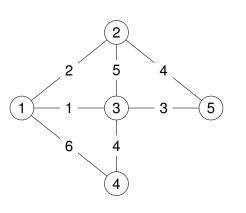
L11: Algebraic Path Problems with applications to Internet Routing Lectures 01 — 08

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

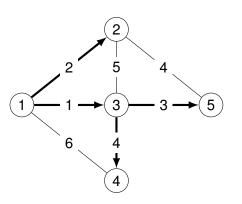
Michaelmas Term, 2015

Shortest paths example, $sp = (\mathbb{N}^{\infty}, \min, +, \infty, 0)$



The adjacency matrix

Shortest paths solution



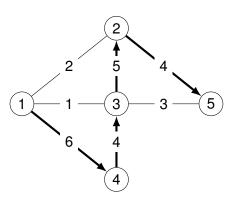
$$\mathbf{A}^* = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 7 & 4 & 0 & 7 \\ 5 & 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

solves this global optimality problem:

$$\mathbf{A}^*(i, j) = \min_{p \in P(i, j)} w(p),$$

where P(i, j) is the set of all paths from i to j.

Widest paths example, $bw = (\mathbb{N}^{\infty}, max, min, 0, \infty)$



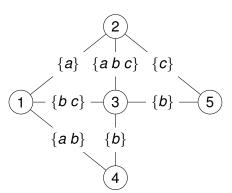
$$\mathbf{A}^* = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & \infty & 4 & 4 & 6 & 4 \\ 2 & 4 & \infty & 5 & 4 & 4 \\ 4 & 5 & \infty & 4 & 4 \\ 4 & 6 & 4 & 4 & \infty & 4 \\ 5 & 4 & 4 & 4 & 4 & \infty \end{bmatrix}$$

solves this global optimality problem:

$$\mathbf{A}^*(i, j) = \max_{p \in P(i, j)} w(p),$$

where w(p) is now the minimal edge weight in p.

Unfamiliar example, $(2^{\{a, b, c\}}, \cup, \cap, \{\}, \{a, b, c\})$



We want **A*** to solve this global optimality problem:

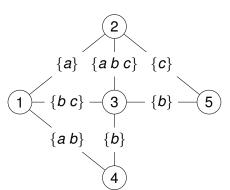
$$\mathbf{A}^*(i, j) = \bigcup_{p \in P(i, j)} w(p),$$

where w(p) is now the intersection of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{A}^*(i, j)$ to mean that there is at least one path from i to j with x in every arc weight along the path.

$$A^*(4, 1) = \{a, b\}$$
 $A^*(4, 5) = \{b\}$

Another unfamiliar example, $(2^{\{a, b, c\}}, \cap, \cup)$



We want matrix **R** to solve this global optimality problem:

$$\mathbf{A}^*(i, j) = \bigcap_{\boldsymbol{p} \in P(i, j)} w(\boldsymbol{p}),$$

where w(p) is now the union of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{R}(i, j)$ to mean that every path from i to j has at least one arc with weight containing x.

$$A^*(4, 1) = \{b\}$$
 $A^*(4, 5) = \{b\}$ $A^*(5, 1) = \{\}$

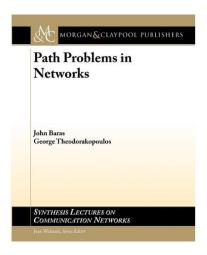
We will start by looking at Semirings

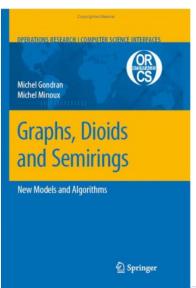
name	S	\oplus ,	\otimes	$\overline{0}$	1	possible routing use			
sp	\mathbb{N}_{∞}	min	+	∞	0	minimum-weight routing			
bw	\mathbb{N}_{∞}	max	min	0	∞	greatest-capacity routing			
rel	[0, 1]	max	×	0	1	most-reliable routing			
use	$\{0, 1\}$	max	min	0	1	usable-path routing			
	2^W	\cup	\cap	{}	W	shared link attributes?			
	2^W	\cap	\cup	W	{}	shared path attributes?			

A wee bit of notation!

Symbol	Interpretation
\mathbb{N}	Natural numbers (starting with zero)
\mathbb{N}_{∞}	Natural numbers, plus infinity
$\overline{0}$	Identity for ⊕
1	Identity for ⊗

Recommended Reading on Semiring Theory





Semirings (generalise $(\mathbb{R}, +, \times, 0, 1)$)

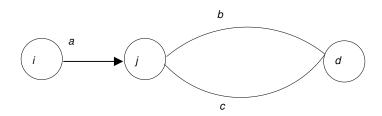
We will look at the axioms of semirings. The most important are

distributivity

$$\lessdot$$
 : $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$

$$\langle (a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$$

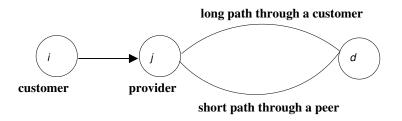
Distributivity, illustrated



$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$

j makes the choice = i makes the choice

Should distributivity hold in Internet Routing? No!



- j prefers long path though one of its customers (not the shorter path through a competitor)
- given two routes from a provider, i prefers the one with a shorter path

More on this later in the term ...

The (Tentative) Plan

- 1 9 October : Motivation, overveiw
- 2 13 October : Semigroups and Orders
- 3 16 October : Semirings Theory, algorithms
- 4 20 October : Semirings Constructions
- 5 23 October : Semirings Constructions
- 6 27 October : Semirings Constructions
- 7 30 October : Beyond Semirings AMEs "functions on arc
- 8 3 November : AME Constructions (**HW 1 due**)
- 9 6 November : Protocols : RIP, EIGRP (from a theoretical persp
- 10 10 November : Inter-domain routing in the Internet I
- 11 13 November : Inter-domain routing in the Internet II
 12 17 November : Beyond Semirings Global vs Local optimality
- 13 20 November : More on Global vs Local optimality
- 14 24 November : Dijkstra revisited (**HW 2 due**)
- 15 27 November : Bellman-Ford revisited
- 16 1 December : Other algorithms

12 January : HW 3 due

- What is a semigroup?
- A few important semigroup properties.
- Cayley's Theorem for semigroups.
- Constructing new semigroups from old.
- Homework 1.

Semigroups

Semigroup

A semigroup (S, \bullet) is a non-empty set S with a binary operation such that

AS associative $\equiv \forall a, b, c \in S, a \bullet (b \bullet c) = (a \bullet b) \bullet c$

Important Assumption — We will ignore trival semigroups

We will impicitly assume that $2 \le |S|$.

Note

Many useful binary operations are not semigroup operations. For example, (\mathbb{R}, \bullet) , where $a \bullet b \equiv (a+b)/2$.

Some Important Semigroup Properties

A semigroup with an identity is called a monoid.

