimension is only 2. Note that linear independence of
vectors neither requires nor implies orthogonality of the vectors.

A result from linear algebra is that while there are infinitely many choices
of basis vectors, any two bases will always consist of the same number of
element vectors. Thus, the dimension of a linear space is well-defined.

16 / 100

Inner products and inner product spaces

Suppose that V is either a real or complex linear space (that is, the
scalars F = R or F = C).

Definition (Inner product)
The inner product of two vectors u, v ∈ V , written in bracket notation
〈u, v〉 ∈ F, is a scalar value satisfying

1. For each v ∈ V , 〈v , v〉 is a non-negative real number, so 〈v , v〉 ≥ 0

2. For each v ∈ V , 〈v , v〉 = 0 if and only if v = ~0

3. For all u, v ,w ∈ V and a, b ∈ F, 〈au + bv ,w〉 = a〈u,w〉+ b〈v ,w〉
4. For all u, v ∈ V then 〈u, v〉 = 〈v , u〉.

Here, 〈v , u〉 denotes the complex conjugate of the complex number
〈v , u〉. Note that for a real linear space (so, F = R) the complex
conjugate is redundant so the fourth condition above just says that
〈u, v〉 = 〈v , u〉. But inner product order matters for complex vectors.

A linear space together with an inner product is called an inner product
space.

17 / 100

Useful properties of the inner product

Before looking at some examples of inner products there are several
consequences of the definition of an inner product that are useful in
calculations.

1. For all v ∈ V and a ∈ F then 〈av , av〉 = |a|2〈v , v〉
2. For all v ∈ V , 〈~0, v〉 = 0

3. For all v ∈ V and finite sequences of vectors u1, u2, . . . , un ∈ V and
scalars a1, a2, . . . , an then

〈
n∑

i=1

aiui , v

〉
=

n∑

i=1

ai 〈ui , v〉
〈

v ,
n∑

i=1

aiui

〉
=

n∑

i=1

ai 〈v , ui 〉

18 / 100

Inner product: examples

Example (Euclidean space, Rn)
V = Rn with the usual operations of vector addition, and multiplication
by a real-valued scalar, is a linear space over the scalars R. Given two
vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Rn we can define
an inner product by

〈x , y〉 =
n∑

i=1

xiyi .

Often this inner product is known as the dot product and is written x · y

Example (space of complex vectors, V = Cn)
Similarly, for V = Cn, we can define an inner product by

〈x , y〉 = x · y =
n∑

i=1

xiyi

These inner products are projections of vectors onto each other.
19 / 100

Example (Space of continuous functions on an interval)
V = C [a, b], the space of continuous functions f : [a, b]→ C with the
standard operations of the sum of two functions, and multiplication by
a scalar, is a linear space over C and we can define an inner product
for f , g ∈ C [a, b] by

〈f , g〉 =

∫ b

a

f (x)g(x)dx .

Note that now the “vectors” have become continuous functions instead.
This generalisation can be regarded as the limit in which the number of
vector elements becomes infinite, having the density of the reals. The
discrete summation over products of corresponding vector elements in
our earlier formulation of inner product then becomes, in this limit, a
continuous integral of the product of two functions instead.

20 / 100

Norms

The concept of a norm is closely related to an inner product and we shall
see that there is a natural way to define a norm given an inner product.

Definition (Norm)
Let V be a real or complex linear space so that, F = R or C. A norm
on V is a function from V to R+, written ||v ||, that satisfies

1. For all v ∈ V , ||v || ≥ 0

2. ||v || = 0 if and only if v = ~0

3. For each v ∈ V and a ∈ F, ||av || = |a| ||v ||
4. For all u, v ∈ V , ||u + v || ≤ ||u||+ ||v || (the triangle inequality).

A norm can be thought of as the length of a vector or as a generalisation
of the notion of the distance between two vectors u, v ∈ V : the number
||u − v || is the distance between u and v .

21 / 100

Norms: examples

Example (Euclidean: natural norm for an inner product space)
If V = Rn or Cn then for x = (x1, x2, . . . , xn) ∈ V define

||x || = +
√
〈x , x〉 = +

√√√√
n∑

i=1

|xi |2 .

Example (Uniform norm)
If V = Rn or Cn then for x = (x1, x2, . . . , xn) ∈ V define

||x ||∞ = max {|xi | : i = 1, 2, . . . , n} .

Example (Uniform norm for continuous functions)
If V = C [a, b] then for each function f ∈ V , define

||f ||∞ = max {|f (x)| : x ∈ [a, b]} .

22 / 100

Orthogonal and orthonormal systems

Let V be an inner product space and choose the natural Euclidean norm.

Definition (Orthogonality)
We say that u, v ∈ V are orthogonal (written u ⊥ v) if 〈u, v〉 = 0.

Definition (Orthogonal system)
A finite or infinite sequence of vectors {ui} in V is an orthogonal system
if

1. ui 6= ~0 for all such vectors ui

2. ui ⊥ uj for all i 6= j .

Definition (Orthonormal system)
An orthogonal system is called an orthonormal system if, in addition,
||ui || = 1 for all such vectors ui .

A vector u ∈ V with unit norm, ||u|| = 1, is called a unit vector.

We use the special notation ei for such unit vectors ui comprising an
orthonormal system.

23 / 100

Theorem
Suppose that {e1, e2, . . . , en} is an orthonormal system in the

inner product space V . If u =
n∑

i=1

aiei then ai = 〈u, ei 〉.

(Another way to say this is that in an orthonormal system,
the expansion coefficients are the same as the projection coefficients.)

Proof.

〈u, ei 〉 = 〈a1e1 + a2e2 + · · ·+ anen, ei 〉
= a1〈e1, ei 〉+ a2〈e2, ei 〉+ · · ·+ an〈en, ei 〉
= ai .

Hence, if {e1, e2, . . . , en} is an orthonormal system, then for all
u ∈ span{e1, e2, . . . , en} we have

u =
n∑

i=1

aiei =
n∑

i=1

〈u, ei 〉ei .

24 / 100

Generalized Fourier coefficients

Let V be an inner product space and {e1, e2, . . . , en} an orthonormal
system (n being finite or infinite).

Definition (Generalized Fourier coefficients)
Given a vector u ∈ V , the scalars 〈u, ei 〉 (i = 1, 2, . . . , n) are called the
Generalized Fourier coefficients of u with respect to the given
orthonormal system.

These coefficients are generalized in the sense that they refer to a general
orthonormal system. It is not assumed that the vectors ei are actually
complex exponentials, the Fourier basis. Don’t presume ei means this.

There are an infinitude of orthonormal systems besides the Fourier
system that we will mainly focus on soon. Some are built from other
analytic functions (other than the complex exponentials), but others are
built from orthonormal functions that don’t even have names, or that are
definable only by numerical computations on particular datasets.

25 / 100

Infinite orthonormal systems

We now consider the situation of an inner product space, V ,
with dim(V) =∞ and consider orthonormal systems {e1, e2, . . .}
consisting of infinitely many vectors.

