
L28: Advanced functional programming

Exercise 1

Due on 8th February 2016

Submission instructions

Your solutions for this exericse should be handed in to the Graduate Education
Office by 4pm on the due date. Additionally, for questions 2 and 3, please email
the completed text file exercise1.f to jeremy.yallop@cl.cam.ac.uk.

Preliminaries

For these questions, you may assume that all the System Fω definitions given
in Figure 1 are available.
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Nat : : ∗
= ∀α : : ∗ . α → (α → α) → α

zero : Nat
= Λα : : ∗ . λz :α .λs :α → α . z

succ : Nat → Nat
= λn : Nat . Λα : : ∗ . λz :α .λs :α → α . s (n [α ] z s )

add : Nat → Nat → Nat
= λm: Nat .λn : Nat .m [ Nat ] n succ

Eq : : ∗ ⇒ ∗ ⇒ ∗
= λα :: ∗ .λβ :: ∗ .∀φ :: ∗ ⇒ ∗ .φ α→ φ β

r e f l : ∀α :: ∗ . Eq α α
= Λα :: ∗ . Λφ :: ∗ ⇒ ∗ .λx :φ α . x

symm : ∀α :: ∗ .∀β :: ∗ . Eq α β → Eq β α
= Λα :: ∗ . Λβ :: ∗ .λe: (∀φ :: ∗ ⇒ ∗.φ α → φ β) . e [λγ :: ∗.Eq γ α ] ( r e f l [α ] )

t rans : ∀α :: ∗ .∀β :: ∗ .∀γ :: ∗ . Eq α β → Eq β γ → Eq α γ
= Λα :: ∗ . Λβ :: ∗ . Λγ :: ∗ .λab : Eq α β .λbc : Eq β γ . bc [ Eq α ] ab

Figure 1: Definitions in System Fω
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1 Types and type inference

(a) For each of the following Fω terms either give a typing derivation or explain
why the term has no typing derivation:

(i) λf:∀α::*.α → α.f f

(ii) Λβ::*.(Λφ::*⇒ *.λf:(∀α.φ α).f [β]) [β]

(iii) Λα::*.λf:(∀φ::*⇒ ∗.φ α).λx:α.f [λβ::*.α → α] x

(8 marks)

(b) Algorithm J is defined recursively over the structure of terms. The case for
function application (M N) is as follows:

J (Γ, M N) = β
where A = J (Γ, M)

and B = J (Γ, N)

and unify ' ({A = B → β}) succeeds

and β is fresh

Give similar cases to handle the following constructs:

(i) Constructing a value of sum type using inr: inr M

(ii) Scrutinising a value of sum type: case L of x.M | y.N

(4 marks)

(c) Why does OCaml’s type checker reject the following program?

let f = fun x -> x in

let g = f f in

g g

(4 marks)
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2 Encoding data types in Fω

The following OCaml type represents non-empty trees.

type 'a tree =

Leaf : 'a -> 'a tree

| Branch : 'a tree * 'a tree -> 'a tree

(a) Write an Fω encoding of the tree datatype. Your encoding should include a
type operator of the following kind:

Tree :: * ⇒ *

and functions of the following types

leaf :: ∀α :: ∗.α → Tree α
branch :: ∀α :: ∗.Tree α → Tree α → Tree α

(b) Write an Fω function that computes the sum of the elements in a tree of Nats
in Fω. Your function should have the following type:

totalNatTree : Tree Nat → Nat

(6 marks)
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3 Type equality in Fω

The lecture notes introduce the following definition of type equality, based on
Leibniz’s principle:

Eq = λα::*.λβ::*.∀φ::*⇒*.φ α→ φ β

Here is a second definition of equality, based on the encoding of a data type:

Equal = λα::*.λβ::*.∀φ::*⇒*⇒*.(∀γ::*.φ γ γ) → φ α β

(Here is the OCaml data type corresponding to Equal, which we will consider in more
detail in lectures 8 and 9:)

type ('a, 'b) eql = Refl : ('x, 'x) eql

(a) Show that Equal represents an equivalence relation by defining values that encode
reflexivity, symmetry and transitivity properties:

reflEqual : ∀α.Equal α α

symmEqual : ∀α.∀β.Equal α β → Equal β α

transEqual : ∀α.∀β.∀γ.Equal α β → Equal β γ → Equal α γ

(Hint: don’t worry too much about how your implementations of these functions
behave. Focus on defining values of the appropriate types.)

(b) Define functions of the following types that convert between the two definitions
of equality:

toLeibniz : ∀α.∀β. Equal α β → Eq α β

fromLeibniz : ∀α.∀β. Eq α β → Equal α β

(8 marks)
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