Note that

$$\mathbb{SL}(S, \bullet) \implies \mathbb{IP}(S, \bullet)$$

A few concrete semigroups

S	•	description	α	ω	$\mathbb{C}\mathbb{M}$	SL	\mathbb{IP}
S S	left	$x \operatorname{left} y = x$				*	*
S	right	x right $y = y$				*	*
\mathcal{S}^*		concatenation	ϵ				
\mathcal{S}^+		concatenation					
$\{t, f\}$	\wedge	conjunction	t	f	*	*	*
$\{t, f\}$	V	disjunction	f	t	*	*	*
N	min	minimum		0	*	*	*
\mathbb{N}	max	maximum	0		*	*	*
2 ^W	U	union	{}	W	*		*
2 ^W	\cap	intersection	W	{}	*		*
$fin(2^U)$	U	union	{}		*		*
$fin(2^U)$	\cap	intersection		{}	*		*
N	+	addition	0		*		
N	×	multiplication	1	0	*		

W a finite set, U an infinite set. For set Y, $fin(Y) \equiv \{X \in Y \mid X \text{ is finite}\}\$

A few abstract semigroups

S	•	description	α	ω	$\mathbb{C}\mathbb{M}$	SL	\mathbb{IP}
2^U		union	{}	U	*		*
2^U	\cap	intersection	Ü	{}	*		*
$2^{U \times U}$	M	relational join	$\mathcal{I}_{\mathcal{U}}$	{}			
$X \rightarrow X$	0	composition	$\lambda x.x$				

U an infinite set

$$X \bowtie Y \equiv \{(x, z) \in U \times U \mid \exists y \in U, (x, y) \in X \land (y, z) \in Y\}$$

 $\mathcal{I}_U \equiv \{(u, u) \mid u \in U\}$

subsemigroup

Suppose (S, \bullet) is a semigroup and $T \subseteq S$. If T is closed w.r.t \bullet (that is, $\forall x, y \in T, x \bullet y \in T$), then (T, \bullet) is a subsemigroup of S.

Isomorphism

Reminder of function terminology

- $f \in X \rightarrow Y$
- f is injective (one-to-one) $\equiv \forall x, y \in X, f(x) = f(y) \implies x = y$
- f is surjective (onto) $\equiv \forall y \in Y, \exists x \in X, f(x) = y$
- f is bijective $\equiv f$ is injective and f is surjective

Isomorphism

If S and T are algebraic structures, then they are said to be isomorphic, written $S \approx T$, if there exists a bijective funtion $f \in S \rightarrow T$ which preserves structure.

Semigroup Isomorphism $S \approx T$

- (S, ●) a semigroup
- (T, ⋄) a semigroup
- $f \in S \rightarrow T$ a bijection
- $\forall a, b \in S, f(a \bullet b) = f(a) \diamond f(b)$

Cayley's Theorem for Semigroups

Every semigroup (S, \bullet) is isomorphic to a subsemigroup of $(S \to S, \circ)$.

Partial proof of Cayley's theorem

$$\phi(s \bullet t) = \phi(s) \circ \phi(t)$$

$$f_{s \bullet t}(a) = (s \bullet t) \bullet a$$

$$= s \bullet (t \bullet a)$$

$$= s \bullet f_t(a)$$

$$= f_s(f_t(a))$$

$$= (f_s \circ f_t)(a)$$

Wait, is it injective?

$$f_s = f_t \Leftrightarrow \forall a \in S, \ f_s(a) = f_t(a) \Leftrightarrow \forall a \in S, \ s \bullet a = t \bullet a$$

But we want s = t! If there is an identity $\alpha \in S$, then letting $a = \alpha$ we have $s \bullet \alpha = t \bullet \alpha$, that is s = t.

But when there is no identity? (See Homework 1.)

Add identity

$$AddId(\alpha, (S, \bullet)) \equiv (S \uplus \{\alpha\}, \bullet_{\alpha}^{id})$$

where

$$a \bullet_{\alpha}^{\mathrm{id}} b \equiv \begin{cases} a & (\text{if } b = \mathrm{inr}(\alpha)) \\ b & (\text{if } a = \mathrm{inr}(\alpha)) \\ \mathrm{inl}(x \bullet y) & (\text{if } a = \mathrm{inl}(x), b = \mathrm{inl}(y)) \end{cases}$$

disjoint union

$$A \uplus B \equiv \{ \operatorname{inl}(a) \mid a \in A \} \cup \{ \operatorname{inr}(b) \mid b \in B \}$$

Add identity

Easy Exercises

```
\begin{array}{lll} \mathbb{AS}(\operatorname{AddId}(\alpha,\ (S,\ \bullet))) &\Leftrightarrow & \mathbb{AS}(S,\bullet) \\ \mathbb{ID}(\operatorname{AddId}(\alpha,\ (S,\ \bullet))) &\Leftrightarrow & \mathbb{TRUE} \\ \mathbb{AN}(\operatorname{AddId}(\alpha,\ (S,\ \bullet))) &\Leftrightarrow & \mathbb{AN}(S,\bullet) \\ \mathbb{CM}(\operatorname{AddId}(\alpha,\ (S,\ \bullet))) &\Leftrightarrow & \mathbb{CM}(S,\bullet) \\ \mathbb{IP}(\operatorname{AddId}(\alpha,\ (S,\ \bullet))) &\Leftrightarrow & \mathbb{IP}(S,\bullet) \\ \mathbb{SL}(\operatorname{AddId}(\alpha,\ (S,\ \bullet))) &\Leftrightarrow & \mathbb{SL}(S,\bullet) \end{array}
```

Inserting an annihilator

$$AddAn(\omega, (S, \bullet)) \equiv (S \uplus \{\omega\}, \bullet_{\omega}^{an})$$

where

$$a \bullet_{\omega}^{\mathrm{an}} b \equiv \begin{cases} \mathrm{inr}(\omega) & (\mathrm{if} \ b = \mathrm{inr}(\omega)) \\ \mathrm{inr}(\omega) & (\mathrm{if} \ a = \mathrm{inr}(\omega)) \\ \mathrm{inl}(x \bullet y) & (\mathrm{if} \ a = \mathrm{inl}(x), \ b = \mathrm{inl}(y)) \end{cases}$$

Add annihilator

Easy Exercises

```
\begin{array}{lll} \mathbb{AS}(\mathsf{AddAn}(\alpha,\ (S,\ \bullet))) &\Leftrightarrow& \mathbb{AS}(S,\bullet) \\ \mathbb{ID}(\mathsf{AddAn}(\alpha,\ (S,\ \bullet))) &\Leftrightarrow& \mathbb{ID}(S,\bullet) \\ \mathbb{AN}(\mathsf{AddAn}(\alpha,\ (S,\ \bullet))) &\Leftrightarrow& \mathbb{TRUE} \\ \mathbb{CM}(\mathsf{AddAn}(\alpha,\ (S,\ \bullet))) &\Leftrightarrow& \mathbb{CM}(S,\bullet) \\ \mathbb{IP}(\mathsf{AddAn}(\alpha,\ (S,\ \bullet))) &\Leftrightarrow& \mathbb{IP}(S,\bullet) \\ \mathbb{SL}(\mathsf{AddAn}(\alpha,\ (S,\ \bullet))) &\Leftrightarrow& \mathbb{SL}(S,\bullet) \end{array}
```

Lexicographic Product of Semigroups

Lexicographic product semigroup

Suppose that semigroup (S, \bullet) is commutative, idempotent, and selective and that (T, \diamond) is a semigroup.

$$(S, \bullet) \stackrel{?}{\times} (T, \diamond) \equiv (S \times T, \star)$$

where $\star \equiv \bullet \stackrel{\overrightarrow{\times}}{\times} \diamond$ is defined as

$$(s_1, t_1) \star (s_2, t_2) = egin{cases} (s_1 ullet s_2, t_1 \diamondsuit t_2) & s_1 = s_1 ullet s_2 = s_2 \ (s_1 ullet s_2, t_1) & s_1 = s_1 ullet s_2
eq s_2 \ (s_1 ullet s_2, t_2) & s_1
eq s_1 ullet s_2 = s_2 \end{cases}$$

