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What is Psycholinguistics?

Psycholinguistics is concerned with:

how we acquire, comprehend and produce language;

understanding how language is stored and processed in the brain.
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Example research questions in psycholinguistics:
Morphology

How are words organised in the brain?

Full listing:

cat cat + N + Sing
cats cat + N + PL
hope hope + V
hopes hope + V + 3P + Sing
fox fox + N + Sing
fox fox + V
foxes fox + N + PL
foxes fox + V + 3P + Sing
foxed fox + V + PastPart

vs.

Minimum redundancy:

cat N
hope V
fox N
fox V
^s +PL
^s +3P + Sing
^ed +PastPart
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Example research questions in psycholinguistics: Syntax

Syntactic complexity: What makes a sentence difficult to process?

The cat the dog licked ran away

The cat the dog the rat chased licked ran away

The fact that the employee who the manager hired stole office
supplies worried the executive
Complement clause then relative clause

The executive who the fact that the employee stole office supplies
worried hired the manager
Relative clause then complement clause
T. Gibson
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Example research questions in psycholinguistics: Syntax

Parsing: How does the brain perform parse disambiguation?

Choosing from multiple parses:
He saw the boy with the telescope.

(He saw (the boy with the telescope))
vs.
((He saw the boy) with the telescope)

Online parsing ambiguity:
The student forgot the solution was in the back of the book

.

Strong garden path effect:
The horse raced past the barn fell.
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Example research questions in Psycholinguistics: Semantics

In what manner is word meaning stored in the brain?

For concepts (nouns):
categories theory (Lakoff)
women fire and dangerous things

decompositional feature based model:
bird: +feathers +fly +beak
what shall we use as features?

prototype theory (canonical examples)
bird: crow (rather than penguin)

exemplar theory (multiple good examples)
bird: {crow, parrot, sparrow}
Semantic networks (is-a or has-a)
bird: is-a animal, has-a feathers ...
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Example research questions in Psycholinguistics: Semantics

In what manner is word meaning stored in the brain?

For other words:
Distributional models (statistical co-occurrence of with other words
and grammatical contexts)

0.57::melt v
0.44::pron rel +smoke v
0.43::of p()+gold n
0.41::porous a
0.40::of p()+tea n
0.39::player n+win v
0.39::money n+in p()
0.38::of p()+coffee n

0.33::amount n+in p()
0.33::ceramic a
0.33::hot a
0.32::boil v
0.31::bowl n+and c
0.31::ingredient n+in p()
0.30::plant n+in p()
0.30::simmer v

0.29::pot n+and c
0.28::bottom n+of p()
0.28::of p()+flower n
0.28::of p()+water n
0.28::food n+in p()

Finally, note that distributions contain many contexts which arise from multiword expressions of various types, and
these often have high weights. The distribution of pot contains several examples, as does the following distribution for
time:

0.46::of p()+death n
0.45::same a
0.45::1 n+at p(temp)
0.45::Nick n+of p()
0.42::spare a
0.42::playoffs n+for p()
0.42::of p()+retirement n
0.41::of p()+release n

0.40::pron rel +spend v
0.39::sand n+of p()
0.39::pron rel +waste v
0.38::place n+around p()
0.38::of p()+arrival n
0.38::of p()+completion n
0.37::after p()+time n
0.37::of p()+arrest n

0.37::country n+at p()
0.37::age n+at p()
0.37::space n+and c
0.37::in p()+career n
0.37::world n+at p()

To sum up, there is a wide range of choice in constructing distributional models. Manually examining the characteristic
contexts gives us a good idea of how sensible different weighting measures are, for instance, but we need to look at
how distributions are actually used to evaluate how well they model meaning.

8.4 Similarity

Calculating similarity in a distributional space is done by calculating the distance between the vectors.

The most common method is cosine similarity.

• Law of cosines: c2 = a2 + b2 − 2ab cosγ

70
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Psycholinguists use a range of methodologies

Questionnaires

Rating experiments
e.g. how do you rate the grammaticality of this sentence?

Self evaluations
e.g. how were you carrying out the task?