Definition (Convergence in norm)
Let {u1, u2, . . .} be an infinite sequence of vectors in the normed linear
space V , and let {a1, a2, . . .} be some sequence of scalars. We say that

the series
∞∑

n=1

anun converges in norm to w ∈ V if

lim
m→∞

||w −
m∑

n=1

anun|| = 0 .

This means that the (infinite dimensional) vector w would be exactly
represented by a linear combination of the vectors {ui} in the space V ,
in the limit that we could use all of them. This property of an infinite
orthonormal system in an inner product space is called closure.

26 / 100

Remarks on closure (linear systems that are “closed”)
I If the system is closed it may still be that the required number m of

terms in the above linear combination for a “good” approximation is
too great for practical purposes.

I Seeking alternative closed systems of orthonormal vectors may
produce “better” approximations in the sense of requiring fewer
terms for a given accuracy. The best system for representing a
particular dataset will depend on the dataset. (Example: faces.)

I There exists a numerical method for constructing an orthonormal
system {e1, e2, . . .} such that any given set of vectors {u1, u2, . . .}
(which are often a set of multivariate data) can be represented
within it with the best possible accuracy using any specified finite
number of terms. Optimising the approximation under truncation
requires deriving the orthogonal system {e1, e2, . . .} from the data
set {u1, u2, . . .}. This is called the Karhunen-Loève transform or
alternatively the Hotelling transform, or Dimensionality Reduction,
or Principal Components Analysis, and it is used in statistics and in
exploratory data analysis, but it is outside the scope of this course.

27 / 100

Fourier series

28 / 100

Representing functions

In seeking to represent functions as linear combinations of simpler
functions we shall need to consider spaces of functions with closed
orthonormal systems.

Definition (piecewise continuous)
A function is piecewise continuous if it is continuous, except at a finite
number of points and at each such point of discontinuity, the right and
left limits exists and are finite.

The space, E , of piecewise continuous functions f : [−π, π]→ C is seen
to be a linear space, under the convention that we regard two functions
in E as identical if they are equal at all but a finite number of points.
We consider the functions over the interval [−π, π] for convenience.

For f , g ∈ E , then

〈f , g〉 =
1

π

∫ π

−π
f (x)g(x)dx

defines an inner product on E .

29 / 100

A closed infinite orthonormal system for E

An important result, which will bring us to Fourier series and eventually
Fourier analysis and Fourier transforms, is that the vector space

{
1√
2
, sin(x), cos(x), sin(2x), cos(2x), sin(3x), cos(3x), . . .

}

is a closed infinite orthonormal system in the space E .

Now we shall just demonstrate orthonormality, and omit establishing the
property of closure for this system.

30 / 100

Writing
||f || = +

√
< f , f >

as the norm associated with our inner product for continuous functions
(as defined two slides earlier), it can easily be shown that

|| 1√
2
|| =

1

π

∫ π

−π

1√
2

1√
2

dx = 1

and similarily that for each n = 1, 2, . . .

|| sin(nx)|| = || cos(nx)|| = 1

and that for all m, n ∈ N
I 〈 1√

2
, sin(nx)〉 = 0

I 〈 1√
2
, cos(nx)〉 = 0

I 〈sin(mx), cos(nx)〉 = 0

I 〈sin(mx), sin(nx)〉 = 0, m 6= n

I 〈cos(mx), cos(nx)〉 = 0, m 6= n.

Thus, the elements of this vector space constitute an orthonormal system.

31 / 100

Fourier series

From the properties of closed orthonormal systems {e1, e2, . . .} we know
that we can represent any function f ∈ E by a linear combination

∞∑

n=1

〈f , en〉en .

We now turn to consider the individual terms 〈f , en〉en in the case of the
particular (i.e. Fourier) closed orthonormal system

{
1√
2
, sin(x), cos(x), sin(2x), cos(2x), sin(3x), cos(3x), . . .

}
.

There are three cases, either en = 1√
2

or sin(nx) or cos(nx). Recall that

the infinite-dimensional vectors en are actually continuous functions in
E = {f : [−π, π]→ C : f is piecewise continuous}

32 / 100

If en = 1/
√

2 then

〈f , en〉en =
1

π

(∫ π

−π
f (t)

1√
2

dt

)
1√
2

=
1

2π

∫ π

−π
f (t)dt .

If en = sin(nx) then

〈f , en〉en =
1

π

(∫ π

−π
f (t) sin(nt) dt

)
sin(nx) .

If en = cos(nx) then

〈f , en〉en =
1

π

(∫ π

−π
f (t) cos(nt) dt

)
cos(nx) .

33 / 100

Fourier coefficients

Thus in this orthonormal system, the linear combination

∞∑

n=1

〈f , en〉en

becomes the familiar Fourier series for a function f , namely

a0

2
+
∞∑

n=1

[an cos(nx) + bn sin(nx)]

where

an =
1

π

∫ π

−π
f (x) cos(nx) dx , n = 0, 1, 2, . . .

bn =
1

π

∫ π

−π
f (x) sin(nx) dx , n = 1, 2, 3,

Note how the constant term is written a0/2 where a0 =
1

π

∫ π

−π
f (x)dx .

34 / 100

Periodic functions

Our Fourier series

a0

2
+
∞∑

n=1

[an cos(nx) + bn sin(nx)]

defines a function, say g(x), that is 2π-periodic in the sense that

g(x + 2π) = g(x), for all x ∈ R .

Hence, it is convenient to extend f ∈ E to a 2π-periodic function defined
on R instead of being restricted to [−π, π].

This finesse will prove important later, when we discuss the Discrete
Fourier Transform and the Fast Fourier Transform algorithm for datasets
that are not actually periodic. In effect, such datasets of whatever length
are regarded as just one “period” within endlessly repeating copies of
themselves. To define the continuous Fourier transform of an aperiodic
continuous function, we will regard its period as being infinite, and the
increment of frequencies (index n above) will become infinitesimal.

35 / 100

Even and odd functions

A particularly useful simplification occurs when the function f ∈ E is
either an even function, that is, for all x ,

f (−x) = f (x)

or an odd function, that is, for all x ,

f (−x) = −f (x) .

The following properties can be easily verified.

1. If f , g are even then fg is even

2. If f , g are odd then fg is even

3. If f is even and g is odd then fg is odd

4. If g is odd then for any h > 0, we have

∫ h

−h
g(x)dx = 0

5. If g is even then for any h > 0, we have

∫ h

−h
g(x)dx = 2

∫ h

0

g(x)dx .

36 / 100

Even functions and cosine series

Recall that the Fourier coefficients are given by

an =
1

π

∫ π

−π
f (x) cos(nx) dx , n = 0, 1, 2, . . .

bn =
1

π

∫ π

−π
f (x) sin(nx) dx , n = 1, 2, 3, . . .

so if f is even then they become

an =
2

π

∫ π

0

f (x) cos(nx) dx , n = 0, 1, 2, . . .

bn = 0, n = 1, 2, 3,

37 / 100

Odd functions and sine series

Similarly, the Fourier coefficients

an =
1

π

∫ π

−π
f (x) cos(nx) dx , n = 0, 1, 2, . . .

bn =
1

π

∫ π

−π
f (x) sin(nx) dx , n = 1, 2, 3, . . . ,

for the case where f is an odd function become

an = 0, n = 0, 1, 2, . . .

bn =
2

π

∫ π

0

f (x) sin(nx) dx , n = 1, 2, 3,

Thus, the Fourier series for even functions require only cosine terms. The
Fourier series for odd functions require only sine terms. In both cases, the
integrals for obtaining their coefficients involve only half the real line.