Examples

$$(\mathbb{N}, \min) \stackrel{?}{\times} (\mathbb{N}, \max)$$

$$(1, 17) \star (2,3) = (1,17)$$

$$(2, 17) \star (2,3) = (2,17)$$

$$(2, 3) \star (2,3) = (2,3)$$

$$(\mathbb{N}, \max) \stackrel{?}{\times} (\mathbb{N}, \min)$$

$$(1, 17) \star (2,3) = (2,3)$$

 $(2, 17) \star (2,3) = (2,3)$
 $(2, 3) \star (2,3) = (2,3)$

Assuming $\mathbb{AS}(S, \bullet) \wedge \mathbb{CM}(S, \bullet) \wedge \mathbb{IP}(S, \bullet) \wedge \mathbb{SL}(S, \bullet)$

$$\begin{array}{lll} \mathbb{AS}((S,\bullet)\vec{\times}(T,\diamond)) & \Leftrightarrow & \mathbb{AS}(T,\diamond) \\ \mathbb{ID}((S,\bullet)\vec{\times}(T,\diamond)) & \Leftrightarrow & \mathbb{ID}(S,\bullet) \wedge \mathbb{ID}(T,\diamond) \\ \mathbb{AN}((S,\bullet)\vec{\times}(T,\diamond)) & \Leftrightarrow & \mathbb{AN}(S,\bullet) \wedge \mathbb{AN}(T,\diamond) \\ \mathbb{CM}((S,\bullet)\vec{\times}(T,\diamond)) & \Leftrightarrow & \mathbb{CM}(T,\diamond) \\ \mathbb{IP}((S,\bullet)\vec{\times}(T,\diamond)) & \Leftrightarrow & \mathbb{IP}(T,\diamond) \\ \mathbb{SL}((S,\bullet)\vec{\times}(T,\diamond)) & \Leftrightarrow & \mathbb{SL}(T,\diamond) \\ \mathbb{IR}((S,\bullet)\vec{\times}(T,\diamond)) & \Leftrightarrow & \mathbb{FALSE} \\ \mathbb{IL}((S,\bullet)\vec{\times}(T,\diamond)) & \Leftrightarrow & \mathbb{FALSE} \end{array}$$

All easy, except for AS (See Homework 1!).

Direct Product of Semigroups

Let (S, \bullet) and (T, \diamond) be semigroups.

Definition (Direct product semigroup)

The direct product is denoted

$$(S, \bullet) \times (T, \diamond) \equiv (S \times T, \star)$$

where

$$\star = \bullet \times \diamond$$

is defined as

$$(s_1, t_1) \star (s_2, t_2) = (s_1 \bullet s_2, t_1 \diamond t_2).$$

Easy exercises

$$\begin{array}{lll} \mathbb{AS}((S,\bullet)\times(T,\diamond)) & \Leftrightarrow & \mathbb{AS}(S,\bullet)\wedge\mathbb{AS}(T,\diamond) \\ \mathbb{ID}((S,\bullet)\times(T,\diamond)) & \Leftrightarrow & \mathbb{ID}(S,\bullet)\wedge\mathbb{ID}(T,\diamond) \\ \mathbb{AN}((S,\bullet)\times(T,\diamond)) & \Leftrightarrow & \mathbb{AN}(S,\bullet)\wedge\mathbb{AN}(T,\diamond) \\ \mathbb{CM}((S,\bullet)\times(T,\diamond)) & \Leftrightarrow & \mathbb{CM}(S,\bullet)\wedge\mathbb{CM}(T,\diamond) \\ \mathbb{IP}((S,\bullet)\times(T,\diamond)) & \Leftrightarrow & \mathbb{IP}(S,\bullet)\wedge\mathbb{IP}(T,\diamond) \end{array}$$

What about SL?

Consider the product of two selective semigroups, such as $(\mathbb{N}, \min) \times (\mathbb{N}, \max)$.

$$(10,\ 10)\star(1,\ 3)=(1,\ 10)\not\in\{(10,\ 10),\ (1,\ 3)\}$$

The result in this case is not selective!

Direct product and SL?

$$\mathbb{SL}((S,\bullet)\times(\mathcal{T},\diamond)) \ \Leftrightarrow \ (\mathbb{IR}(S,\bullet)\wedge\mathbb{IR}(\mathcal{T},\diamond))\vee(\mathbb{IL}(S,\bullet)\wedge\mathbb{IL}(\mathcal{T},\diamond))$$

IR is right
$$\equiv \forall s, t \in S, s \cdot t = t$$
IL is left $\equiv \forall s, t \in S, s \cdot t = s$

See Homework 1

$$\begin{array}{lll} \mathbb{IR}((S,\bullet)\times(T,\diamond)) & \Leftrightarrow & \mathbb{IR}(S,\bullet)\wedge\mathbb{IR}(T,\diamond) \\ \mathbb{IL}((S,\bullet)\times(T,\diamond)) & \Leftrightarrow & \mathbb{IL}(S,\bullet)\wedge\mathbb{IL}(T,\diamond) \end{array}$$

Revisit other constructions ...

```
\begin{array}{lll} \mathbb{IR}(\mathsf{AddId}(\alpha,\,(S,\,\bullet))) &\Leftrightarrow & \mathbb{F}\mathbb{ALSE} \\ \mathbb{IL}(\mathsf{AddId}(\alpha,\,(S,\,\bullet))) &\Leftrightarrow & \mathbb{F}\mathbb{ALSE} \\ \\ \mathbb{IR}(\mathsf{AddAn}(\alpha,\,(S,\,\bullet))) &\Leftrightarrow & \mathbb{F}\mathbb{ALSE} \\ \mathbb{IL}(\mathsf{AddAn}(\alpha,\,(S,\,\bullet))) &\Leftrightarrow & \mathbb{F}\mathbb{ALSE} \end{array}
```

Assuming
$$\mathbb{AS}(S, \bullet) \wedge \mathbb{CM}(S, \bullet) \wedge \mathbb{IP}(S, \bullet) \wedge \mathbb{SL}(S, \bullet)$$

$$\mathbb{IR}((S, \bullet) \vec{\times} (T, \diamond)) \Leftrightarrow \mathbb{FALSE}$$

$$\mathbb{IL}((S, \bullet) \vec{\times} (T, \diamond)) \Leftrightarrow \mathbb{FALSE}$$

Lifted Product

Lifted product semigroup

Assume (S, \bullet) is a semigroup. Let $lift(S, \bullet) \equiv (fin(2^S), \hat{\bullet})$ where

$$X \hat{\bullet} Y = \{ x \bullet y \mid x \in X, y \in Y \}.$$

$$\{1, 3, 17\} + \{1, 3, 17\} = \{2, 4, 6, 18, 20, 34\}$$

```
\begin{array}{lll} \mathbb{AS}(\mathrm{lift}(S,\bullet)) & \Leftrightarrow & \mathbb{AS}(S,\bullet) \\ \mathbb{ID}(\mathrm{lift}(S,\bullet)) & \Leftrightarrow & \mathbb{ID}(S,\bullet) \; (\hat{\alpha}=\{\alpha\}) \\ \mathbb{AN}(\mathrm{lift}(S,\bullet)) & \Leftrightarrow & \mathbb{TRUE} \; (\omega=\{\}) \\ \mathbb{CM}(\mathrm{lift}(S,\bullet)) & \Leftrightarrow & \mathbb{CM}(S,\bullet) \\ \mathbb{SL}(\mathrm{lift}(S,\bullet)) & \Leftrightarrow & \mathbb{IL}(S,\bullet) \vee \mathbb{IR}(S,\bullet) \vee (\mathbb{IP}(S,\bullet) \; \wedge \mid S\mid = 2) \\ \mathbb{IP}(\mathrm{lift}(S,\bullet)) & \Leftrightarrow & \mathbb{SL}((S,\bullet)) \\ \mathbb{IL}(\mathrm{lift}(S,\bullet)) & \Leftrightarrow & \mathbb{FALSE} \\ \mathbb{IR}(\mathrm{lift}(S,\bullet)) & \Leftrightarrow & \mathbb{FALSE} \end{array}
```

Why bother with all of these \Leftrightarrow rules?

