
L28: Advanced functional programming

Exercise 3

Due on 25th April 2016

Submission instructions

Your solutions for this exercise should be handed in to the Graduate Educa-
tion Office by 4pm on the due date. Additionally, please email your complete
compilable implementation to jeremy.yallop@cl.cam.ac.uk.

1

jeremy.yallop@cl.cam.ac.uk

Background: bit-level parsing

Parsing binary data — image formats, network packets, bytecode sequences,
etc. — is a common programming need. In contrast to textual data, which is
built from characters, binary data is built from bits. For example, a GIF image
file starts with the following 104-bit sequence:

• (48 bits) either the string ”GIF87a” or the string ”GIF89a”

• (16 bits) the (logical) image width

• (16 bits) the (logical) image height

• (1 bit) whether a colour table is present

• (3 bits) the size of the colour table

• (1 bit) the sort order of the colour table

• (3 bits) the colour resolution

• (8 bits) the background colour

• (8 bits) the pixel aspect ratio

In this exercise you’ll build and use various simple libraries for parsing binary
data. Here is a parser for the GIF format written using one of the libraries:

pure (fun version width height colour_table

colour_bits sortflag bps bg aspect_ratio →
{ version; width; height; colour_table;

colour_bits; sortflag; bps; bg; aspect_ratio }) <*>

bits 48 <*>

bits 16 <*>

bits 16 <*>

bits 1 <*>

bits 3 <*>

bits 1 <*>

bits 3 <*>

bits 8 <*>

bits 8

Staging The performance of binary parsing can be improved by staging, since
the format of binary data is typically known in advance of the availability of
the data itself.

Practicalities You may find the genlet library described in lectures useful
when staging your parsing library. You can install genlet using OPAM as
follows. First, switch to the BER MetaOCaml compiler:

opam switch 4.02.1+BER

eval $(opam config env)

2

Next, update OPAM’s package list and install genlet:

opam update

opam install genlet

In OCaml 4.02 you can see the interface to a module using the #show_module
command in the top level. Here’s a sample session that shows how to view the
interface of genlet:

$ metaocaml

BER MetaOCaml toplevel, version N 102

OCaml version 4.02.1

#use "topfind";;

- : unit = ()

Findlib has been successfully loaded. Additional directives:

#require "package";; to load a package

#list;; to list the available packages

#camlp4o;; to load camlp4 (standard syntax)

#camlp4r;; to load camlp4 (revised syntax)

#predicates "p,q,...";; to set these predicates

Topfind.reset();; to force that packages will be reloaded

#thread;; to enable threads

- : unit = ()

#require "genlet";;

/home/jeremy/.opam/4.02.1+BER/lib/delimcc: added to search path

/home/jeremy/.opam/4.02.1+BER/lib/delimcc/delimcc.cma: loaded

/home/jeremy/.opam/4.02.1+BER/lib/genlet: added to search path

/home/jeremy/.opam/4.02.1+BER/lib/genlet/genlet.cma: loaded

#show_module Gengenlet;;

module Gengenlet :

sig

val genlet : ’a code -> ’a code

val let_locus : (unit -> ’w code) -> ’w code

end

3

Background: the Fast Fourier Transform

The Fast Fourier Transform (FFT) is an efficient (O(N logN)) variant of the
O(N2) Discrete Fourier Transform (DFT), which is defined as follows for com-
plex numbers x0 . . . xN−1.

Xk =

N−1∑
n=0

xne
− 2πi

N nk

The FFT has applications in signal processing, crystallography, efficient mul-
tiplication of large integers, solving partial differential equations, and many more
areas. This exercise focuses on constructing an efficient implementation of the
core algorithm using staging.

The most commonly-used variant of the FFT is known as the Cooley-Tukey
algorithm, and operates as follows:

1. Split the input array (i.e. x0 . . . xN−1) into even and odd components.

let (evens ,odds) = split arr in

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0 x2 x4 x6 x8 x10 x12 x14

evens

x1 x3 x5 x7 x9 x11 x13 x15

odds

2. Perform the FFT on the smaller arrays

fft evens

fft odds

3. For each pair of elements x and y at position j in the resulting arrays,
compute

x + yωj
n

and

x − yωj
n

where n is the length of the input array and ω0
n to ωn

n are the nth roots of
unity — i.e. those numbers x for which xn = 1.

4. Collect the results from step 3 as indicated in the folllowing diagram:

4

x0 x1 x2 x3 y0 y1 y2 y3

x0+

y0ω0
8

x1+

y1ω1
8

x2+

y2ω2
8

x3+

y3ω3
8

x0−
y0ω4

8

x1−
y1ω5

8

x2−
y2ω6

8

x3−
y3ω7

8

More comprehensive information about the FFT is available in many al-
gorithms textbooks. However, as is often the case with staging, transforming
the Fast Fourier Transform implementation into a staged version can be per-
formed using standard techniques, without needing to understand the algorithm
in detail.

5

1 Bit-level parsing

This question involves building bit-level parsers based around the following interface:

module type BIT_PARSER =

sig

type ('a, 'b) parser

val bits : (int , int64) parser

val parse : ('a, 'b) parser -> 'a -> int64 array -> 'b

end

where the type parser represents a parser (parameterised by a value of type 'a)
which builds a value of type 'b, the function bits constructs parsers for values with
a specified number of bits, and the function parse uses parsers to read values from
arrays of integers.

(a) The Parser_monad module combines the operations of BIT_PARSER with the monad
operations to support building more complex parsers:

module Parser_monad :

sig

include MONAD

include BIT_PARSER with type ('a, 'b) parser = 'a -> 'b t

end

For example, here is a parser which reads two 6-bit integers and returns them
as a pair:

bits 6 >>= fun x ->

bits 6 >>= fun y ->

return (x, y)

Similarly, the Parser_applicative and Parser_arrow modules support parser
construction using the APPLICATIVE and ARROW interfaces.