Discovering participant knowledge of the task
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Evidence may be obtained from observation

Observations

Study of speech errors

Study of the language of aphasics

Study of language acquisition

Speech Error Data

It’s not only us who have screw looses. (screws loose)

He has already trunked two packs. (packed two trunks)
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Evidence may be obtained from observation

Aphasic Data

it’s all happenining
in the kitchen.

an’ he’s fallenining
off the stool
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Evidence may be obtained from observation

Language Acquisition Data

Brown’s stages:

Stage 2 (2.0–2.5) -s plurals
Stage 3 (2.5–3.0) ’s possessive
Stage 4 (3.0–3.75) regular past tense
Stage 5 (3.75–4.5) irregular 3rd person verbs

(dos→ does, haves → has)

show CHILDES example

The wug test (elicitation)
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Jean Berko-Gleason designed the Wug Test

This is a man who knows how to
SPOW.

He is SPOWING. He did the same
thing yesterday.

Yesterday he .....
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Psycholinguists use a range of methodologies cont.

Questionnaires

Rating experiments

Self evaluations

Observations

Study of speech errors

Study of the language of aphasics

Study of language acquisition

Experimental observation as a response to stimulus

Measurement of brain response

Measurement of reading times

Measurement of reaction time to a linguistic task
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Brain responses may be measured by several methods

EEG MEG

High temporal
resolution

Problematic
spatial resolution
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Brain responses may be measured by several methods

fMRI

BOLD (Blood-oxygen-level
dependent) response—measures
the change in magnetization
between oxygen-rich and
oxygen-poor blood.

High spatial resolution

Low temporal resolution
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Measuring reading and reacting times

Eye tracking

Button Pressing

Self paced reading

Completion of a task (e.g. a lexical decision task)

For all reaction time experiments we assume that the time taken to react
to a task reflects the ‘difficulty’ of the cognitive processes involved.
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Evaluating responses

Shadowing

Participant repeats the stimulus
e.g. lexical correction, Marslen-Wilson and Welsh
e.g. missing auxiliaries, Caines
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Experimental Strategies: Priming Effect

Established that exposure to a stimulus influences a response to a
later stimulus.
Caused by spreading activation (the priming stimulus activates part(s)
of the brain, then when the second stimulus is encountered less
additional activation is needed).
Priming manifests itself as a measurable change in reaction.
Lexical Priming: e.g. Priming experiments show us that: lifting
primes lift, burned primes burn but selective does not prime select
(this maybe tells us something about derivational vs. inflectional
morphology).
Syntactic Priming: e.g. get candidate to read ”the ghoul sold a
vacuum cleaner to a witch”; then ask participant to describe picture
of a vampire handing a ghost a hat; participant more likely to use the
to-construction (i.e. ’the vampire hands a hat to the ghost’)
Also shown for Passive constructions—Branigan, Pickering and
Cleland; Dialogue modelling—Pickering and Garrod
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So what is a Computational Psycholinguist?

Computational Psycholinguists generate testable hypotheses by building
computational models of language processes and also by drawing on
information theory.

Note that Information Theoretic predictions are not always explanatory in
terms of processing mechanisms e.g. Uniform Information Density—Jaeger

the girl I saw last Saturday

vs

the girl that I saw last Saturday
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How are words organised in the in the brain?

Computational Psycholinguists predict reaction times to words based on
various organisational models:

Morphological family size models Baayen
Ratio of lexical item to its morphological family size (a larger family
co-activates and speeds reaction times).

Cohort and Lexical isolation point models Marslen-Wilson
Fast recognition of high frequency words with low frequency
neighbours (recognition point vs. with uniqueness point)

Information Residuals Moscoso del Prado Martin
Showed response latencies in visual lexical decision based on the
frequency of the word in a corpus and also the entropy of the
morphological paradigm.
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What makes a sentence difficult to process?

Parsing models as predictors for observed patterns in language–Yngve

A sentence is constructed top-down and left-to-right.

The model consists of a register for the current node being explored
and a stack for all the nodes left to explore.

The size of the stack an approximation to working memory load.

Yngve predicted that sentences which required many items to be
placed on the stack would be difficult to process and also less
frequent in the language.

He also predicted that when multiple parses are possible we should
prefer the one with the minimised stack.
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What makes a sentence difficult to process?

