Introduction to Natural Language Syntax and
Parsing
Lecture 6: Combinatory Categorial Grammar

Stephen Clark
October 17, 2015

Long-Range Dependencies An interesting feature of natural languages is
that they have syntactic constructions which allow unbounded amounts of inter-
vening material between items which belong together in the semantic predicate-
argument structure. If the job of a parser is to return such predicate-argument
structure, then it needs an analysis of these constructions.

The obvious example for English is the (object) relative clause construction.
In the examples on the slide, the direct object a woman of the verb likes has been
extracted from the canonical object position, to the front of the noun phrase
before the relative pronoun. The point of the examples is to demonstrate that,
at least in principle, there is no limit to the number of words that can appear
between the verb and the extracted object.

The Relative Clause Construction In CCG, the lexical category assigned
to a transitive verb is always (S\NP)/NP, irrespective of the syntactic envi-
ronment it finds itself in. (This is not true of other linguistic formalisms, for
example TAG.) Hence the question regarding the relative clause construction
is: what is the appropriate lexical category for whom?

I like to think of this question as akin to a jigsaw puzzle, where we start to
fill in parts of the analysis and see what’s left. In this case, the type of whom
Warren likes needs to be NP\NP, so that it can combine with the extracted
object NP to the left, and return an NP for the whole noun phrase. So it looks
as though the category for whom has to be (NP\NP)/X, for some X to be
determined.

“Non-Constituents” in CCG If whom has the type (NP\NP)/X, then
Warren likes is a constituent with type X. Can a subject-verb combination
be a constituent? Most linguistic theories would say no, but at least one of
the tests for constituenthood — the coordination test — suggests that it can
be (since Warren likes can be coordinated with other similar phrases such as
Dexter detests).



A natural type for Warren likes is S/NP: a sentence missing an object NP
to the right (analagous to a verb phrase, which is a sentence missing a subject
NP to the left); in which case the type for whom is (NP\NP)/(S/NP). The
fact that a subject-verb combination is not typically considered a constituent
is the reason we have non-constituents in the slide title, and the scare quotes
are there to suggest that perhaps these “non-constituents” should be considered
constituents after all.

Deriving “Non-Constituents” In order to derive a type for Warren likes,
we somehow need to combine an NP to the left with (S\NP)/NP to the right.
The bracketing in (S\NP)/NP means this can’t happen with function applica-
tion (since the object NP to the right needs cancelling first with application).
Two new rules, which take us beyond classical categorial grammar, will allow
the combination: type-raising and composition.

Type-Raising Type-raising arises from the question: why should the verb be
the function, and not the subject noun phrase? Assuming a subject NP can
be a function, what would it naturally look for? The answer is a verb phrase
(S\NP). Hence the type-raised category for a subject NP becomes a sentence
missing a verb phrase to its right: S/(S\NP).

More generally, type-raising is represented by a unary rule schema: NP =
T/(T\NP), where the variable T gets instantiated in a rule instance, in the
current example with S. The way I like to describe type-raising is as follows:
the type-raised NP looks to the right for a category looking to the left for it
(T\NP), and when it’s found that category it returns the category which the
category to the right would have returned, if the category to the right had found
it (i.e. T). Got it?

This type-raising rule is known as forward type-raising, since the resulting
category looks to the right for its argument. Later we’ll also encounter backward
type-raising, where it looks to the left.

Forward Composition Type-raising has created a category which is looking
to the right for a verb phrase (S\NP), and there is a verb phrase to the right, but
the problem is that it’s embedded in the transitive verb category — (S\NP)/NP.
The object NP, which has been extracted to the front of the noun phrase, has
not yet been cancelled and hence is “getting in the way”.

The rule of forward composition allows a category to “get inside” an argu-
ment category, and hence effectively bypass the object NP. The general schema
is X/Y Y/Z = X/Z. Intuitively the Y's in the centre are cancelling. The way
I like to describe forward composition is as follows: we can return an X if only
we can find a Y to the right; we have a Y to the right, but only if we can find
a Z further to the right. So let’s just look for a Z to the right and immediately
return an X, ignoring the Y.



