
Dynamic Dispatch and Duck Typing

L25: Modern Compiler Design

Late Binding

• Static dispatch (e.g. C function calls) are jumps to specific
addresses

• Object-oriented languages decouple method name from
method address

• One name can map to multiple implementations

• Destination must be computed somehow

VTable-based Dispatch

• Tied to class (or interface) hierarchy

• Array of pointers (virtual function table) for method dispatch�
struct Foo {

int x;

virtual void foo();

};

void Foo::foo() {}

void callVirtual(Foo &f) {

f.foo();

}

void create () {

Foo f;

callVirtual(f);

} 	� �

Calling the method via the vtable

�
define void @_Z11callVirtualR3Foo (% struct.Foo* %

f) uwtable ssp {

%1 = bitcast %struct.Foo* %f to void (% struct.

Foo*)***

%2 = load void (% struct.Foo*)*** %1, align 8,

!tbaa !0

%3 = load void (% struct.Foo*)** %2, align 8

tail call void %3(% struct.Foo* %f)

ret void

} 	� �

Creating the object

�
@_ZTV3Foo = unnamed_addr constant [3 x i8*] [

i8* null ,

i8* bitcast ({ i8*, i8* }* @_ZTI3Foo to i8*),

i8* bitcast (void (% struct.Foo*)*

@_ZN3Foo3fooEv to i8*)]

define linkonce_odr void @_ZN3FooC2Ev (% struct.

Foo* nocapture %this) {

%1 = getelementptr inbounds %struct.Foo* %this

, i64 0, i32 0

store i32 (...) ** bitcast

(i8** getelementptr inbounds ([3 x i8*]*

@_ZTV3Foo , i64 0, i64 2) to i32 (...) **),

i32 (...) *** %1

} 	� �

Devirtualisation

• Any indirect call prevents inlining

• Inlining exposes a lot of later optimisations

• If we can prove that there is only one possible callee, we can
inline.

Problems with VTable-based Dispatch

• VTable layout is per-class

• Languages with duck typing do not tie dispatch to the class
hierarchy

• Selectors must be more abstract than vtable offsets (e.g.
globally unique integers for method names)

Ordered Dispatch Tables

• All methods for a specific class in a sorted list

• Binary (or linear) search for lookup

• Lots of conditional branches for binary search

• Either very big dtables or multiple searches to look at
superclasses

• Cache friendly for small dtables (entire search is in cache)

• Expensive to add methods (requires lock / RCU)

Sparse Dispatch Tables

• Tree structure, 2-3 pointer accesses + offset calculations

• Fast if in cache

• Pointer chasing is suboptimal for superscalar chips (inherently
serial)

• Copy-on-write tree nodes work well for inheritance, reduce
memory pressure

Inverted Dispatch Tables

• Normal dispatch tables are a per-class (or per object) map
from selector to method

• Inverted dispatch tables are a per-selector map from class (or
object) to method

• If method overriding is rare, this provides smaller maps (but
more of them)

Lookup Caching

• Method lookup can be slow or use a lot of memory (data
cache)

• Caching lookups can give a performance boost

• Most object-oriented languages have a small number of
classes used per callsite

• Have a per-callsite cache

Callsite Categorisation

• Monomorphic: Only one method ever called
• Huge benefit from inline caching

• Polymorphic: A small number of methods called
• Can benefit from simple inline caching, depending on pattern
• Polymorphic inline caching (if sufficiently cheap) helps

• Megamorphic: Lots of different methods called
• Cache usually slows things down

Simple Cache

�
object.aMethod(foo); 	� ��
static struct {

Class cls;

Method method;

} cache = {0, 0};

static Selector sel = compute_selector("aMethod"

);

if (object ->isa != cache ->cls) {

cache ->cls = object ->isa

cache ->method = method_lookup(cls , sel);

}

cache ->method(object , sel , foo); 	� �
What’s wrong with this approach?

Updates? Thread-safety?

Simple Cache

�
object.aMethod(foo); 	� ��
static struct {

Class cls;

Method method;

} cache = {0, 0};

static Selector sel = compute_selector("aMethod"

);

if (object ->isa != cache ->cls) {

cache ->cls = object ->isa

cache ->method = method_lookup(cls , sel);

}

cache ->method(object , sel , foo); 	� �
What’s wrong with this approach? Updates? Thread-safety?

Inline caching in JITs

• Cache target can be inserted into the instruction stream

• JIT is responsible for invalidation

• Can require deoptimisation if a function containing the cache
is on the stack

Inline caching

�
call lookup_fn

nop 	� �
�
bne $cls , $last , fail

call method 	� �
• First call to the lookup rewrites the instruction stream

• Check jumps to code that rewrites it back

Variation: Guarded methods

• Specialised version of each method that knows the expected
class

• Jump to the lookup function replaced by call to guarded
method

• Method checks receiver type and tail-calls the lookup function
if it’s the wrong type

Polymorphic inline caching

�
bne $cls , $expected , cls

call method

ret

next:

bne $cls , $expected2 , cls

call method

ret 	� �
• Branch to a jump table

• Jump table has a sequence of tests and calls

• Jump table must grow

• Too many cases can offset the speedup

Trace-based optimisation

• Branching is expensive

• Dynamic programming languages have lots of method calls

• Common hot code paths follow a single path

• Chain together basic blocks from different methods into a
trace

• Compile with only branches leaving

• Contrast: trace vs basic block (single entry point in both,
multiple exit points in a trace)

Prototype-based Languages

• Prototype-based languages (e.g. JavaScript) don’t have
classes

• Any object can have methods

• Caching per class is likely to hit a lot more cases than per
object

Hidden Class Transforms

• Observation: Most objects don’t have methods added to them
after creation

• Create a hidden class for every constructor

• Also speed up property access by using the class contain fixed
offsets for common properties

Type specialisation

• Code paths can be optimised for specific types

• For example, elide dynamic lookup

• Can use static hints, works best with dynamic profiling

• Must have fallback for when wrong

Deoptimisation

• Disassemble existing stack frame and continue in interpreter /
new JIT’d code

• Stack maps allow mapping from register / stack values to IR
values

• Fall back to interpreter for new control flow

• NOPs provide places to insert new instructions

• New code paths can be created on demand

• Can be used when caches are invalidated or the first time that
a cold code path is used

LLVM: Anycall calling convention

• Used for deoptimisation

• All arguments go somewhere

• Metadata emitted to find where

• Very slow when the call is made, but no impact on register
allocation

Deoptimisation example

JavaScript:�
a = b + c; 	� �
Deoptimisable pseudocode:�
if (!(is_integer(b) && is_integer(c)))

anycall_interpreter (&a, b, c);

a = b+c; 	� �

Questions?