Parsing models as predictors for observed patterns in language–Yngve

S→NP VP
NP→Det N
VP→VP NP
Det→the
N→dog
N→cat
V→chased

S
Register Stack

S
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Parsing models as predictors for observed patterns in language–Yngve

S→NP VP
NP→Det N
VP→VP NP
Det→the
N→dog
N→cat
V→chased

S

NP

Det N
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Register Stack

S
NP VP
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NP→Det N
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Det→the
N→dog
N→cat
V→chased

S

NP VP
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the dog

Register Stack

S
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What makes a sentence difficult to process?

Yngve’s make correct predictions about centre embedding

Consider:

This is the malt that the rat that the cat that the dog worried
killed ate.

as opposed to:

This is the malt that was eaten by the rat that was killed by the
cat that was worried by the dog.
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What makes a sentence difficult to process?

Yngve’s make correct predictions about centre embedding

Consider: STACK: N VP VP VP

This is the malt that the rat that the cat that the dog worried
killed ate.

as opposed to:

This is the malt that was eaten by the rat that was killed by the
cat that was worried by the dog.

Yngve evaluated his predictions by looking at frequencies of constructions
in corpus data.
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What makes a sentence difficult to process?

Dependency Locality Theory—Gibson

Processing cost of integrating a new word is proportional to the
distance between the word and the item with which the word is
integrating.

Distance is measured in words plus new phrases and discourse
referents.

DLT will predict that object relative clauses are harder to process because
they have two nouns that appear before any verb:

The girl who likes me, went to the party.
The girl who Peter likes, went to the party.

Paula Buttery (DTAL) Computational Psycholinguistics 32 / 47



What makes a sentence difficult to process?

Dependency Locality Theory—Gibson

Processing cost of integrating a new word is proportional to the
distance between the word and the item with which the word is
integrating.

Distance is measured in words plus new phrases and discourse
referents.

DLT can also explain:

The fact that the employee who the manager hired stole office
supplies worried the executive
vs.
The executive who the fact that the employee stole office
supplies worried hired the manager
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How does the brain perform parse disambiguation?

Surprisal as a measure of lexical and syntactic complexity:
e.g.

S(wi ) = log 1/P(wi ) (1)

Online parsing ambiguity:
The student forgot the solution was in the back of the book

.

Strong garden path effect:
The horse raced past the barn fell.

Surprisal as a predictor of reading times in sentence comprehension—Levy

.
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How does the brain perform parse disambiguation? Hale,
2001

Predictability as a measure of difficulty

Probabilistic context-free grammars (PCFGs) are a good model of
how human sentence comprehension works.

A probabilistic Earley parser is a good model of online eager sentence
comprehension for PCFGs.

The cognitive effort associated with a word in a sentence can be
measured by the word’s negative log conditional probability:

log
1

P(wi |w1...i−1)
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Hale, 2001

Example PCFG

S → NP VP 1
NP → N PP 0.2
NP → N 0.8
PP → P NP 1
VP → VP PP 0.1
VP → V VP 0.2
VP → V NP 0.4
VP → V 0.3
N → {it, fish, rivers, December, they} 0.2
P → {in} 1
V → {can, fish} 0.5
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How does the brain perform parse disambiguation? Hale,
2001

Probabilistic Early Parsing

Prefix Probability: makes use of the fact that all the trees for the
grammar must sum to 1.
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How does the brain perform parse disambiguation? Hale,
2001
edgen dotted rule [start at, wait at] history word n
e0 S → l NP VP [0,0] word 0
e1 NP → l N [0,0] word 1
e2 NP → l N PP [0,0]
e3 N → they l [0,1]
e4 NP → N l [0,1] (e3)
e5 NP → N l PP [0,1] (e3)
e6 S → NP l VP [0,1] (e4)
e7 PP → l P NP [1,1] word 2
e8 VP → l V [1,1]
e9 VP → l V NP [1,1]
e10 VP → l V VP [1,1]
e11 VP → l VP PP [1,1]
e12 V → can l [1,2]
e13 VP → V l [1,2] (e12)
e14 VP → V l NP [1,2] (e12)
e15 VP → V l VP [1,2] (e12)
e16 S → NP VP l [0,2] (e4,e13)
e17 VP → VP l PP [1,2] (e13)
e18 NP → l N [2,2] word 3
e19 NP → l N PP [2,2]
e20 VP → l V [2,2]
e21 VP → l V NP [2,2]
e22 VP → l V VP [2,2]
e23 VP → l VP PP [2,2]
e24 PP → l P NP [2,2]
e25 N → fish l [2,3]
e26 V → fish l [2,3]
e27 NP → N l [2,3] (e25)
e28 NP → N l PP [2,3] (e25)

computational linguistics 8

edgen functional info [starting at, waiting at] history

e0 S → ● NP VP [0,0]
...