38 / 100

Fourier series: example 1

Consider f (x) = x for x ∈ [−π, π], so f is clearly odd and thus we need
to calculate a sine series with coefficients, bn, n = 1, 2, . . . given by

bn =
2

π

∫ π

0

x sin(nx) dx =
2

π

{[
−x

cos(nx)

n

]π

0

+

∫ π

0

cos(nx)

n
dx

}

=
2

π

{
−π (−1)n

n
+

[
sin(nx)

n2

]π

0

}

=
2

π

{
−π (−1)n

n
+ 0

}
=

2(−1)n+1

n
.

Hence the Fourier series of f (x) = x on x ∈ [−π, π] is

∞∑

n=1

2(−1)n+1

n
sin(nx) .

Observe that the series does not agree with f (x) at x = ±π, the
endpoints of the interval — a matter that we shall return to later.

39 / 100

(example 1, con’t)

Let us examine plots of the partial sums to m terms
m∑

n=1

2(−1)n+1

n
sin(nx) .

− π 0 π

π

− π

m=1 term

− π 0 π

π

− π

m=2 terms

− π 0 π

π

− π

m=4 terms

− π 0 π

π

− π

m=8 terms

− π 0 π

π

− π

m=16 terms

− π 0 π

π

− π

m=32 terms

40 / 100

Fourier series: example 2

Now suppose f (x) = |x | for x ∈ [−π, π] which is clearly an even function
so we need to construct a cosine series with coefficients

a0 =
2

π

∫ π

0

xdx =
2

π

π2

2
= π

and for n = 1, 2, . . .

an =
2

π

∫ π

0

x cos(nx) dx =
2

π

{[
x sin(nx)

n

]π

0

−
∫ π

0

sin(nx)

n
dx

}

=
2

π

{[
cos(nx)

n2

]π

0

}
=

2

π

{
(−1)n − 1

n2

}
=

{
− 4
πn2 n is odd

0 n is even
.

Hence, the Fourier series of f (x) = |x | on x ∈ [−π, π] is

π

2
−
∞∑

k=1

4

π(2k − 1)2
cos ((2k − 1)x) .

41 / 100

(example 2, con’t)

Let us examine plots of the partial sums to m terms

π

2
−

m∑

k=1

4

π(2k − 1)2
cos ((2k − 1)x) .

− π 0 π

π

m=1 term

− π 0 π

π

m=2 terms

− π 0 π

π

m=4 terms

− π 0 π

π

m=8 terms

− π 0 π

π

m=16 terms

− π 0 π

π

m=32 terms

42 / 100

Complex Fourier series I

We have used real-valued functions sin(nx) and cos(nx) as our
orthonormal system for the linear space E , but we can also use
complex-valued functions. In this case, the inner product is

〈f , g〉 =
1

2π

∫ π

−π
f (x)g(x)dx .

A suitable orthonormal system which captures the earlier (sine, cosine)
Fourier series approach is the collection of functions

{
1, e ix , e−ix , e i2x , e−i2x , . . .

}
.

Then we have a representation, known as the complex Fourier series
of f ∈ E , given by

∞∑

n=−∞
cne inx

where

cn =
1

2π

∫ π

−π
f (x)e−inxdx , n = 0,±1,±2,

43 / 100

Complex Fourier series II
Euler’s formula, e ix = cos(x) + i sin(x), gives for n = 1, 2, . . . that

e inx = cos(nx) + i sin(nx)

e−inx = cos(nx)− i sin(nx)

and e i0x = 1. Using these relations it can be shown that for n = 1, 2, . . .

cn =
an − ibn

2
, c−n =

an + ibn

2
.

Hence,
an = cn + c−n, bn = i(cn − c−n)

and

c0 =
1

2π

∫ π

−π
f (x)e−i0xdx =

1

2π

∫ π

−π
f (x)dx =

a0

2
.

44 / 100

Fourier transforms

45 / 100

Introduction
I We have seen how functions f : [−π, π]→ C, f ∈ E can be studied

in alternative forms using closed orthonormal systems such as

∞∑

n=−∞
cne inx

where

cn =
1

2π

∫ π

−π
f (x)e−inxdx n = 0,±1,±2,

The domain [−π, π] can be swapped for a general interval [a, b] and
the function can be regarded as L-periodic and defined for all R,
where L = (b − a) <∞ is the length of the interval.

I We shall now consider the situation where f : R→ C may be a
non-periodic (“aperiodic”) function.

46 / 100

Fourier transform

Definition (Fourier transform)
For f : R→ C define the Fourier transform of f to be the
function F : R→ C given by

F (ω) = F[f](ω) =
1

2π

∫ ∞

−∞
f (x)e−iωxdx

whenever the integral exists.

Note two key changes from the Fourier series, now that the function f (x)
is no longer constrained to be periodic:

1. the bounds of integration are now [−∞,∞] instead of [−π, π], since
the function’s “period” is now unbounded – it is aperiodic.

2. the frequency parameter inside the complex exponential previously
took only integer values n, but now it must take all real values ω.

We shall use the notation F (ω) or F[f](ω) as convenient, and refer to it
as “the representation of f (x) in the frequency (or Fourier) domain.”

47 / 100

For functions f : R→ C define the two properties

1. piecewise continuous: if f is piecewise continuous on every finite
interval. Thus f may have an infinite number of discontinuities but
only a finite number in any subinterval.

2. absolutely integrable: if

∫ ∞

−∞
|f (x)|dx <∞

Let G (R) be the collection of all functions f : R→ C that are both
piecewise continuous and absolutely integrable.

48 / 100

Immediate properties

It may be shown that G (R) is a linear space over the scalars C and that
for f ∈ G (R)

1. F (ω) is defined for all ω ∈ R
2. F is a continuous function

3. limω→±∞ F (ω) = 0

These properties affirm the existence and nice behaviour of the Fourier
transform of all piecewise continuous and absolutely integrable functions
f : R→ C. Soon we will see many further properties that relate the
behaviour of F (ω) to that of f (x), and specifically the consequences for
F (ω) when f (x) is manipulated in certain ways.

49 / 100

Example

For a > 0, let f (x) = e−a|x|. Then the Fourier transform of f (x) is

F (ω) =
1

2π

∫ ∞

−∞
e−a|x|e−iωxdx

=
1

2π

{∫ ∞

0

e−axe−iωxdx +

∫ 0

−∞
eaxe−iωxdx

}

=
1

2π

{
−
[

e−(a+iω)x

a + iω

]∞

0

+

[
e(a−iω)x

a− iω

]0

−∞

}

=
1

2π

{
1

a + iω
+

1

a− iω

}

=
a

π(a2 + ω2)
.

Observe that f (x) is real and even, and so is its Fourier transform F (ω).

50 / 100

Properties

Several properties of the Fourier transform are very helpful in calculations.