I would rather calculate than prove!

```
\begin{split} & \mathbb{IP}(\operatorname{lift}(\operatorname{lift}(\{t,\ f\},\ \wedge)) \\ \Leftrightarrow & \mathbb{SL}(\{t,\ f\},\ \wedge) \\ \Leftrightarrow & \mathbb{IL}(\{t,\ f\},\ \wedge) \vee \mathbb{IR}(\{t,\ f\},\ \wedge) \vee (\mathbb{IP}(\{t,\ f\},\ \wedge)\ \wedge \mid \{t,\ f\}\mid = 2) \\ \Leftrightarrow & \mathbb{FALSE} \vee \mathbb{FALSE} \vee (\mathbb{TRUE} \wedge \mathbb{TRUE}) \\ \Leftrightarrow & \mathbb{TRUE} \end{split}
```

Note

This kind of calculation will become more interesting as we introduce more complex constructors and consider more complex properties — such as those associated with semirings.

Homework 1

Each question is 25 points.

- Finish the proof of Cayley's theorem.
- Prove

$$\begin{array}{c} \mathbb{SL}((\mathcal{S},\bullet)\times(\mathcal{T},\diamond))\\\Leftrightarrow\\ (\mathbb{IR}(\mathcal{S},\bullet)\wedge\mathbb{IR}(\mathcal{T},\diamond))\vee(\mathbb{IL}(\mathcal{S},\bullet)\wedge\mathbb{IL}(\mathcal{T},\diamond)) \end{array}$$

- **3** Assume that $\mathbb{AS}(S, \bullet)$, $\mathbb{AS}(T, \diamond)$, $\mathbb{CM}(S, \bullet)$, $\mathbb{IP}(S, \bullet)$, and $\mathbb{SL}(S, \bullet)$ hold. Prove that $\mathbb{AS}((S, \bullet) \times (T, \diamond))$. Did you really need $\mathbb{CM}(S, \bullet)$?
- (Rather difficult). Prove

$$\begin{array}{c} \mathbb{SL}(\mathrm{lift}(\mathcal{S}, \bullet)) \\ \Leftrightarrow \\ \mathbb{IL}(\mathcal{S}, \bullet) \vee \mathbb{IR}(\mathcal{S}, \bullet) \vee (\mathbb{IP}(\mathcal{S}, \bullet) \ \wedge \mid \mathcal{S} \mid = 2) \end{array}$$

Bi-semigroups and Pre-Semirings

- (S, \oplus, \otimes) is a bi-semigroup when
 - (S, \oplus) is a semigroup
 - (S, \otimes) is a semigroup

(S, \oplus, \otimes) is a pre-semiring when

- (S, \oplus, \otimes) is a bi-semigroup
- is commutative

and left- and right-distributivity hold,

$$\mathbb{LD} : a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$

$$\mathbb{RD}$$
: $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$

Semirings

 $(S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring when

- (S, \oplus, \otimes) is a pre-semiring
- $(S, \oplus, \overline{0})$ is a (commutative) monoid
- $(S, \otimes, \overline{1})$ is a monoid
- $\overline{0}$ is an annihilator for \otimes

Examples

Pre-semirings

name	S	\oplus ,	\otimes	0	1
min_plus	\mathbb{N}	min	+		0
max_min	\mathbb{N}	max	min	0	

Semirings

name	S	\oplus ,	\otimes	$\overline{0}$	1
sp	\mathbb{N}_{∞}	min	+	∞	0
bw	\mathbb{N}_{∞}	max	min	0	∞

Note the sloppiness — the symbols +, max, and min in the two tables represent different functions....

How about (max, +)?

Pre-semiring

name
$$S$$
 \oplus , \otimes $\overline{0}$ $\overline{1}$ max_plus \mathbb{N} max $+$ 0 0

What about "0 is an annihilator for ⊗"? No!

Fix that ...

name
$$S$$
 \oplus , \otimes $\overline{0}$ $\overline{1}$ $\max \text{ plus}^{-\infty}$ $\mathbb{N} \oplus\{-\infty\}$ $\max + -\infty$ 0

Matrix Semirings

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- Define the semiring of $n \times n$ -matrices over $S : (\mathbb{M}_n(S), \oplus, \otimes, \mathbf{J}, \mathbf{I})$

\oplus and \otimes

$$(\mathbf{A} \oplus \mathbf{B})(i, j) = \mathbf{A}(i, j) \oplus \mathbf{B}(i, j)$$

$$(\mathbf{A} \otimes \mathbf{B})(i, j) = \bigoplus_{1 < q < n} \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)$$

J and I

$$\mathbf{J}(i, j) = \overline{0}$$

$$\mathbf{I}(i, j) = \begin{cases} \overline{1} & (\text{if } i = j) \\ \overline{0} & (\text{otherwise}) \end{cases}$$

$\mathbb{M}_n(S)$ is a semiring!

For example, here is left distribution

$$A \otimes (B \oplus C) = (A \otimes B) \oplus (A \otimes C)$$

$$(\mathbf{A} \otimes (\mathbf{B} \oplus \mathbf{C}))(i, j)$$

$$= \bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes (\mathbf{B} \oplus \mathbf{C})(q, j)$$

$$= \bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes (\mathbf{B}(q, j) \oplus \mathbf{C}(q, j))$$

$$= \bigoplus_{1 \leq q \leq n} (\mathbf{A}(i, q) \otimes \mathbf{B}(q, j)) \oplus (\mathbf{A}(i, q) \otimes \mathbf{C}(q, j))$$

$$= (\bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)) \oplus (\bigoplus_{1 \leq q \leq n} \mathbf{A}(i, q) \otimes \mathbf{C}(q, j))$$

$$= ((\mathbf{A} \otimes \mathbf{B}) \oplus (\mathbf{A} \otimes \mathbf{C}))(i, j)$$

Note: we only needed left-distributivity on S.

Matrix encoding path problems

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- G = (V, E) a directed graph
- $w \in E \rightarrow S$ a weight function

Path weight

The weight of a path $p = i_1, i_2, i_3, \dots, i_k$ is

$$w(p)=w(i_1,\ i_2)\otimes w(i_2,\ i_3)\otimes \cdots \otimes w(i_{k-1},\ i_k).$$

The empty path is given the weight $\overline{1}$.

Adjacency matrix A

$$\mathbf{A}(i, j) = \begin{cases} w(i, j) & \text{if } (i, j) \in E, \\ \overline{0} & \text{otherwise} \end{cases}$$

The general problem of finding globally optimal path weights

Given an adjacency matrix **A**, find A^* such that for all $i, j \in V$

$$\mathbf{A}^*(i, j) = \bigoplus_{p \in P(i, j)} w(p)$$

where P(i, j) represents the set of all paths from i to j.

How can we solve this problem?

Matrix methods

Matrix powers, \mathbf{A}^k

$$A^0 = I$$

$$\mathbf{A}^{k+1} = \mathbf{A} \otimes \mathbf{A}^k$$

Closure, A*

$$\mathbf{A}^{(k)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k$$

$$\mathbf{A}^* = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k \oplus \cdots$$

Note: A* might not exist. Why?

Matrix methods can compute optimal path weights

- Let P(i,j) be the set of paths from i to j.
- Let $P^k(i,j)$ be the set of paths from i to j with exactly k arcs.
- Let $P^{(k)}(i,j)$ be the set of paths from i to j with at most k arcs.