en S → NP ● VP [0,1] em
...

ez S → NP VP ● [0,1] ey

Now that we know what the edges look like in the Earley Chart,
the next question is how they get into the chart 6. The algorithm 6 Putting edges into the chart is called

populating the chart.proceeds as follows 7:
7 I deviate slightly from J&M in order
to (hopefully) make it slightly simpler
to follow.• Earley is a top-down algorithm so we initiate the chart with the

S rule containing the leftmost dot: at this point we have explored
no nodes of this rule.

edgen dotted rule [starting at, waiting at] history
e0 S → ● NP VP [0,0]

● they ● can ● fish ●

0 I 2 3

S → NP VP
NP → N PP
NP → N
PP → P NP
VP → VP PP
VP → V VP
VP → V NP
VP → V
N → {they, fish, rivers, ...}
P → {in}
V → {can, fish}

N = {NP, VP, PP, N, V, P}
NPo f S = {N, V, P} ⊂ N

Figure 6: As an aide memoire, here
are the grammar rules for our toy
grammar and the input sentence we
are trying to parse with its numbered
locations.

• For each word in the sentence we proceed through the following
steps:

Prediction - This step adds new edges to the chart and can be
thought of as expanding a node. A non-terminal (tree node)
is unexplored if it occurs in any edges with a dot on its LHS.
So for all edges in the chart, find any non-terminals with a dot
on their LHS and expand them according to the rule set. They
will appear with a span of [n,n] where n is the waiting location
of the edge that is being expanded.

edgen dotted rule [starting at, waiting at] history
e0 S → ● NP VP [0,0]
e1 NP → ● N [0,0]
e2 NP → ● N PP [0,0]

Scan - This step allows us to check if we have a part-of-speech
node that is consistent with the input sentence. We have
reached a part-of-speech node to be scanned if we find any
non-terminal belonging to the set NPo f S = {N, V, P} with
a dot on its LHS. So for all edges in the chart, find any non-
terminals in NPo f S with a dot on their LHS and check if the
word at the waiting location is consistent with the part-of-
speech found. If it is consistent (i.e. the word may adopt that
part-of-speech) then we add an edge to the chart. The span of
this edge will be from the waiting location of the expanded
rule to the location at the end of the word.
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are the grammar rules for our toy
grammar and the input sentence we
are trying to parse with its numbered
locations.

• For each word in the sentence we proceed through the following
steps:

Prediction - This step adds new edges to the chart and can be
thought of as expanding a node. A non-terminal (tree node)
is unexplored if it occurs in any edges with a dot on its LHS.
So for all edges in the chart, find any non-terminals with a dot
on their LHS and expand them according to the rule set. They
will appear with a span of [n,n] where n is the waiting location
of the edge that is being expanded.

edgen dotted rule [starting at, waiting at] history
e0 S → ● NP VP [0,0]
e1 NP → ● N [0,0]
e2 NP → ● N PP [0,0]

Scan - This step allows us to check if we have a part-of-speech
node that is consistent with the input sentence. We have
reached a part-of-speech node to be scanned if we find any
non-terminal belonging to the set NPo f S = {N, V, P} with
a dot on its LHS. So for all edges in the chart, find any non-
terminals in NPo f S with a dot on their LHS and check if the
word at the waiting location is consistent with the part-of-
speech found. If it is consistent (i.e. the word may adopt that
part-of-speech) then we add an edge to the chart. The span of
this edge will be from the waiting location of the expanded
rule to the location at the end of the word.
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Hale, 2001
edgen dotted rule [S, W] hist Prob MaxProb
e0 S → l NP VP [0,0] P(S → NP VP)=1
e1 NP → l N [0,0] P(e0)P(NP → N)=1*0.8=0.8
e2 NP → l N PP [0,0] P(e0)P(NP → N PP)=1*0.2=0.2
e3 N → they l [0,1] P(N → they)=0.2
e4 NP → N l [0,1] (e3) P(e3)P(NP → N)