First, note that by the linearity of integrals we have that if f , g ∈ G (R)
and a, b ∈ C then

F[af +bg](ω) = aF[f](ω) + bF[g](ω)

and af + bg ∈ G (R).

Secondly, if f is real-valued then

F (−ω) = F (ω) .

This property is called Hermitian symmetry: the Fourier transform of a
real-valued function has even symmetry in its real part and odd symmetry
in its imaginary part. An obvious consequence is that when calculating
the Fourier transform of a real-valued function, we need only consider
positive values of ω since F (ω) determines F (−ω) by conjugacy.

51 / 100

Even and odd real-valued functions

Theorem
If f ∈ G (R) is an even real-valued function then its Fourier transform F
is even and purely real-valued. If f is an odd real-valued function then
its Fourier transform F is odd and purely imaginary.

Proof.
Suppose that f is even and real-valued. Then

F (ω) =
1

2π

∫ ∞

−∞
f (x)e−iωxdx

=
1

2π

∫ ∞

−∞
f (x) [cos(ωx)− i sin(ωx)] dx

=
1

2π

∫ ∞

−∞
f (x) cos(ωx)dx .

Hence, F is real-valued and even (the imaginary part has vanished, and
both f (x) and cos(ωx) are themselves even functions, which ensures
F (ω) is an even function of ω). The second part follows similarly.

52 / 100

Shift and scale properties

Theorem
Let f ∈ G (R) and a, b ∈ R with a 6= 0 and define g(x) = f (ax + b)

then g ∈ G (R) and

F[g](ω) =
1

|a|e
iωb/aF[f]

(ω
a

)

Thus, scaling (dilating or compressing) the function f by a, and shifting
it by b, have simple, well-defined effects on its Fourier transform, which
we can exploit. Two special cases are worth highlighting:

1. Suppose that b = 0 so g(x) = f (ax) and thus

F[g](ω) =
1

|a|F[f]

(ω
a

)
.

2. Suppose that a = 1 so g(x) = f (x + b) and thus

F[g](ω) = e iωbF[f](ω) .

53 / 100

Proof

Set y = ax + b, so for a > 0, the Fourier integral becomes

F[g](ω) =
1

2π

∫ ∞

−∞
f (y)e−iω(y−b

a) dy

a

and for a < 0, it becomes

F[g](ω) = − 1

2π

∫ ∞

−∞
f (y)e−iω(y−b

a) dy

a
.

Hence,

F[g](ω) =
1

|a|e
iωb/a 1

2π

∫ ∞

−∞
f (y)e−iωy/ady =

1

|a|e
iωb/aF[f]

(ω
a

)
.

So, dilating or compressing a function simply causes a reciprocal scaling
effect on its Fourier transform. Shifting a function just causes its Fourier
transform to be modulated (multiplied) by a complex exponential whose
parameter is that amount of shift.

54 / 100

Theorem
For f ∈ G (R) and c ∈ R then

F[e icx f (x)](ω) = F[f](ω − c) .

Proof.

F[e icx f (x)](ω) =
1

2π

∫ ∞

−∞
e icx f (x)e−iωxdx

=
1

2π

∫ ∞

−∞
f (x)e−i(ω−c)xdx

= F[f](ω − c) .

Note the symmetry (sometimes called a “duality”) between the last two
properties: a shift in f (x) by b causes F[f](ω) to be multiplied by e iωb ;
whereas multiplying f (x) by e icx causes F[f](ω) to be shifted by c .

55 / 100

Modulation property

Theorem
For f ∈ G (R) and c ∈ R then

F[f (x) cos(cx)](ω) =
F[f](ω − c) + F[f](ω + c)

2

F[f (x) sin(cx)](ω) =
F[f](ω − c)−F[f](ω + c)

2i
.

Proof.
We have that

F[f (x) cos(cx)](ω) = F[
f (x) eicx +e−icx

2

](ω)

=
1

2
F[f (x)e icx](ω) +

1

2
F[f (x)e−icx](ω)

=
F[f](ω − c) + F[f](ω + c)

2
.

Similarly, for F[f (x) sin(cx)](ω).

56 / 100

A major application of the modulation property

The last two theorems are the basis for broadcast telecommunications
that encode and transmit using amplitude modulation of a carrier (e.g.
“AM radio”), for receivers that decode the AM signal using a tuner.

Radio waves propagate well through the atmosphere in a frequency range
(or “spectrum”) measured in the gigaHertz, with specific bands allocated
by government for commercial broadcasting, mobile phone operators, etc.
A band around 1 megaHertz (0.3 to 3.0 MHz) is allocated for AM radio,
and a band around 1 gigaHertz (0.3 to 3.0 GHz) for mobile phones, etc.

A human audio signal f (t) occupies less than 10 kHz, but its spectrum
F (ω) is shifted up into the MHz or GHz range by multiplying the sound
waveform f (t) with a carrier wave e ict of frequency c , yielding F (ω − c).
Its bandwidth remains 10 kHz, so many many different channels can be
allocated by choices of c . The AM signal received is then multiplied by
e−ict in the tuner, shifting its spectrum back down by c , restoring f (t).

This (“single sideband” or SSB) approach requires a complex carrier
wave e ict . Devices can be simplified by using a purely real carrier wave
cos(ct), at the cost of shifting in both directions F (ω − c) and F (ω + c)
as noted, doubling the bandwidth and power requirements.

57 / 100

Example of double-sideband modulation in AM broadcasting

Left: Double-sided spectra of baseband and (modulated) AM signals.

Right: Spectrogram (frequency spectrum versus time) of an AM broadcast

shows its two sidebands (green), on either side of its central carrier (red).

58 / 100

Derivatives

There are further properties relating to the Fourier transform of
derivatives that we shall state here but omit further proofs.

Theorem
If f is such that both f , f ′ ∈ G (R) then

F[f ′](ω) = iωF[f](ω) .

It follows by concatenation that for nth-order derivatives f (n) ∈ G (R)

F[f (n)](ω) = (iω)nF[f](ω) .

In Fourier terms, taking a derivative (of order n) is thus a kind of filtering
operation: the Fourier transform of the original function is just multiplied
by (iω)n, which emphasizes the higher frequencies while discarding the
lower frequencies.

The notion of derivative can thus be generalized to non-integer order,
n ∈ R instead of just n ∈ N. In fields like fluid mechanics, it is sometimes
useful to have the 0.5th or 1.5th derivative of a function, f (0.5) or f (1.5).

59 / 100

Application of the derivative property

In a remarkable way, the derivative property converts calculus problems
(such as solving differential equations) into much easier algebra problems.
Consider for example a 2nd -order differential equation such as

af ′′(x) + bf ′(x) + cf (x) = g(x)

where g 6= 0 is some known function or numerically sampled behaviour
whose Fourier transform G (ω) is known or can be computed. Solving this
common class of differential equation requires finding function(s) f (x)
for which the equation is satisfied. How can this be done?