Use Parser_monad, Parser_applicative and Parser_arrow to build parsers for the
following simple network packet format.

src
(6 bytes)

dst
(6 bytes)

type
(16 bits)

(4 marks)

(b) It is often the case that the format of a field in a serialized data format depends
on the values of previous fields. For example, consider the following format,
which describes pairs of values preceded by a tag indicating the size of the
values.

6

size (2 bits): either

0: 1 bit

1: 8 bits

2: 32 bits

3: 64 bits

fst

(size bits)

snd

(size bits)

Not all of the interfaces Parser_monad, Parser_applicative and Parser_arrow can
express parsers for this format. For each interface, implement a parser if possible,
or, if building a parser is impossible, explain the difficulty.

(4 marks)

(c) Describe a data format which can only be parsed using one of the interfaces
Parser_monad, Parser_applicative and Parser_arrow and implement a parser for
that format.

(3 marks)

(d) Parsers built using the interfaces above are typically less efficient than hand-
written code. We can eliminate the extra overhead introduced by the
abstraction using staging. Give an implementation of the code-generation
function extract_bits_staged that performs as much work as possible during
code construction:

val extract_bits_staged :

int * int -> int64 array code -> int64 code

(3 marks)

(e) Implement a module Parser_arrow_staged with the following interface

module Parser_arrow_staged :

sig

include ARROW

include BIT_PARSER with type ('a, 'b) parser = ('a, 'b) t

val compile : ('a, 'b) t -> ('a -> int64 array -> 'b) code

end

that performs as much work as possible during code construction. In particular,
you should consider reading elements from an array to be a comparatively
expensive operation, and aim to minimize the number of times each element
of the input array is read during parsing. (Hint: the let_locus and genlet

operations may be helpful.)

[Addendum (26th March): Optionally, you may like to extend the interface with

7

the following datatype for describing pure functions:

type ('a, 'b) pure =

Const : 'a -> ('b, 'a) pure

| Dup : ('a, 'a * 'a) pure

| First : ('a, 'b) pure -> ('a * 'c, 'b * 'c) pure

where the interpretation of each constructor is as given by the following function

let rec interpret : type a b. (a, b) pure -> a -> b = function

Const x -> fun y -> x

| Dup -> fun x -> (x, x)

| First f -> fun (x, y) -> (interpret f x, y)

and the Parser_arrow_staged interface is extended with a second version of arr

that maps pure values to computations:

module Parser_arrow_staged :

sig

. . .
val arr ' : ('a, 'b) pure -> ('a, 'b) t

end

If you wish, you may also extend pure with constructors for other pure functions
such as id, assoc, ◦ and swap as defined on p157 of the lecture notes for 15th
February.]

(3 marks)

(f) Which of the three interfaces Parser_monad, Parser_applicative and Parser_arrow

provides the most suitable basis for staged parsing?

(2 marks)

8

2 The Fast Fourier Transform

This question involves staging an implementation of the Fast Fourier Transform to
improve its performance. The code distributed with this exercise includes an unstaged
FFT implementation. Your task is to build on that implementation to generate
specialized code based on statically-known information.

The principal data structure in the FFT algorithm is an array of complex numbers.
Refining the structure to support partially-static data will make it possible to build
an effective code generator.

(a) The FFT implementation in the Fft_unstaged module makes use of the OCaml
standard library module Complex, which implements complex numbers. The
staged FFT implementation is based on a simpler module Complex_staged

distributed with this exercise. The current implementation of Complex_staged

is not very efficient.

(i) Each of the functions in Complex_staged — add, mul, sub, etc. — operates on
possibly-static data. Improve the implementations of the module to take
advantage of static information when possible. For example, the expression
Complex_staged.mul (Sta x) (Sta y) currently builds a dynamic value, but it
should instead build a static value.

(Take care to consider the cases where one of the arguments to a function is
a static value with special properties. For example, mul (Sta 0.0) x should
always be Sta 0.0, regardless of whether x is static or dynamic.)

(ii) Improve the implementations of complex_sd and dyn_complex in the Fft_types

module to support the case where only one component of a complex number
(i.e. only the real, or only the imaginary part) is static. What new
optimizations does your improved definition make possible?

(iii) Given three values x, y and z, of type Complex_staged.t, of which two
are static and one dynamic, under what circumstances will the following
expression perform some static computation?

Complex_staged.add x (Complex_staged.add y z)

Sketch briefly how you might change the definition of Complex_staged.t

to expose more opportunities for static computation. You can use code
examples if you like, but you do not need to give a full implementation.

(8 marks)

(b) The implementation of arrays in the Fft_unstaged module is based on balanced

9

binary trees containing complex numbers. The implementation of arrays in the
Fft_staged module is based on balanced binary trees containing possibly-static
complex numbers. The structure of the array is known statically, since the length
is known statically, but some of the contents may only be available dynamically.

(i) Implement the functions Arr.mk and Arr.dyn to convert between Arr.t and
array code values. In each case the order of elements in the array value
should correspond to the order of elements in the Arr.t value: that is,
given an Arr.t value like this

Branch (Branch (Leaf a, Leaf b), Branch (Leaf c, Leaf d))

the order of elements in the corresponding array should be as follows:

[|a; b; c; d|]

(ii) Implement the top-level function mk in the Fft_staged module to build a
code generator by calling fft and whichever other functions you need.

(iii) Comment briefly on the performance differences you observe between the
staged and unstaged implementations of fft. You might like to compare
the running time or the number of operations executed for a few different
array sizes.

(iv) To what extent is staging a useful technique for improving the performance
of numerical algorithms?

(8 marks)

10