=0.2*0.8
=0.16

e5 NP → N l PP [0,1] (e3)
e6 S → NP l VP [0,1] (e4)
e7 PP → l P NP [1,1] P(N → they)P(e2)P(PP → P NP)

=0.2*1*0.2*1=0.04
e8 VP → l V [1,1] P(N → they)P(e1)P(VP → V)

=0.2*1*0.8*0.3=0.048
e9 VP → l V NP [1,1] P(N → they)P(e1)P(VP → V NP)

=0.2*1*0.8*0.4=0.048
e10 VP → l V VP [1,1] P(N → they)P(e1)P(VP → V VP)

=0.2*1*0.8*0.2=0.032
e11 VP → l VP PP [1,1] P(N → they)P(e1)P(VP → VP PP)

=0.2*1*0.8*0.1=0.0016
e12 V → can l [1,2] P(V → can)=0.5
e13 VP → V l [1,2] (e12) P(e12)P(VP → V)

=0.5*0.3
=0.15

e14 VP → V l NP [1,2] (e12)
e15 VP → V l VP [1,2] (e12)
e16 S → NP VP l [0,2] (e4,e13) P(e4)P(e13)P(S → NP VP)

=0.2*0.8*0.5*0.3*1
=0.024

e17 VP → VP l PP [1,2] (e13)
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What makes a sentence difficult to process?

Predicting brain response from a probabilistic parser:

We used functional Magnetic Resonance Imaging (fMRI) to
monitor brain activation while subjects passively listen to short
narratives. The texts were written so as to introduce various
syntactic complexities (relative clauses, embedded questions,
etc.) not usually found (in such density) in actual corpora. With
the use of a computationally implemented probabilistic parser
(taken to represent an ideal listener) we have calculated a
number of temporally dense (one per word) parametric measures
reflecting different aspects of the incremental processing of each
sentence. We used the resulting measures to model the observed
brain activity (BOLD). We were able to identify different brain
networks that support incremental linguistic processing and
characterize their particular function.

Asaf Bachrach
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What makes a sentence difficult to process?

‘Identifying computable functions and their spatiotemporal distribution in
the human brain’—Andrew Thwaites et al.
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Modelling acquisition of syntax as a process

state S-{}
state a-{s\np}
state b-{s\np, s/s}
state c-{s\np, (s\np)/np}
state d-{s\np, (s\np)/(s\np)}
state e-{s\np, s/s, (s\np)/np}
state f -{s\np, (s\np)/np, ((s\np)/np)/np}
state g-{s\np, (s\np)/(s\np), s/s}
state h-{s\np, (s\np)/(s\np), (s\np)/np}
state i -{s\np, s/s, (s\np)/np, (s\np)/(s\np)}
state j -{s\np, s/s, (s\np)/np, ((s\np)/np)/np}
state k-{s\np, (s\np)/np, ((s\np)/np)/np, (s\np)/(s\np)}
state l -{s\np, (s\np)/np, ((s\np)/np)/np, (s\np)/(s\np), s/s}

Figure 6.10: The CGL as a Markov structure.
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How is meaning represented in the brain?

Vector space models (VSMs) and semantic priming—Pado and Lapata

take word pairs from the psychological literature

compute vector representations for target words and related and
unrelated prime words

distance between related prime and target should be smaller than
distance between unrelated prime and target.
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How is meaning represented in the brain?

Towards Unrestricted, Large-Scale Acquisition of Feature-Based
Conceptual Representations from Corpus Data—Devereux et al.
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Psycholinguistics is concerned with understanding how language is
stored and processed in the brain.

Computational Psycholinguistics contributes to the field by making
predictions using information theory or computational models of
language.

These predictions are tested through observations or various
experimental measurements.
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To find out more:

Harley, T. (2001) The psychology of language from data to
theory.
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Marslen-Wilson, W. & Welsh, A. (1978) Processing interactions and
lexical access during word recognition in continuous speech.

Pickering, M.J., & Garrod, S. (2004). The interactive-alignment
model

Jaeger, T. (2010). Redundancy and Reduction: Speakers Manage
Syntactic Information Density.

de Jong, N., Schreuder, R. & Baayen, H. (2000) The morphological
family size effect and morphology.
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Putting the bits together: An information theoretical perspective on
morphological processing.
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