By taking Fourier transforms of both sides of the differential equation
and applying the derivative property, we immediately get a simple
algebraic equation in terms of G (ω) = F[g](ω) and F (ω) = F[f](ω) :

[a(iω)2 + biω + c]F (ω) = G (ω)

Now we can express the Fourier transform of our desired solution f (x)

F (ω) =
G (ω)

−aω2 + biω + c

and wish that we could “invert” F (ω) to express f (x) !
60 / 100

Inverse Fourier transform

There is an inverse operation for recovering a function f given its Fourier
transform F (ω) = F[f](ω), which takes the form

f (x) =

∫ ∞

−∞
F[f](ω)e iωxdω ,

which you will recognize as the property of an orthonormal system in the
space of continuous functions, using the complex exponentials e iωx as its
basis elements. More precisely, we have the following convergence result:

Theorem (Inverse Fourier transform)
If f ∈ G (R) then for every point x ∈ R where the derivative of f exists,

f (x−) + f (x+)

2
= lim

M→∞

∫ M

−M
F[f](ω)e iωxdω .

61 / 100

Convolution

An important operation combining two functions to create a third
function, with many applications (especially in signal processing and
image processing), is convolution, defined as follows.

Definition (Convolution)
If f and g are two functions R→ C then the convolution operation,
denoted by an asterisk f ∗ g , creating a third function, is given by

(f ∗ g)(x) =

∫ ∞

−∞
f (x − y)g(y)dy

whenever the integral exists.

Exercise: show that the convolution operation is commutative:
that f ∗ g = g ∗ f .

Nice interactive demonstrations of convolution may be found at:
http://demonstrations.wolfram.com/ConvolutionOfTwoDensities/

62 / 100

Fourier transforms and convolutions

The importance of Fourier transform techniques for signal processing
rests, in part, on the fact that all “filtering” operations are convolutions,
and even taking derivatives amounts really to a filtering or convolution
operation. The following result shows that all such operations can be
implemented merely by multiplication of functions in the Fourier domain,
which is much simpler and faster.

Theorem (Convolution theorem)
For f , g ∈ G (R) then

F[f ∗g](ω) = 2πF[f](ω) · F[g](ω) .

The convolution integral, whose definition explicitly required integrating
the product of two functions for all possible relative shifts between them,
to generate a new function in the variable of the amount of shift, is now
seen to correspond to the much simpler operation of multiplying together
both of their Fourier transforms.

63 / 100

Proof

We have that

F[f ∗g](ω) =
1

2π

∫ ∞

−∞
(f ∗ g)(x)e−iωxdx

=
1

2π

∫ ∞

−∞

(∫ ∞

−∞
f (x − y)g(y)dy

)
e−iωxdx

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f (x − y)e−iω(x−y)g(y)e−iωydxdy

=

∫ ∞

−∞

(
1

2π

∫ ∞

−∞
f (x − y)e−iω(x−y)dx

)
g(y)e−iωydy

= F[f](ω)

∫ ∞

−∞
g(y)e−iωydy

= 2πF[f](ω) · F[g](ω) .

64 / 100

Some signal processing applications

We can now develop some important concepts and relationships leading
to the remarkable Shannon sampling result (i.e., exact representation of
continuous functions, from mere samples of them at periodic points).

We first note two types of limitations on functions.

Definition (Time-limited)
A function f is time-limited if

f (x) = 0 for all |x | ≥ M

for some constant M, and x being interpreted here as time.

Definition (Band-limited)
A function f ∈ G (R) is band-limited if

F[f](ω) = 0 for all |ω| ≥ L

for some constant L being bandwidth, and ω being frequency.

65 / 100

Let us first calculate the Fourier transform of the “unit pulse”:

f (x) =

{
1 a ≤ x ≤ b

0 otherwise .

F (ω) =
1

2π

∫ ∞

−∞
f (x)e−iωxdx =

1

2π

∫ b

a

e−iωxdx .

So, for ω 6= 0,F (ω) =
[

1
2π

(
e−iωx

−iω

)]b
a

= e−iωa−e−iωb

2πiω

For ω = 0 we have that F (0) = 1
2π

∫ b

a
dx = (b−a)

2π . For the special case
when a = −b with b > 0 (a zero-centred unit pulse), then

F (ω) =

{
e iωb−e−iωb

2πiω = sin(ωb)
ωπ ω 6= 0

b
π ω = 0

This important wiggly function, the Fourier transform of the unit pulse, is
called a sinc function. It is plotted on the next slide.

66 / 100

On the previous slide, the sinc was a function of frequency. But a sinc
function of x is also important, because if we wanted to strictly low-pass
filter a signal, then we would convolve it with a sinc function whose
“frequency parameter” corresponds to the cut-off frequency.

The sinc function plays an important role in the Sampling Theorem,
because it allows us to know exactly what a (strictly low-pass) signal
does even between the points at which we have sampled it. (This is
rather amazing; it sounds like something impossible!)

Figure �� The sinc function�
sin��x�

�x

0

0.2

0.4

0.6

0.8

1

1.2

0-W W

Figure �� Aliasing e�ect example

��

Note from the functional form that it has periodic zero-crossings, except
at its peak where the interval between zeroes is doubled. Note also that
the magnitude of oscillations is damped hyperbolically (as 1/x).

67 / 100

Remarks on Shannon’s sampling theorem
I The theorem says that functions which are strictly band-limited by

some upper frequency L (that is, F[f](ω) = 0 for |ω| > L) are
completely determined just by their values at evenly spaced points
a distance π

L apart. (Proof given in Pt II course Information Theory.)

I Moreover, we may recover the function exactly given only its values
at this sequence of points. It is remarkable that a countable, discrete
sequence of values suffices to determine completely what happens
between these discrete samples. The “filling in” is achieved by
superimposed sinc functions, weighted by the sample values.

I It may be shown that shifted (n ∈ Z) and scaled (L) sinc functions

sin(Lx − nπ)

Lx − nπ

also constitute an orthonormal system, with inner product

〈f , g〉 =
L

π

∫ ∞

−∞
f (x)g(x)dx .

68 / 100

Discrete Fourier Transforms

Notation: whereas continuous functions were denoted f (x) for x ∈ R,
discrete sequences of values at regular points are denoted with square
brackets as f [n] for n ∈ Z (the index values n have unit increments).
Thus f [n] is essentially a vector of data points, and similarly for ek [n],
discretely sampled complex exponentials that will form a vector space.

69 / 100

We now shift attention from functions defined on intervals or on the
whole of R, to discrete sequences f [n] of values f [0], f [1], . . . , f [N − 1].

A fundamental property in the area of discrete transforms is that the
vectors {e0, e1, . . . , eN−1} form an orthogonal system in the space CN

with the usual inner product, where the nth element of ek is given by:
ek [n] = e2πink/N for n = 0, 1, 2, . . . ,N − 1 and k = 0, 1, 2, . . . ,N − 1.

The k th vector ek has N elements and is a discretely sampled complex
exponential with frequency k . Its nth element is an N th root of unity,
namely the (nk)th power of the primitive N th root of unity:

Im

Re

70 / 100

Applying the usual inner product 〈u, v〉 =
N−1∑

n=0

u[n]v [n]

it may be shown that the squared norm:

||ek ||2 = 〈ek , ek〉 = N .