Theorem

(1)
$$\mathbf{A}^{k}(i, j) = \bigoplus_{p \in P^{k}(i, j)} w(p)$$
(2)
$$\mathbf{A}^{(k)}(i, j) = \bigoplus_{p \in P^{(k)}(i, j)} w(p)$$
(3)
$$\mathbf{A}^{*}(i, j) = \bigoplus_{p \in P(i, j)} w(p)$$

Warning again: for some semirings the expression $\mathbf{A}^*(i, j)$ might not be well-defeind. Why?

Proof of (1)

By induction on k. Base Case: k = 0.

$$P^0(i, i) = \{\epsilon\},\$$

so
$$\mathbf{A}^0(i,i) = \mathbf{I}(i,i) = \overline{1} = w(\epsilon)$$
.

And $i \neq j$ implies $P^0(i,j) = \{\}$. By convention

$$\bigoplus_{p\in\{\}} w(p) = \overline{0} = \mathbf{I}(i, j).$$

Proof of (1)

Induction step.

$$\mathbf{A}^{k+1}(i,j) = (\mathbf{A} \otimes \mathbf{A}^k)(i,j)$$

$$= \bigoplus_{\substack{1 \leq q \leq n \\ 1 \leq q \leq n}} \mathbf{A}(i,q) \otimes \mathbf{A}^k(q,j)$$

$$= \bigoplus_{\substack{1 \leq q \leq n \\ 1 \leq q \leq n}} \mathbf{A}(i,q) \otimes (\bigoplus_{\substack{p \in P^k(q,j) \\ p \in P^k(q,j)}} \mathbf{W}(p))$$

$$= \bigoplus_{\substack{(i,q) \in E \\ p \in P^{k+1}(i,j)}} \mathbf{W}(i,q) \otimes \mathbf{W}(p)$$

$$= \bigoplus_{\substack{p \in P^{k+1}(i,j) \\ p \in P^{k+1}(i,j)}} \mathbf{W}(p)$$

When does A* exist? Try a general approach.

• $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring

Powers, a^k

$$a^0 = \overline{1}$$

 $a^{k+1} = a \otimes a^k$

Closure, a*

$$a^{(k)} = a^0 \oplus a^1 \oplus a^2 \oplus \cdots \oplus a^k$$

 $a^* = a^0 \oplus a^1 \oplus a^2 \oplus \cdots \oplus a^k \oplus \cdots$

Definition (q stability)

If there exists a q such that $a^{(q)}=a^{(q+1)}$, then a is q-stable. By induction: $\forall t, 0 \le t, a^{(q+t)}=a^{(q)}$. Therefore, $a^*=a^{(q)}$.

Fun Facts

Fact 1

If $\overline{1}$ is an annihiltor for \oplus , then every $a \in S$ is 0-stable!

Fact 2

If S is 0-stable, then $M_n(S)$ is (n-1)-stable. That is,

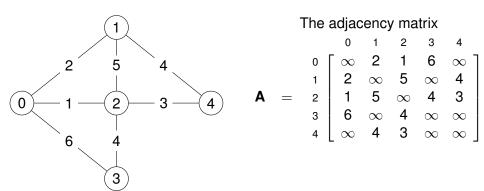
$$\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^{n-1}$$

Why? Because we can ignore paths with loops.

$$(a \otimes c \otimes b) \oplus (a \otimes b) = a \otimes (\overline{1} \oplus c) \otimes b = a \otimes \overline{1} \otimes b = a \otimes b$$

Think of c as the weight of a loop in a path with weight $a \otimes b$.

Shortest paths example, $(\mathbb{N}^{\infty}, \min, +)$



Note that the longest shortest path is (1, 0, 2, 3) of length 3 and weight 7.

(min, +) example

Our theorem tells us that $\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{A}^{(4)}$

$$\mathbf{A}^* = \mathbf{A}^{(4)} = \mathbf{I} \text{ min } \mathbf{A} \text{ min } \mathbf{A}^2 \text{ min } \mathbf{A}^3 \text{ min } \mathbf{A}^4 = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 7 & 4 & 0 & 7 \\ 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

(min, +) example

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & \boxed{2} & \underline{1} & 6 & \infty \\ \frac{2}{2} & \infty & 5 & \infty & \underline{4} \\ \frac{1}{1} & 5 & \infty & \underline{4} & \underline{3} \\ 6 & \infty & \underline{4} & \infty & \infty \\ \infty & \underline{4} & \underline{3} & \infty & \infty \end{bmatrix} \mathbf{A}^{3} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 8 & 4 & 3 & 8 & 10 \\ 4 & 8 & 7 & \underline{7} & 6 \\ 3 & 7 & 8 & 6 & 5 \\ 8 & \underline{7} & 6 & 11 & 10 \\ 10 & 6 & 5 & 10 & 12 \end{bmatrix}$$

$$\mathbf{A}^{2} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 6 & 7 & 5 & 4 \\ 6 & 4 & 3 & 8 & 8 \\ 7 & 3 & 2 & 7 & 9 \\ 3 & 5 & 8 & 7 & 8 & 7 \\ 4 & 8 & 9 & 7 & 6 \end{bmatrix} \qquad \mathbf{A}^{4} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 4 & 8 & 9 & 7 & 6 \\ 8 & 6 & 5 & 10 & 10 \\ 9 & 5 & 4 & 9 & 11 \\ 7 & 10 & 9 & 10 & 9 \\ 6 & 10 & 11 & 9 & 8 \end{bmatrix}$$

First appearance of final value is in red and <u>underlined</u>. Remember: we are looking at all paths of a given length, even those with cycles!

A "better" way — our basic algorithm

$$egin{array}{lcl} \mathbf{A}^{\langle 0
angle} &=& \mathbf{I} \ \mathbf{A}^{\langle k+1
angle} &=& \mathbf{A} \mathbf{A}^{\langle k
angle} \oplus \mathbf{I} \end{array}$$

Lemma

$$\mathbf{A}^{\langle k \rangle} = \mathbf{A}^{(k)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k$$

back to (min, +) example

$$\mathbf{A}^{\langle 1 \rangle} \ = \ \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 6 & \infty \\ 1 & 2 & 0 & 5 & \infty & 4 \\ 1 & 5 & 0 & 4 & 3 \\ 3 & 6 & \infty & 4 & 0 & \infty \\ 4 & \infty & 4 & 3 & \infty & 0 \end{bmatrix} \quad \mathbf{A}^{\langle 3 \rangle} \ = \ \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 7 & 4 & 0 & 7 \\ 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

$$\mathbf{A}^{\langle 2 \rangle} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 8 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 8 & 4 & 0 & 7 \\ 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

A note on A vs. A I

Lemma

If \oplus is idempotent, then

$$(\mathbf{A}\oplus\mathbf{I})^k=\mathbf{A}^{(k)}.$$

Proof. Base case: When k = 0 both expressions are **I**.

