
Introduction to Syntax and Parsing
ACS 2015/16
Stephen Clark

L3: Graph-Based Dependency Parsing

Untyped Dependency Trees

Taken from McDonald et al.

A tree is projective iff an edge from word w to word u implies that
w is an ancestor of all words between w and u

Edge-Based Linear Model

taken from Wang and Zhang, NAACL tutorial 2010

score(xi → xj) =
�

k λk . fk(xi → xj)

Dependency Parsing Formally

x is a sentence, y is a tree

(i,j) is an edge from ith word to jth word
s is the scoring function

f is the feature function, w is the weight vector

Maximum Spanning Trees

Assume we know the weight vector, w
Consider the following directed graph for sentence x:

The highest-scoring (projective) dependency tree is
equivalent to the (projective) maximum spanning tree

Decoding: finding the MST

The Chu-Liu-Edmonds algorithm (1965,67) finds the MST for
non-projective trees; there is an O(n^2) implementation

For projective trees, the CKY algorithm can be adapted for
dependency parsing to give an O(n^5) algorithm

There is a clever alternative chart-based algorithm from
Eisner (1996) which runs in O(n^3)

CKY-style Dependency Parsing

Why CKY is O(n^5) not O(n^3)

Dependency Parsing Algorithms

taken from Wang and Zhang, NAACL tutorial 2010

Shift-Reduce Dependency Parsing

taken from Wang and Zhang, NAACL tutorial 2010

Shift-Reduce Dependency Parsing

Shift-Reduce Dependency Parsing

Shift-Reduce Dependency Parsing

Shift-Reduce Dependency Parsing

Shift-Reduce Dependency Parsing

Shift-Reduce Dependency Parsing

Shift-Reduce Dependency Parsing

Greedy Local Search

Suffers from search errors, but potentially very fast (linear time)

taken from Wang and Zhang, NAACL tutorial 2010

Beam Search

Suffers from fewer search errors, but less fast (still linear time)