In practice, N will normally be a power of 2 and it will correspond to the
number of discrete data samples that we have (padded out, if necessary,
with 0’s to the next power of 2). N is also the number of samples we
need of each complex exponential (see previous “unit circle” diagram).

In fact, using the sequence of vectors {e0, e1, . . . , eN−1} we can represent
any data sequence f = (f [0], f [1], . . . , f [N − 1]) ∈ CN by the vector sum

f =
1

N

N−1∑

k=0

〈f , ek〉ek .

A crucial point is that only N samples of complex exponentials ek are
required, and they are all just powers of the primitive N th root of unity.

71 / 100

Definition (Discrete Fourier Transform, DFT)
The sequence F [k], k ∈ Z, defined by

F [k] = 〈f , ek〉 =
N−1∑

n=0

f [n]e−2πink/N

is called the N-point Discrete Fourier Transform of f [n].

Similarly, for n = 0, 1, 2, . . . ,N − 1, we have the inverse transform

f [n] =
1

N

N−1∑

k=0

F [k]e2πink/N .

Note that in both these discrete series which define the Discrete Fourier
Transform and its inverse, all of the complex exponential values needed
are (nk)th powers of the primitive N th root of unity, e2πi/N . This is the
crucial observation underlying Fast Fourier Transform (FFT) algorithms,
because it allows factorization and grouping of terms together, requiring
vastly fewer multiplications.

72 / 100

Periodicity

Note that the sequence F [k] is periodic, with period N, since

F [k + N] =
N−1∑

n=0

f [n]e−2πin(k+N)/N =
N−1∑

n=0

f [n]e−2πink/N = F [k]

using the relation

e−2πin(k+N)/N = e−2πink/Ne−2πin = e−2πink/N .

Importantly, note that a complete DFT requires as many (= N) Fourier
coefficients F [k] to be computed as the number (= N) of values in the
sequence f [n] whose DFT we are computing.

(Both of these sequences f [n] and F [k] having N values repeat endlessly,
but in the case of the data sequence f [n] this periodicity is something of
an artificial construction to make the DFT well-defined. Obviously we
approach the DFT with just a finite set of N data values.)

73 / 100

Properties of the DFT

The DFT satisfies a range of properties similar to those of the FT
relating to linearity, and shifts in either the n or k domain.

However, the convolution operation is defined a little differently because
the sequences are periodic. Thus instead of an infinite integral, now we
need only a finite summation of N terms, but with discrete index shifts:

Definition (Cyclical convolution)
The cyclical convolution of two periodic sequences f [n] and g [n] of
period N, signified with an asterisk f ∗ g , is defined as

(f ∗ g)[n] =
N−1∑

m=0

f [m]g [n −m] .

Implicitly, because of periodicity, if [n −m] is negative it is taken mod N
when only N values are explicit.

It can then be shown that the DFT of f ∗ g is the product F [k]G [k]
where F and G are the DFTs of f and g , respectively. Thus, again,
convolution in one domain becomes just multiplication in the other.

74 / 100

Fast Fourier Transform algorithm

Popularized in 1965, but recently described by a leading mathematician
as “the most important numerical algorithm of our lifetime.”

75 / 100

Fast Fourier Transform algorithm

The Fast Fourier Transform (of which there are several variants) exploits
some remarkable arithmetic efficiencies when computing the DFT.

Since the explicit definition of each Fourier coefficient in the DFT is

F [k] =
N−1∑

n=0

f [n]e−2πink/N

= f [0] + f [1]e−2πik/N + · · ·+ f [N − 1]e−2πik(N−1)/N

we can see that in order to compute one Fourier coefficient F [k], using
the complex exponential having frequency k , we need to do N (complex)
multiplications and N (complex) additions. To compute all the N such
Fourier coefficients F [k] in this way for k = 0, 1, 2, . . . ,N − 1 would
thus require 2N2 such operations. Since the number N of samples in a
typical audio signal (or pixels in an image) whose DFT we may wish to
compute may be O(106), clearly it would be very cumbersome to have
to perform O(N2) = O(1012) multiplications. Fortunately, very efficient
Fast Fourier Transform (FFT) algorithms exist that instead require only
O(N log2 N) such operations, vastly fewer than O(N2) if N is large.

76 / 100

(Fast Fourier Transform algorithm, con’t)

Recall that all the multiplications required in the DFT involve the N th

roots of unity, and that these in turn can all be expressed as powers of
the primitive N th root of unity: e2πi/N .

Let us make that explicit now by defining this constant as W = e2πi/N

(which is just a complex number that depends only on the data length N
which is presumed to be a power of 2), and let us use W to express all
the other complex exponential values needed, as the (nk)th powers of W :

e2πink/N = W nk . Im

Re
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

W0 = 1

W1

W2

W3

77 / 100

(Fast Fourier Transform algorithm, con’t)

Or going around the unit circle in the opposite direction, we may write:

e−2πink/N = W−nk

The same N points on the unit circle in the complex plane are used again
and again, regardless of which Fourier coefficient F [k] we are computing
using frequency k, since the different frequencies are implemented by
skipping points as we hop around the unit circle.

Thus the lowest frequency k = 1 uses all N roots of unity and goes
around the circle just once, multiplying them with the successive data
points in the sequence f [n]. The second frequency k = 2 uses every
second point and goes around the circle twice for the N data points;
the third frequency k = 3 hops to every third point and goes around
the circle three times; etc.

Because the hops keep landing on points around the unit circle from the
same set of N complex numbers, and the set of data points from the
sequence f [n] are being multiplied repeatedly by these same numbers for
computing the various Fourier coefficients F [k], it is possible to exploit
some clever arithmetic tricks and an efficient recursion.

78 / 100

(Fast Fourier Transform algorithm, con’t)

Let us re-write the expression for Fourier coefficients F [k] now in terms
of powers of W , and divide the series into its first half plus second half.
(“Decimation in frequency;” there is a “decimation in time” variant.)

F [k] =
N−1∑

n=0

f [n]e−2πink/N =
N−1∑

n=0

f [n]W−nk

=

N/2−1∑

n=0

f [n]W−nk +
N−1∑

n=N/2

f [n]W−nk

=

N/2−1∑

n=0

(f [n] + W−kN/2f [n + N/2])W−kn

=

N/2−1∑

n=0

(f [n] + (−1)k f [n + N/2])W−kn

where the last two steps exploit the fact that advancing halfway through
the cycle(s) of a complex exponential just multiplies value by +1 or −1,
depending on the parity of the frequency k , since W−N/2 = −1.

79 / 100

(Fast Fourier Transform algorithm, con’t)

Now, separating out even and odd terms of F [k] we get Fe [k] and Fo [k]:

Fe [k] =

N/2−1∑

n=0

(f [n] + f [n + N/2])W−2kn, k = 0, 1, . . . ,N/2− 1

Fo [k] =

N/2−1∑

n=0

(f [n]− f [n + N/2])W−nW−2kn, k = 0, 1, . . . ,N/2− 1

The beauty of this “divide and conquer” strategy is that we replace a
Fourier transform of length N with two of length N/2, but each of these
requires only one-quarter as many multiplications. The wonderful thing
about the Danielson-Lanczos Lemma is that this can be done recursively:
each of the half-length Fourier transforms Fe [k] and Fo [k] that we end up
with can further be replaced by two quarter-length Fourier transforms,
and so on down by factors of 2. At each stage, we combine input data
halfway apart in the sequence (adding or subtracting), before performing
any complex multiplications.

