
Introduction to Natural Language Syntax and

Parsing

Lecture 3: Graph-Based Dependency Parsing

Stephen Clark

October 13, 2015

Untyped Dependency Trees Much of the literature on dependency parsing
is concerned with untyped dependency trees, where the edges between words are
not labelled with grammatical relations. We’ll also consider the untyped case,
although extending the various parsing algorithms to deal with typed edges is
straightforward.

The example on the slide shows a projective dependency tree, with an al-
ternative definition of projectivity. The definition given so far is that a tree is
projective iff the tree can be drawn in two dimensions without any edges cross-
ing. An equivalent definition is that a tree is projective iff an edge from word
w to word u implies that w is an ancestor of all words between w and u. For
example, consider the edge from hit to with: all the words in between can also
be reached from hit (i.e. are ancestors of hit). Now imagine that there is an
edge from hit to the second the, i.e. a crossing edge in the example, replacing
the edge between bat and the. This ruins the projectivity, since there is an
edge from with to bat, but the word the in between with and bat is no longer an
ancestor of with.

Edge-Based Linear Model As a reminder, we’re considering first-order
edge-based models where the score for a tree is the sum of individual scores
for each edge; and the score for an edge is a linear sum defined as a dot product
between a weight vector and feature vector.

Dependency Parsing Formally This slide provides some notation for the
edge-based linear model.

Maximum Spanning Trees The directed graph Gx, for sentence x, is a set
of vertices (or nodes) Vx and a set of edges Ex. Vx is the set of words in x plus
an additional dummy root note x0. Ex is the set of all possible directed edges
between words in x, with the following exceptions: there are no reflexive edges
(i.e. an edge from a word to itself), and x0 cannot be the child of an edge.

1



The reason for considering Gx is that finding the highest-scoring dependency
tree for x is equivalent to a well-known problem in graph theory, namely finding
the maximum spanning tree (MST) in Gx. Finding the MST is also known as
the maximum arborescence problem. Restricting the tree to be projective results
in finding the MST which is also projective.

Decoding: finding the MST There is a classic algorithm from the 60s —
the Chu-Liu-Edmonds algorithm — for finding the MST for non-projective trees,
with an O(n2) implementation. The projective case is computationally harder,
because now we have to find trees that satisfy a particular set of constraints
(corresponding to the projectivity). We’ll consider a straightforward adaption
of the chart-based CKY algorithm, which runs in cubic time for CFGs, but
in O(n5) time for dependency grammars. Eisner [1] introduced a variant of
the chart-based algorithm which runs in cubic time for dependency grammars,
and this is the one that is typically implemented in practice, for example in
McDonald’s MST parser.

CKY-style Dependency Parsing The CKY algorithm operates bottom-up,
using CFG rules of the form A → B C, where A, B and C are non-terminals
from the CFG. The complexity of the algorithm is O(G2n3), where G is a
grammar constant related to the number of non-terminals, and n is the length
of the sentence. An informal analysis is as follows: there are O(n2) cells in the
chart; for each cell we have to consider a number of split points, for which there
are O(n); and for each split point we have to consider O(G2) combinations of
non-terminals (B and C on the RHS of the rule above).

A useful perspective on the dependency parsing problem is to consider each
edge in a dependency tree as a CFG rule. Consider the edge (hits → ball).
We can consider this edge as having arisen from the application of the CFG
rule (hits → hits ball). So now the number of combinations of non-terminals
— O(G2) above — is no longer a constant but O(n2), resulting in an overall
complexity of O(n5).

Why CKY is O(n5) and not O(n3) The example on the slide is designed to
show that all possible pairs of heads have to be considered when deciding which
edges to add to the chart (giving the additional O(n2) complexity). Consider
the phrase visiting relatives. If the sentence is ... advocate visiting relatives,
then the dependency link is between advocate and visiting (since visiting is a
verb and is the head of visiting relatives in this case). But if the sentence is
... hug visiting relatives, then the dependency link is between hug and relatives
(since visiting is an adjective and relatives is the head of visiting relatives in this
case).

Dependency Parsing Algorithms The slide summarises the various al-
gorithms available for dependency parsing. We’ll be focusing on graph-based

2



algorithms, but there is an alternative, namely shift-reduce parsing. The linear-
time complexity of shift-reduce algorithms make them an attractive alternative
to graph-based chart parsing.

Shift-Reduce Dependency Parsing The example on the slides demon-
strates one method of how to implement a shift-reduce parser, with a set of
four possible transition actions: { shift, reduce, arcLeft, arcRight }. The
key data structures are the stack and the queue. The queue contains a list of
words yet to be processed, and the stack contains partial trees as the complete
tree is being built.

Greedy Local Search Given a sentence, there are many possible sequences
of transitions leading to a dependency tree (each possible tree has a separate
transition sequence). One way to handle the ambiguity is to use a statistical
classifier to make a single decision at each point in the parsing process, and stick
with that decision. This is a greedy algorithm which is linear-time in the length
of the sentence and potentially results in a very fast parser, substantially faster
than the graph-based chart parser.

Beam Search The downside of the greedy approach is that, if the classifier
makes a mistake, there is no way for the parser to recover later in the parsing
process. One way to mitigate this problem is to use beam search instead, where
K possible decisions — the K with the highest scores according to the classifier
— are retained at each parsing step. Using beam search in this way typically
results in a significant improvement in accuracy, with beam sizes of around 32
leading to a good trade-off between improved accuracy and loss in speed.

Shift-reduce parsing with beam search is still linear in the length of the
sentence, but now has a constant associated with the size of the beam. So using
a beam size of 64, say, would result in a significantly slower parser than the
greedy parser.

Readings for Today’s Lecture

• Spanning Tree Methods for Discriminative Training of Dependency Parsers.
Ryan McDonald, Koby Crammer and Fernando Pereira. UPenn CIS Tech-
nical Report: MS-CIS-05-11.

• Characterizing the Errors of Data-Driven Dependency Parsing Models. R.
McDonald and J. Nivre. Empirical Methods in Natural Language Process-
ing and Natural Language Learning Conference (EMNLP-CoNLL), 2007.

References

[1] Jason Eisner. Three new probabilistic models for dependency parsing: An
exploration. In Proceedings of the 16th COLING Conference, pages 340–345,
Copenhagen, Denmark, 1996.

3