Assume $(\mathbf{A} \oplus \mathbf{I})^k = \mathbf{A}^{(k)}$. Then

$$(\mathbf{A} \oplus \mathbf{I})^{k+1} = (\mathbf{A} \oplus \mathbf{I})(\mathbf{A} \oplus \mathbf{I})^{k}$$

$$= (\mathbf{A} \oplus \mathbf{I})\mathbf{A}^{(k)}$$

$$= \mathbf{A}\mathbf{A}^{(k)} \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A}(\mathbf{I} \oplus \mathbf{A} \oplus \cdots \oplus \mathbf{A}^{k}) \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A} \oplus \mathbf{A}^{2} \oplus \cdots \oplus \mathbf{A}^{k+1} \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A}^{k+1} \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A}^{(k+1)}$$

Order Relations

We are interested in order relations $\leq \subseteq S \times S$

Definition (Important Order Properties)

 $\begin{array}{lll} \mathbb{RX} & \text{reflexive} & \equiv & a \leq a \\ \mathbb{TR} & \text{transitive} & \equiv & a \leq b \land b \leq c \rightarrow a \leq c \\ \mathbb{AY} & \text{antisymmetric} & \equiv & a \leq b \land b \leq a \rightarrow a = b \\ \mathbb{TO} & \text{total} & \equiv & a \leq b \lor b \leq a \end{array}$

		partial	preference	total
	pre-order	order	order	order
$\mathbb{R}\mathbb{X}$	*	*	*	*
\mathbb{TR}	*	*	*	*
$\mathbb{A}\mathbb{Y}$		*		*
$\mathbb{T}\mathbb{O}$			*	*

Canonical Pre-order of a Commutative Semigroup

Definition (Canonical pre-orders)

$$a \leq_{\bullet}^{R} b \equiv \exists c \in S : b = a \bullet c$$

 $a \leq_{\bullet}^{L} b \equiv \exists c \in S : a = b \bullet c$

Lemma (Sanity check)

Associativity of • implies that these relations are transitive.

Proof.

Note that $a \subseteq_{\bullet}^R b$ means $\exists c_1 \in S : b = a \bullet c_1$, and $b \subseteq_{\bullet}^R c$ means

$$\exists c_2 \in S : c = b \bullet c_2$$
. Letting $c_3 = c_1 \bullet c_2$ we have

$$c = b \bullet c_2 = (a \bullet c_1) \bullet c_2 = a \bullet (c_1 \bullet c_2) = a \bullet c_3$$
. That is,

$$\exists c_3 \in S : c = a \bullet c_3$$
, so $a \leq^R_{\bullet} c$. The proof for \leq^L_{\bullet} is similar.

Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, \bullet) is canonically ordered when $a \unlhd^R_{\bullet} c$ and $a \unlhd^L_{\bullet} c$ are partial orders.

Definition (Groups)

A monoid is a group if for every $a \in S$ there exists a $a^{-1} \in S$ such that $a \bullet a^{-1} = a^{-1} \bullet a = \alpha$.

Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)

Only a trivial group is canonically ordered.

Proof.

If $a, b \in S$, then $a = \alpha_{\bullet} \bullet a = (b \bullet b^{-1}) \bullet a = b \bullet (b^{-1} \bullet a) = b \bullet c$, for $c = b^{-1} \bullet a$, so $a \unlhd^{L}_{\bullet} b$. In a similar way, $b \unlhd^{R}_{\bullet} a$. Therefore a = b.

Natural Orders

Definition (Natural orders)

Let (S, \bullet) be a semigroup.

$$a \leq^L_{\bullet} b \equiv a = a \bullet b$$

 $a \leq^R_{\bullet} b \equiv b = a \bullet b$

Lemma

If \bullet is commutative and idempotent, then $a \unlhd^D_{\bullet} b \iff a \leq^D_{\bullet} b$, for $D \in \{R, L\}$.

Proof.

$$a \unlhd^{R}_{\bullet} b \iff b = a \bullet c = (a \bullet a) \bullet c = a \bullet (a \bullet c)$$

$$= a \bullet b \iff a \unlhd^{R}_{\bullet} b$$

$$a \unlhd^{L}_{\bullet} b \iff a = b \bullet c = (b \bullet b) \bullet c = b \bullet (b \bullet c)$$

$$= b \bullet a = a \bullet b \iff a \unlhd^{L}_{\bullet} b$$

Special elements and natural orders

Lemma (Natural Bounds)

- If α exists, then for all a, $a \leq_{\bullet}^{L} \alpha$ and $\alpha \leq_{\bullet}^{R} a$
- If ω exists, then for all $a, \omega \leq^L_{\bullet} a$ and $a \leq^R_{\bullet} \omega$
- If α and ω exist, then S is bounded.

Remark (Thanks to Iljitsch van Beijnum)

Note that this means for (min, +) we have

$$\begin{array}{ccccc}
0 & \leq_{\min}^{L} & a & \leq_{\min}^{L} & \infty \\
\infty & \leq_{\min}^{R} & a & \leq_{\min}^{R} & 0
\end{array}$$

and still say that this is bounded, even though one might argue with the terminology!

Examples of special elements

S	•	α	ω	$\leq^{\mathrm{L}}_{ullet}$	\leq^{R}_{ullet}
\mathbb{N}_{∞}	min	∞	0	<u> </u>	<u> </u>
$\mathbb{N}_{-\infty}$	max	0	$-\infty$	\geq	\leq
$\mathcal{P}(W)$	U	{}	W	\subseteq	\supseteq
$\mathcal{P}(W)$	\cap	W	{}	\cap	\subseteq

Property Management

Lemma

Let $D \in \{R, L\}$.

Proof.

Bounds

Suppose (S, \leq) is a partially ordered set.

greatest lower bound

For $a, b \in S$, the element $c \in S$ is the greatest lower bound of a and b, written c = a glb b, if it is a lower bound ($c \le a$ and $c \le b$), and for every $d \in S$ with $d \le a$ and $d \le b$, we have $d \le c$.

least upper bound

For $a, b \in S$, the element $c \in S$ is the <u>least upper bound of a and b</u>, written c = a lub b, if it is an upper bound ($a \le c$ and $b \le c$), and for every $d \in S$ with $a \le d$ and $b \le d$, we have $c \le d$.

Semi-lattices

Suppose (S, \leq) is a partially ordered set.

meet-semilattice

S is a meet-semilattice if a glb b exists for each $a, b \in S$.

join-semilattice

S is a join-semilattice if a lub b exists for each $a, b \in S$.

Fun Facts

Fact 3

Suppose (S, \bullet) is a commutative and idempotent semigroup.

- (S, \leq_{\bullet}^{L}) is a meet-semilattice with a glb $b = a \bullet b$.
- (S, \leq^R_{\bullet}) is a join-semilattice with a lub $b = a \bullet b$.

Fact 4

Suppose (S, \leq) is a partially ordered set.

- If (S, \leq) is a meet-semilattice, then (S, glb) is a commutative and idempotent semigroup.
- If (S, ≤) is a join-semilattice, then (S, lub) is a commutative and idempotent semigroup.

That is, semi-lattices represent the same class of structures as commutative and idempotent semigroups.

Semigroup properties (so far)

```
\mathbb{AS}(S, \bullet) \equiv \forall a, b, c \in S, a \bullet (b \bullet c) = (a \bullet b) \bullet c
 IID(S, \bullet, \alpha) \equiv \forall a \in S, a = \alpha \bullet a = a \bullet \alpha
          \mathbb{ID}(S, \bullet) \equiv \exists \alpha \in S, \, \mathbb{IID}(S, \bullet, \alpha)
\mathbb{IAN}(S, \bullet, \omega) \equiv \forall a \in S, \omega = \omega \bullet a = a \bullet \omega
        \mathbb{AN}(S, \bullet) \equiv \exists \omega \in S, \mathbb{IAN}(S, \bullet, \omega)
       \mathbb{CM}(S, \bullet) \equiv \forall a, b \in S, a \bullet b = b \bullet a
         \mathbb{SL}(S, \bullet) \equiv \forall a, b \in S, a \bullet b \in \{a, b\}
         \mathbb{IP}(S, \bullet) \equiv \forall a \in S, a \bullet a = a
         \mathbb{IR}(S, \bullet) \equiv \forall s, t \in S, s \bullet t = t
          \mathbb{IL}(S, \bullet) \equiv \forall s, t \in S, s \bullet t = s
```