CCG Derivation for a Relative Clause Once type-raising (> T) and
composition (>B)! have created the S/NP constituent, then the derivation
is straightforward. The category for the relative pronoun — (NP\NP)/(S/NP)
— effectively “knows” that it’s in the object extraction scenario, so it’s looking
to the right for a category which fits that scenario (one where the object NP
hasn’t yet been cancelled).

“Spurious” Ambiguity The use of type-raising and composition does not
have to be confined to sentences with long-range dependencies. In practice, a
parser will use whatever combinatory operations it has at its disposal. Hence,
type-raising and composition can be used even for simple subject-verb-object
sentences, as in the example on the slide, leading to additional syntactic ambi-
guity. This ambiguity has often been referred to as “spurious” ambiguity, since
the resulting semantic interpretation remains the same. For example, if a logi-
cal form for the sentence were built using the combinatory operations, applying
the techniques described in the other half of the course, the result would be
the same for the derivation on the slide and the canonical derivation using only
function application.

Generalised Forward Composition In the example on the slide, the type of
offeredis ((S\NP)/PP)/NP. It needs to be coordinated with may give, in which
case may give also has to have this type. The types of may — (S\NP)/(S\NP)
— and give — ((S\NP)/PP)/NP — look as though they ought to combine
by forward composition, except that the (S\NP) which needs cancelling in the
type for give is too far embedded into the category for forward composition to
work.

The solution is to allow generalised forward composition, which allows the
category on the left to get further “inside” the category on the right. The
intuition is the same as for vanilla forward composition — the category in the
middle is cancelling — but this time we’re ignoring an extra set of brackets.

The combinatory rule described above is referred to as > B?, where the 2
denotes the level of embedding of the argument category (in this case S\NP).
The rule can be generalised further to >B"™, where n is greater than 2, so that
the category on the left is able to penetrate further into categories on the right
with more recursive structure.

Argument Cluster Coordination The example on the slide is an example
of what is often referred to as “non-constituent coordination”. Since CCG has
such a flexible notion of constituenthood, it turns out that even the required
conjuncts in this example — a teacher an apple and a policeman a flower —
can be built using combinatory rules.

IThe use of B for composition follows Steedman’s notation, who followed Curry (as in
Curry and Feys combinatory logic).



Forward and Backward Type-Raising Backward type-raising is analagous
to the forward case. If we again instantiate the T variable with S, then applying
backward type-raising to an (object) NP results in S\(S/NP). Using a similar
explanation to before, a (type-raised) NP can look to the left for a category
looking for it to the right, and when it finds that category the result is whatever
would have resulted if the category to the left had found the NP (in this case
an §).2

Argument Cluster Coordination In the example on the slide, backward
type-raising has been applied to all four arguments, with the T variable in the
rule schema being instantiated in two different ways. (Exercise for the reader:
determine T in the two cases.) Now we need a rule to combine the complicated-
looking categories.

The derivation is much easier to understand if we use the abbreviations
on the slide, replacing S\NP with VP (verb phrase), (S\NP)/NP with TV
(transitive verb), and ((S\NP)/NP)/NP with DTV (ditransitive verb). Now
it looks as though the categories could combine with some form of composition,
and a new rule of backward composition does the job. The general schema is
Y\Z X\Y = X\Z. Using a similar explanation to before, we can return an X
if only we can find a Y to the left, and we have a Y to the left, if only we can
find a Z further to the left; so let’s just look for a Z to the left and return an
X, ignoring the Y.

Backward Crossed Composition Other linguistic phenomena suggest the
need for additional rules. The phenomena often involve coordination, as in the
buy today and cook tomorrow example. The use of backward-crossed composition
allows the types of buy and today to combine in the required fashion. (Explaining
this one is left as an exercise for the reader.)

