Introduction to Natural Language Syntax and
Parsing
Lecture 1: Automatic Linguistic Annotation

Stephen Clark
September 29, 2015

Automatic Linguistic Annotation We would like to automatically anno-
tate linguistic units (typically sentences) with some linguistic structure, in or-
der to facilitate various NLP tasks and applications, such as (semantic) search,
question answering, information extraction, machine translation, and so on. We
might also want to model some aspects of linguistic structure for linguistic, or
cognitive science, reasons, but in this part of the course we’ll be using NLP —
with more of an engineering focus — as the main motivation.

Sentence Segmention One of the first tasks in any NLP pipeline is often
sentence segmentation — breaking the document up into sentences. This may
appear trivial — e.g. just split on periods — but the period-splitting heuristic is
not going to work. In English, periods serve a number of functions, for example
to mark abbreviations, as in the Dr. example. One approach to this problem
is to manually write a number of rules, e.g. split on a period unless the period
follows Dr. or Mr. or Mrs. or... The difficulty with this approach is that the
rule set, in order to cover all the cases, soon becomes unwieldy and difficult to
modify and maintain. Hence, as in the rest of NLP, a machine learning approach
is often taken, using manually segmented sentences as training data.

One general comment applying to all 8 lectures applies here: in the examples
we’ll often be using well-edited text such as newspaper text or Wikipedia arti-
cles. However, there is currently a lot of interest in processing less well-edited
text, such as tweets or other postings on social media, for example to determine
whether customers are saying positive things about a particular product, or to
predict stock market prices or influenza outbreaks. Hence one question you
should keep asking yourself is: would this proposed method work on Twitter
data?

Tokenisation (What’s a Word?) The next task in the canonical NLP
pipeline is often tokenisation, the task of breaking the sentence into tokens.
This is useful because we may have learnt token-level translation rules, for ex-
ample, or we may be searching for information about Dr. Black, in which case



it’s useful to know that the sentence contains the token Black, as opposed to
Black’s. Having said that, there is currently interest in processing sentences at
the character level, using neural network models, and not segmenting at the
word level at all (or even at the sentence level).!

A second general comment about the 8 lectures applies here: the default
language we will assume is English. However, there are a number of features
of English which are not representative of the world’s languages. First, there
are many languages, such as Turkish, which are much more morphologically
complex than English. A single word in these languages can be used to express
a concept which requires many words in English. Hence the questions of how
to do tokenisation and parsing are rather different for these languages. Second,
there are a number of languages — the canonical example being Chinese —
which do not use spaces to separate the words. In fact, the very notion of
a word is controversial in Chinese, and native speakers do not exhibit high
agreement on where to place the spaces if asked to perform word segmentation.
Despite this lack of agreement, there is a large literature on the task of Chinese
word segmentation; for a recent paper see [3].

But even in English the question of how to do tokenisation is not always
clear-cut. Should medal-winning be one token or two? It perhaps depends
on the application. If we have a translation for medal-winning, then it makes
sense to keep it as a single token when doing translation. If we’re looking
for information about what Dr. Black has won, then splitting it may make
sense. These questions arise in particular when processing biomedical text,
which uses a lot of characters, such as hyphens, outside of the standard alphabet.
Hence two more questions you should keep asking yourself are: will it work for
Chinese/Turkish/Swahili, and will it work for biomedical text?

Part-of-Speech Tagging The next stage is part-of-speech tagging, where we
begin to add grammatical structure which is not overtly realised in the sentence.
You have learnt a lot about possible tagging schemes in the other half of the
course. The task of assigning the tags, which can be thought of as a sequence
labelling problem from machine learning, is a classic task in NLP. For well-edited
English text for which there is plenty of manually annotated data to learn from,
e.g. newspaper text, and for relatively small tag sets, e.g. the Penn Treebank
tagset, POS tagging is close to being a solved problem (although not completely
solved). Again, tagging for Twitter and biomedical text is harder. There are a
number of freely available POS taggers. The Stanford tagger is one of the most
widely used [2].

Syntactic Parsing - Phrase Structure Now we begin to see some hier-
archical structure. I will say more about phrase structure, and the resource
typically used to build phrase-structure parsers, in the next lecture.

n order to keep the number of readings to a manageable level, I do not always include
references when referring to the literature; but if you wanted to find a recent paper about
character level parsing, for example, a Google search for “character level chinese dependency
parsing” will do the trick.