Recall that <u>is right</u> (IIR) and <u>is left</u> (IIL) are forced on us by wanting an \Leftrightarrow -rule for $\mathbb{SL}((S, \bullet) \times (\mathcal{T}, \diamond))$

Bisemigroup properties (so far)

 $AIP(S, \oplus, \otimes) \equiv IP(S, \oplus)$

```
AAS(S, \oplus, \otimes) \equiv AS(S, \oplus)
  \mathbb{AID}(S, \oplus, \otimes) \equiv \mathbb{ID}(S, \oplus)
\mathbb{ACM}(S, \oplus, \otimes) \equiv \mathbb{CM}(S, \oplus)
MAS(S, \oplus, \otimes) \equiv AS(S, \otimes)
 MID(S, \oplus, \otimes) \equiv ID(S, \otimes)
    \mathbb{LD}(S, \oplus, \otimes) \equiv \forall a, b, c \in S, \ a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)
   \mathbb{RD}(S, \oplus, \otimes) \equiv \forall a, b, c \in S, (a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)
    \mathbb{Z}\mathbb{A}(S, \oplus, \otimes) \equiv \exists \overline{0} \in S, \mathbb{IID}(S, \oplus, \overline{0}) \wedge \mathbb{IAN}(S, \otimes, \overline{0})
   \mathbb{O}\mathbb{A}(S,\,\oplus,\,\otimes) \equiv \exists \overline{1} \in S, \, \mathbb{IID}(S,\,\otimes,\,\overline{1}) \wedge \mathbb{IAN}(S,\,\oplus,\,\overline{1})
 \mathbb{ASL}(S, \oplus, \otimes) \equiv \mathbb{SL}(S, \oplus)
```

Operations for adding a zero, a one

$$\begin{array}{lll} \text{AddZero}(\overline{0},\; (\mathcal{S},\; \oplus,\; \otimes)) & \equiv & (\mathcal{S} \uplus \{\overline{0}\},\; \oplus_{\overline{0}}^{\text{id}},\; \otimes_{\overline{0}}^{\text{an}}) \\ \\ \text{AddOne}(\overline{1},\; (\mathcal{S},\; \oplus,\; \otimes)) & \equiv & (\mathcal{S} \uplus \{\overline{1}\},\; \oplus_{\overline{1}}^{\text{an}},\; \otimes_{\overline{1}}^{\text{id}}) \end{array}$$

Recall

$$a \bullet_{\alpha}^{\mathrm{id}} b \equiv \begin{cases} a & \text{(if } b = \mathrm{inr}(\alpha)) \\ b & \text{(if } a = \mathrm{inr}(\alpha)) \\ \mathrm{inl}(x \bullet y) & \text{(if } a = \mathrm{inl}(x), b = \mathrm{inl}(y)) \end{cases}$$

$$a \bullet_{\omega}^{\mathrm{an}} b \equiv \begin{cases} \mathrm{inr}(\omega) & \text{(if } b = \mathrm{inr}(\omega)) \\ \mathrm{inr}(\omega) & \text{(if } a = \mathrm{inr}(\omega)) \\ \mathrm{inl}(x \bullet y) & \text{(if } a = \mathrm{inl}(x), b = \mathrm{inl}(y)) \end{cases}$$

We can "inherit" semigroup rules

Examples

$$\begin{array}{lll} \mathbb{ACM}(\mathrm{AddZero}(\overline{0},\;(\mathcal{S},\;\oplus,\;\otimes))) & \equiv & \mathbb{CM}(\mathrm{AddId}(\overline{0},\;(\mathcal{S},\;\oplus))) \\ & \Leftrightarrow & \mathbb{CM}(\mathcal{S},\;\oplus) \\ \end{array}$$

$$\begin{array}{lll} \mathbb{MID}(\mathrm{AddZero}(\overline{0},\;(S,\;\oplus,\;\otimes))) & \equiv & \mathbb{ID}(\mathrm{AddAn}(\overline{0},\;(S,\;\otimes))) \\ & \Leftrightarrow & \mathbb{ID}(S,\;\otimes) \end{array}$$

Property management for AddZero

"Inherited" rules

```
\begin{array}{llll} \mathbb{AAS}(\mathsf{AddZero}(\overline{0},\,(S,\,\oplus,\,\otimes))) &\Leftrightarrow& \mathbb{AS}(S,\,\oplus) \\ \mathbb{AID}(\mathsf{AddZero}(\overline{0},\,(S,\,\oplus,\,\otimes))) &\Leftrightarrow& \mathbb{TRUE} \\ \mathbb{ACM}(\mathsf{AddZero}(\overline{0},\,(S,\,\oplus,\,\otimes))) &\Leftrightarrow& \mathbb{CM}(S,\,\oplus) \\ \mathbb{ASL}(\mathsf{AddZero}(\overline{0},\,(S,\,\oplus,\,\otimes))) &\Leftrightarrow& \mathbb{SL}(S,\,\oplus) \\ \mathbb{AIP}(\mathsf{AddZero}(\overline{0},\,(S,\,\oplus,\,\otimes))) &\Leftrightarrow& \mathbb{IP}(S,\,\oplus) \\ \mathbb{MAS}(\mathsf{AddZero}(\overline{0},\,(S,\,\oplus,\,\otimes))) &\Leftrightarrow& \mathbb{AS}(S,\,\otimes) \\ \mathbb{MID}(\mathsf{AddZero}(\overline{0},\,(S,\,\oplus,\,\otimes))) &\Leftrightarrow& \mathbb{ID}(S,\,\otimes) \end{array}
```

Easy Exercises

Easy Exercises?

Consider left distributivity ($\mathbb{L}\mathbb{D}$)

а	b	С	$a\otimes_{\overline{0}}^{\operatorname{an}}(b\oplus_{\overline{0}}^{\operatorname{id}}c)$	$(a\otimes_{\overline{0}}^{\operatorname{an}}b)\oplus_{\overline{0}}^{\operatorname{id}}(a\otimes_{\overline{0}}^{\operatorname{an}}c)$
$\operatorname{inl}(a')$	inl(b')	inl(<i>c</i> ′)	$\operatorname{inl}(a'\otimes(b'\oplus c'))$	$\operatorname{inl}((a'\otimes b')\oplus (a'\otimes c'))$
$inr(\overline{0})$	inl(<i>b</i> ′)	inl(<i>c</i> ′)	$\operatorname{inr}(\overline{0})$	$\operatorname{inr}(\overline{0})$
$\operatorname{inl}(a')$	$inr(\overline{0})$	inl(c')	$inl(\mathit{a}' \oplus \mathit{c}')$	$\operatorname{inl}(extbf{ extit{a}}'\oplus extbf{ extit{c}}')$
$\operatorname{inl}(a')$	inl(<i>b</i> ′)	$inr(\overline{0})$	$\operatorname{inl}(a'\oplus b')$	$\operatorname{inl}(a'\oplus b')$
inl(a')	$inr(\overline{0})$	$inr(\overline{0})$	$\operatorname{inr}(\overline{0})$	$\operatorname{inr}(\overline{0})$
$inr(\overline{0})$	$inr(\overline{0})$	$\operatorname{inr}(\overline{0})$	$\operatorname{inr}(\overline{0})$	$inr(\overline{0})$

However, adding a one is more complicated!