80 / 100

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

A
A
A
A
A
A
A
A
A
A
A
A
A
AU

A
A
A
A
A
A
A
A
A
A
A
A
A
AU

A
A
A
A
A
A
A
A
A
A
A
A
A
AU

�

A
A
A
A
A
A
A
A
A
A
A
A
A
AU�

�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
��

�

�

�

�

�

�

�

�

��point

DFT

��point

DFT

f�

f�

f�

f�

f�

f�

f�

f�

F �

F �

F �

F �

F �

F �

F �

F �

�W �

�W �

�W �

�W �

To compute the N Fourier coefficients F [k] using this recursion we are
performing N complex multiplications every time we divide length by 2,
and given that the data length N is some power of 2, we can do this
log2 N times until we end up with just a trivial 1-point transform. Thus,
the complexity of this algorithm is O(N log2 N) for data of length N.

81 / 100

The repetitive pattern formed by adding or subtracting pairs of points
halfway apart in each decimated sequence has led to this algorithm
(popularized by Cooley and Tukey in 1965) being called the Butterfly.

This pattern produces the output Fourier coefficients in bit-reversed
positions: to locate F [k] in the FFT output array, take k as a binary
number of log2 N bits, reverse them and treat as the index into the array.
Storage requirements of this algorithm are only O(N) in space terms.

Stage 1 Stage 2 Stage 3

82 / 100

Extensions to higher dimensions

All of the Fourier methods we have discussed so far have involved only
functions or sequences of a single variable. Their Fourier representations
have correspondingly also been functions or sequences of a single variable.

But all Fourier techniques can be generalized and apply also to functions
of any number of dimensions. For example, images (when pixelized) are
discrete two-dimensional sequences f [n,m] giving a pixel value at row n
and column m. Their Fourier components are 2D complex exponentials
having the form f [n,m] = e2πi(kn/N+jm/M) for an image of dimensions
NxM pixels, and they have the following “plane wave” appearance with
both a “spatial frequency”

√
k2 + j2 and an orientation arctan (j/k):

Similarly, crystallography uses 3D Fourier methods to infer atomic lattice
structure from the phases of X-rays scattered by a slowly rotating crystal.

83 / 100

Wavelet Transforms

84 / 100

Wavelets

Wavelets are further bases for representing functions, that have received
much interest in both theoretical and applied fields over the past 25 years.
They combine aspects of the Fourier (frequency-based) approaches with
restored locality, because wavelets are size-specific local undulations.

The approach fits into the general scheme of expanding a function f (x)
using orthonormal functions. Dyadic transformations of some generating
wavelet Ψ(x) spawn an orthonormal wavelet basis Ψjk(x), for expansions
of functions f (x) by doubly-infinite series with wavelet coefficients cjk :

f (x) =
∞∑

j=−∞

∞∑

k=−∞

cjkΨjk(x)

The wavelets Ψjk(x) are generated by shifting and scaling operations
applied to a single original function Ψ(x), known as the mother wavelet.

The orthonormal “daughter wavelets” are all dilates and translates of
their mother (hence “dyadic”), and are given for integers j and k by

Ψjk(x) = 2j/2Ψ(2jx − k)

85 / 100

The Haar wavelet

An elementary example is the Haar wavelet, whose mother function is
both localized and bipolar with a particular scale, defined by

Ψ(x) =





1 if 0 ≤ x < 1
2 ,

−1 if 1
2 ≤ x < 1 ,

0 otherwise .

−1

1
Ψ(x)

−2 −1 1 2
x

0

86 / 100

Wavelet dilations and translations

The Haar mother wavelet is localized and has a width (or scale) of 1.
The dyadic dilates of Ψ(x), namely,

. . . ,Ψ(2−2x),Ψ(2−1x),Ψ(x),Ψ(2x),Ψ(22x), . . .

have widths . . . , 22, 21, 1, 2−1, 2−2, . . . respectively.
Since the dilate Ψ(2jx) has width 2−j , its translates

Ψ(2jx − k) = Ψ(2j(x − k2−j)), k = 0,±1,±2, . . .

cover the whole x-axis. The computed coefficients cjk constitute a
Wavelet Transform of the function f (x). There are many different
possible choices for the mother wavelet function (besides the Haar),
tailored for different purposes. Of course, the wavelet coefficients cjk
that result will be different for those different choices of wavelets.

Just as with Fourier transforms, there are fast wavelet implementations
that exploit structure. Typically they work in a coarse-to-fine pyramid,
with each successively finer scale of wavelets applied to the difference
between a down-sampled version of the original function and its full
representation by all preceding coarser scales of wavelets.

87 / 100

Interpretation of cjk

How should we intrepret the wavelet coefficients cjk?

Since the Haar wavelet function Ψ(2jx − k) vanishes except when

0 ≤ 2jx − k < 1 , that is k2−j ≤ x < (k + 1)2−j ,

we see that cjk gives us information about the behaviour of f near the
point x = k2−j measured on the scale of 2−j .

For example, the coefficients c(−10,k), k = 0,±1,±2, . . . correspond to
variations of f that take place over intervals of length 210 = 1024, while
the coefficients c(10,k) k = 0,±1,±2, . . . correspond to fluctuations of f
over intervals of length 2−10.

These observations help explain how wavelet representations extract local
structure over many different scales of analysis and can be exceptionally
efficient schemes for representing functions. This makes them powerful
tools for analyzing signals, compressing images, extracting structure and
recognizing patterns.

88 / 100

Properties of naturally arising data

Much naturally arising data is better represented and processed using
wavelets, because wavelets are localized and better able to cope with
discontinuities and with structures of limited extent. Whereas every
Fourier coefficient is computed over the entire extent of the input signal
or function (i.e. the bounds of the Fourier integral span the entire input
domain), each wavelet has its own local domain, and independent
wavelet coefficients are computed for different localities.

Another common aspect of naturally arising data is self-similarity across
scales, similar to the fractal property. For example, nature abounds with
concatenated branching structures at successive size scales. The dyadic
generation of wavelet bases mimics this self-similarity.

Finally, wavelets are tremendously good at data compression. This is
because they decorrelate data locally: the information is statistically
concentrated in just a few wavelet coefficients. The old standard image
compression tool JPEG was based on squarely truncated sinusoids. The
new JPEG-2000, based on Daubechies wavelets, is a superior compressor.

89 / 100

Case study in image compression: comparison between
patchwise Fourier (DCT) and wavelet (DWT) encodings

In 1994, the JPEG Standard was published for image compression using
local 2D Fourier transforms (actually discrete cosine transforms [DCT]
since images are real, not complex) on small [8× 8] tiles of pixels. Each
transform produces 64 coefficients and so is not itself a reduction in data.

But because high spatial frequency coefficients can be quantized much
more coarsely than low ones for satisfied human perceptual consumption,
a quantization table allocates bits to the Fourier coefficients accordingly.
The higher frequency coefficients are resolved with fewer bits (often 0).