Semantic Parsing - Logical Form If we wanted to be really ambitious, we
could try and construct a logical form. The example is from a semantic analysis
tool called Boxer, which builds on the Combinatory Categorial Grammar parser
we’ll hear more about later in the course. You’ll also learn more about semantic
analysis and interpretation in the other half of the course. The details aren’t
too important at this stage, except to say that the example is a pretty-print of
a representation which is essentially a piece of first-order logic. The advantage
of translating into logic is that there are ready-made inference procedures, and
tools, available which are straightforward to implement on a computer. The dis-
advantage, as is known from decades of work in Al which attempts to translate
natural language into some formal language, is that inferences in NLP typically
require large amounts of linguistic and world knowledge, even if the translation
into logic can be successfully automated.

Syntactic Parsing - Dependency Structure This is the representation
that we’re going to focus on in this half of the course, for reasons I'll give in
the next lecture. One interesting feature of the example is that the dependency
links cross — more on this later.

Why is Parsing Difficult? Natural languages exhibit many different struc-
tures. For phrase structure grammars in particular, many different grammatical
rules are needed to cover all these structures. Obtaining those rules, either man-
ually through an expert linguist writing the grammar, or (semi-)automatically
through some learning procedure from corpus data, is a challenging task.

The second reason parsing is difficult is perhaps one of the more surpris-
ing properties of natural languages that NLP has uncovered in the last few
decades. Natural languages exhibit large amounts of syntactic ambiguity. The
reason we don’t see it as humans is because our own language processors are
extremely effective at using context to perform the disambiguation. Note also
that, as grammars become more comprehensive, solving the first problem, this
only increases the level of ambiguity, making the second problem even worse.

Syntactic Ambiguity The classic text book example of syntactic ambiguity
is John saw the man with the telescope. Is John looking through the telescope
at the man, or is the man holding the telescope? The two semantic readings
result from different syntactic parse trees.

Syntactic Ambiguity: the problem is worse than you think The clas-
sic example is useful, because the ambiguity is easy for humans to see, but
also misleading. To resolve it would require contextual representations, world
knowledge, and general reasoning capabilities currently not available. It’s also
the case that either reading could be possible. Natural language ambiguity is
pernicious, because it’s precisely the cases we don’t easily perceive, such as John
ate the pizza with a fork, which cause the problems for current parsing technol-



ogy. Here only one of the readings is plausible, and it’s the job of the parser to
decide which one.

Syntactic Ambiguity: the problem is even worse than that It’s not
just the existence of “hidden” ambiguity which is the problem, it’s the fact there
is so much of it. Many constructions, including PP attachment, coordination,
relative clause attachment, lead to alternative possibilities which multiply when
chained together. In the example sentences, the number of possible analyses
grows exponentially with the number of PPs, following the Catalan series. Of
course natural languages don’t contain sentences quite like these, but they do
exhibit chains of attachment decisions which have this property. A favourite
moment from my own research occurred when calculating, with James Curran,
the number of parses for a long newspaper sentence given by our CCG parser
(using an efficient dynamic programming technique so the counting can be per-
formed exactly). The number was close to the Avogadro constant you may have
encountered in high school chemistry, 6.022 x 10%3.

Readings for Today’s Lecture In addition to the references below, Chap-
ters 9 and 10 of Manning and Schutze, and Chapter 5 of Jurafsky and Martin
(2nd. Ed.), are useful readings for POS tagging. Only part of the Zhang and
Clark reference below is relevant for today’s lecture, but the whole article will
become relevant as the course progresses. A useful reference which covers much
of the course is my book chapter on statistical parsing [1]. All papers are freely
available on the web.

References

[1] Stephen Clark. Statistical parsing. In Clark, Fox, and Lappin, editors,
Handbook of Computational Linguistics and Natural Language Processing,
pages 333-363. Blackwell, 2010.

[2] Kristina Toutanova, Dan Klein, Christopher Manning, and Yoram Singer.
Feature-rich part-of-speech tagging with a cyclic dependency network. In
Proceedings of the HLT/NAACL conference, pages 252-259, Edmonton,
Canada, 2003.

[3] Yue Zhang and Stephen Clark. Syntactic processing using the generalized
perceptron and beam search. Computational Linguistics, 37(1):105-151,
2011.