Another Combinatory Rule One question you may be asking at this stage
is: how do we decide which combinatory rules are allowed? From a linguistic
theory perspective, the approach is usually to see which linguistic phenomena an
additional rule could help explain, whilst at the same time not licencing analyses
for ungrammatical sentences of the language in question. One rule which we
would not want to add to the English grammar is forward-crossed composition.
However, there are constructions in Dutch which appear to require this rule.

Cross-Serial Dependencies in Dutch There are some sentences involving
subordinate clauses in Dutch which appear to have some level of crossing de-
pendencies. The translation of the example on the slide is because I saw Cecilia
help Henk feed the hippos. The indices on the NP arguments are not part of
the atomic symbol, but are there to indicate where the dependencies are in the

2Note this allows the possibility of another derivation for a subject-verb-object sentence,
again resulting in the same semantic interpretation.



sentence. For example, NP, is the hippos, which is also the thing being fed (ob-
ject of voeren). Note that, in this Dutch construction, the arguments are listed
before the verbs and, crucially, the respective orders of the arguments and verbs
mean that the dependencies cross, rather than nest, as they do in the English
translation. The dependencies are often referred to as cross-serial because the
crossings have a serial quality to them, also; i.e. the noun phrases and verbs
have to line up in a particular order.

It is left as an exercise to the reader to understand how the rules of forward-
crossed composition and generalised forward-crossed composition can enable a
derivation which captures this crossing.

Mild Context Sensitivity A long-standing question in theoretical linguis-
tics concerns how much automata-theoretic power is required to process natural
languages. Within the Chomskian paradigm, many arguments were given which
purported to show that natural languages are not context-free. However, Pul-
lum and Gazdar in 1982 [2] showed that these arguments were invalid. It was
not until the mid-eighties that a number of researchers, including Stuart Shieber
[3], noticed that there were phenomena in Dutch, and Swiss German, which ap-
peared to exhibit the sort of crossing dependencies which cannot be handled with
the stack-like architecture of a push-down automaton (the automata-theoretic
equivalent of the context-free grammar).

The addition of the generalised composition rules leads to a CCG with
greater than context-free power, but still much less powerful than a context-
sensitive grammar.? Amazingly, it was shown by Weir, Vijay-Shankar and Joshi
in the late 80s that a number of formalisms, including CCG and TAG, are weakly
equivalent in terms of the languages they can generate. I say “amazingly” be-
cause, on the face of it, these formalisms look rather different.

These formalisms have become known as “mildly context-sensitive”. The
hypothesis is that mild context-sensitivity is just the right place on the Chom-
sky hierarchy to be describing natural languages: high enough up that the
cross-serial dependency phenomena can be handled, but low enough down that
efficient polynomial-time algorithms still exist for these formalisms.

The question of generative capacity for CCG has been revived recently with
the work of Kuhlmann, Koller and Satta [1].

Readings for Today’s Lecture The following is not required reading, since
these notes should be enough to understand the remaining, more practically-
oriented, lectures. However, for those keen to learn more about the linguistic
theory, the following is an excellent exposition:

e Combinatory Categorial Grammar (2011), (With Jason Baldridge) Draft
7.0, to appear in: R. Borsley and K. Borjars (eds.) Non-Transformational
Syntax, 181-224, Blackwell. Available at
http://homepages.inf.ed.ac.uk/steedman /papers.html.

3The notion of “much less” can be made mathematically precise on the Chomsky hierarchy;
see the work of Weir, Vijay-Shankar and Joshi.



References

1]

2]

Marco Kuhlmann, Alexander Koller, and Giorgio Satta. Lexicalization and
generative power in CCG. Computational Linguistics, 41(2), 2015.

Geoffrey K. Pullum and Gerald Gazdar. Natural languages and context-free
languages. Linguistics and Philosophy, 4, 1982.

Stuart M. Shieber. Evidence against the context-freeness of natural lan-
guage. Linguistics and Philosophy, 8:333-343, 1985.