By reading out these quantized Fourier coefficients in a low-frequency to
high-frequency sequence, long runs of 0’s arise which allow run-length
codes (Huffman coding) to be very efficient. ∼ 10:1 image compression
causes little perceived loss. Both encoding and decoding (compression
and decompression) are easily implemented at video frame-rates.

ISO/IEC 10918: JPEG Still Image Compression Standard.

JPEG = Joint Photographic Experts Group http://www.jpeg.org/

90 / 100

(Image compression case study, continued: DCT and DWT)

Although JPEG performs well on natural images at compression factors
below about 20:1, it suffers from visible block quantization artifacts at
more severe levels. The DCT basis functions are just square-truncated
sinusoids, and if an entire (8× 8) pixel patch must be represented by just
one (or few) of them, then the blocking artifacts become very noticeable.

In 2000 a more sophisticated compressor was developed using encoders
like the Daubechies 9/7 wavelet shown below. Across multiple scales and
over a lattice of positions, wavelet inner products with the image yield
coefficients that constitute the Discrete Wavelet Transform (DWT): this
is the basis of JPEG-2000. It can be implemented by recursively filtering
and downsampling the image vertically and horizontally in a scale pyramid.

ISO/IEC 15444: JPEG2000 Image Coding System. http://www.jpeg.org/JPEG2000.htm
91 / 100

Comparing image compressor bit-rates: DCT vs DWT

Whilst a monochrome .bmp image assigns 1 byte per pixel and thus has
nominally a greyscale resolution of 8 bits per pixel [8 bpp], compressed
formats deliver much lower bpp rates. These are calculated by dividing
the total compressed image filesize (in bit count, not bytes) by the total
number of pixels in the image. This benchmark image is uncompressed.

92 / 100

Comparing image compressor bit-rates: DCT vs DWT

Left: JPEG compression by 20:1 (Q-factor 10), 0.4 bpp. The foreground water
already shows some blocking artifacts, and some patches of the water texture
are obviously represented by a single vertical cosine in an (8 × 8) pixel block.

Right: JPEG-2000 compression by 20:1 (same reduction factor), 0.4 bpp. The

image is smoother and does not show the blocking quantization artifacts.
93 / 100

Comparing image compressor bit-rates: DCT vs DWT

Left: JPEG compression by 50:1 (Q-factor 3), 0.16 bpp. The image shows
severe quantization artifacts (local DC terms only) and is rather unacceptable.

Right: JPEG-2000 compression by 50:1 (same reduction factor), 0.16 bpp. At

such low bit rates, the Discrete Wavelet Transform gives much better results.
94 / 100

Other classes of wavelets
I Classically, when Yves Meyer gave the original formulation of

wavelets (“ondelettes”) in a 1985 Bourbaki seminar in Paris, there
were 5 strong requirements: the wavelets had all to be dilates and
translates of each other, they had to have strictly compact support
(equal to 0 outside of some interval), all their derivatives had to
exist everywhere, and they had to form an orthonormal basis.

I Today, it is much easier to be wavelet. One of Meyer’s students,
Stefan Mallat, has said any zero-mean function can be a wavelet.

I In multiple dimensions, we add other transformations based on
group theory. For example, for image analysis and vision, we use
2D wavelets that are also rotates of each other in the plane.

I One of the most useful features of wavelets is the ease with which
the wavelet functions can be adapted for given scientific problems.

I Many applied fields have started to make use of wavelets, including
astronomy, acoustics, signal and image processing, neurophysiology,
music, magnetic resonance imaging, speech discrimination, optics,
fractals, turbulence, EEG, ECG, earthquake prediction, radar, etc.

95 / 100

Gabor real and imaginary parts resemble Newton kernels in the calculus

Gabor Wavelets as 1st- and 2nd-order Differential Operators

Re{e−x2ei3x} = e−x2 cos(3x)

2nd finite difference kernel: −f ′′(xi)
≈ −f (xi−1) + 2f (xi)− f (xi+1)

Im{e−x2ei3x} = e−x2 sin(3x)

1st finite difference kernel: f ′(xi)
≈ −f (xi) + f (xi+1)

96 / 100

Wavelets in computer vision and pattern recognition

2D Gabor wavelets (defined as a complex exponential plane-wave times a
Gaussian windowing function) are extensively used in computer vision.

As multi-scale image encoders, and as pattern detectors, they form a
complete basis which can extract image structure with a vocabulary of:
location, scale, spatial frequency, orientation, and phase (or symmetry).
This collage shows a 4-octave ensemble of such wavelets, differing in size
(or spatial frequency) by factors of two, having five sizes, six orientations,
and two quadrature phases (even/odd), over a lattice of spatial positions.

97 / 100

Complex natural patterns are very well represented in such terms.

The upper panels show two iris images (acquired in near-infrared light);
caucasian iris on the left, and oriental iris on the right.

The lower panels show the images reconstructed just from combinations
of the 2D Gabor wavelets spanning 4 octaves seen in the previous slide.

98 / 100

Gabor wavelets are the basis for Iris Recognition systems
Phase-Quadrant Demodulation Code

[0, 0] [1, 0]

[1, 1][0, 1]

Re

Im

hRe = 1 if Re
∫

ρ

∫

φ
e−iω(θ0−φ)e−(r0−ρ)2/α2

e−(θ0−φ)2/β2
I(ρ, φ)ρdρdφ ≥ 0

hRe = 0 if Re
∫

ρ

∫

φ
e−iω(θ0−φ)e−(r0−ρ)2/α2

e−(θ0−φ)2/β2
I(ρ, φ)ρdρdφ < 0

hIm = 1 if Im
∫

ρ

∫

φ
e−iω(θ0−φ)e−(r0−ρ)2/α2

e−(θ0−φ)2/β2
I(ρ, φ)ρdρdφ ≥ 0

hIm = 0 if Im
∫

ρ

∫

φ
e−iω(θ0−φ)e−(r0−ρ)2/α2

e−(θ0−φ)2/β2
I(ρ, φ)ρdρdφ < 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
3

Bi
llio

n
6

Bi
llio

n
9

Bi
llio

n
12

 B
illi

on
All bits
agree

All bits
disagree

| |

Hamming Distance

Co
un

t

Score Distribution for 200 Billion Different Iris Comparisons

200,027,808,750 pair comparisons

among 632,500 different irises

mean = 0.499, stnd.dev. = 0.034
solid curve: binomial distribution

99 / 100

Wavelets are much more ubiquitous than you may realize!

At many airports worldwide, the IRIS system (Iris Recognition Immigration System)

allows registered travellers to cross borders without having to present their passports,

or make any other claim of identity. They just look at an iris camera, and (if they are

already enrolled), the border barrier opens within seconds. Similar systems are in place

for many other applications. The Government of India is currently enrolling the iris

patterns of all its 1.2 Billion citizens as a means to access entitlements and benefits

(the UIDAI slogan is “To give the poor an identity”), and to enhance social inclusion.

100 / 100

	Introduction
	Fourier series
	Fourier transforms
	Discrete Fourier methods
	Fast Fourier Transform algorithm
	Wavelets