Consider left distributivity (\mathbb{LD})

а	b	С	$a\otimes_{\overline{1}}^{\operatorname{id}}(b\oplus_{\overline{1}}^{\operatorname{an}}c)$	$(a\otimes_{\overline{1}}^{\operatorname{id}}b)\oplus_{\overline{1}}^{\operatorname{an}}(a\otimes_{\overline{1}}^{\operatorname{id}}c)$
inl(a')	inl(<i>b</i> ′)	inl(<i>c</i> ′)	$\operatorname{inl}(a'\otimes(b'\oplus c'))$	$\operatorname{inl}((a'\otimes b')\oplus (a'\otimes c'))$
$inr(\overline{1})$	inl(<i>b</i> ′)	inl(<i>c</i> ′)	$\operatorname{inl}(\mathit{b}'\oplus \mathit{c}')$	$\operatorname{inl}(\mathcal{b}'\oplus \mathcal{c}')$
inl(a')	$inr(\overline{1})$	inl(c')	inl(<i>a</i> ')	$\operatorname{inl}((a'\oplus (a'\otimes c'))$
inl(a')	inl(<i>b</i> ′)	$inr(\overline{1})$	inl(<i>a</i> ')	$\operatorname{inl}((\emph{a}'\otimes \emph{b}')\oplus \emph{a}')$
inl(a')	$inr(\overline{1})$	$inr(\overline{1})$	inl(<i>a</i> ′)	$\operatorname{inl}(\emph{a}'\oplus\emph{a}')$
$inr(\overline{1})$	$inr(\overline{1})$	$\operatorname{inr}(\overline{1})$	inr(1)	$inr(\overline{1})$

What is this?

$$a = (a \otimes b) \oplus a$$

Suppose \oplus is idempotent and commutative and we let $a \le b \equiv a = a \oplus b$. We know that

$$b \le c \Rightarrow a \otimes b \le a \otimes c$$

since $b = b \oplus c$ implies $a \otimes b = a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$. That is \otimes is order preserving.

Now $a = (a \otimes b) \oplus a$ is telling us something else, that

$$a \leq a \otimes b$$
.

That is, that multiplication is inflationary.

Absorption

ABsorption properties (name is from lattice theory)

$$\mathbb{RAB}(S, \oplus, \otimes) \equiv \forall a, b \in S, \ a = (a \otimes b) \oplus a = a \oplus (a \otimes b)$$

$$\mathbb{LAB}(S, \oplus, \otimes) \equiv \forall a, b \in S, \ a = (b \otimes a) \oplus a = a \oplus (b \otimes a)$$

Observations

```
\begin{array}{cccc} \mathbb{RAB}(\mathcal{S},\,\oplus,\,\otimes) \wedge \mathbb{ID}(\mathcal{S},\,\oplus) & \Rightarrow & \mathbb{IP}(\mathcal{S},\,\otimes) \\ \mathbb{LAB}(\mathcal{S},\,\oplus,\,\otimes) \wedge \mathbb{ID}(\mathcal{S},\,\oplus) & \Rightarrow & \mathbb{IP}(\mathcal{S},\,\otimes) \\ \mathbb{LD}(\mathcal{S},\,\oplus,\,\otimes) \wedge \mathbb{OA}(\mathcal{S},\,\oplus,\,\otimes) & \Rightarrow & \mathbb{RAB}(\mathcal{S},\,\oplus,\,\otimes) \\ \mathbb{RD}(\mathcal{S},\,\oplus,\,\otimes) \wedge \mathbb{OA}(\mathcal{S},\,\oplus,\,\otimes) & \Rightarrow & \mathbb{LAB}(\mathcal{S},\,\oplus,\,\otimes) \end{array}
```

Rules for absorption? Consider RAB

AddZero

а		b	$(a\otimes_{\overline{0}}^{\operatorname{an}}b)\oplus_{\overline{0}}^{\operatorname{id}}a$	$a \oplus_{\overline{0}}^{\operatorname{id}} (a \otimes_{\overline{0}}^{\operatorname{an}} b)$		
inl(&	a')	inl(b')	$\operatorname{inl}((a'\otimes b')\oplus a)$	$\operatorname{inl}(a'\oplus (a'\otimes b'))$		
inr(0)	inl(b')	$inr(\overline{0})$	$inr(\overline{0})$		
inl(a	a')	$inr(\overline{0})$	inl(<i>a</i> ')	$\operatorname{inl}(a')$		
inr(<u></u> 0)	$inr(\overline{0})$	$\operatorname{inr}(\overline{0})$	$inr(\overline{0})$		

$$\begin{array}{lll} \mathbb{RAB}(\mathsf{AddZero}(\overline{0},\,(\mathcal{S},\,\oplus,\,\otimes))) & \Leftrightarrow & \mathbb{RAB}(\mathcal{S},\,\oplus,\,\otimes) \\ \mathbb{LAB}(\mathsf{AddZero}(\overline{0},\,(\mathcal{S},\,\oplus,\,\otimes))) & \Leftrightarrow & \mathbb{LAB}(\mathcal{S},\,\oplus,\,\otimes) \end{array}$$

Rules for absorption? Consider \mathbb{RAB}

AddOne)				
	а	b	$(a\otimes_{\overline{1}}^{\operatorname{id}}b)\oplus_{\overline{1}}^{\operatorname{an}}a$	$a \oplus_{\overline{1}}^{\mathrm{an}} (a \otimes_{\overline{1}}^{\mathrm{id}} b)$	
	inl(a')	inl(b')	$\operatorname{inl}((a'\otimes b')\oplus a)$	$\operatorname{inl}(a'\oplus (a'\otimes b'))$	
	$inr(\overline{1})$	inl(b')	$inr(\overline{1})$	$inr(\overline{1})$	
	inl(a')	$inr(\overline{1})$	$\operatorname{inl}(a')$	$\operatorname{inl}(\textit{a}' \oplus \textit{a}')$	
	$inr(\overline{1})$	$\operatorname{inr}(\overline{1})$	$\operatorname{inr}(\overline{1})$	$inr(\overline{1})$	

Property management for AddOne

"Inherited" rules

```
\begin{array}{llll} \mathbb{AAS}(\mathsf{AddOne}(\underbrace{1},\,(S,\,\oplus,\,\otimes))) & \Leftrightarrow & \mathbb{AS}(S,\,\oplus) \\ \mathbb{AID}(\mathsf{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) & \Leftrightarrow & \mathbb{ID}(S,\,\oplus) \\ \mathbb{ACM}(\mathsf{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) & \Leftrightarrow & \mathbb{CM}(S,\,\oplus) \\ \mathbb{ASL}(\mathsf{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) & \Leftrightarrow & \mathbb{SL}(S,\,\oplus) \\ \mathbb{AIP}(\mathsf{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) & \Leftrightarrow & \mathbb{IP}(S,\,\oplus) \\ \mathbb{MAS}(\mathsf{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) & \Leftrightarrow & \mathbb{AS}(S,\,\otimes) \\ \mathbb{MID}(\mathsf{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) & \Leftrightarrow & \mathbb{TRUE} \end{array}
```

Property management for AddOne

```
 \mathbb{L}\mathbb{D}(\mathsf{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) \;\;\Leftrightarrow\;\; \mathbb{L}\mathbb{D}(S,\,\oplus,\,\otimes) \wedge \mathbb{R}\mathbb{A}\mathbb{B}(S,\,\oplus,\,\otimes) \\ \;\; \wedge \; \mathbb{IP}(S,\,\oplus) \\ \mathbb{R}\mathbb{D}(\mathsf{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) \;\;\Leftrightarrow\;\; \mathbb{R}\mathbb{D}(S,\,\oplus,\,\otimes) \wedge \mathbb{L}\mathbb{A}\mathbb{B}(S,\,\oplus,\,\otimes) \\ \;\; \wedge \; \mathbb{IP}(S,\,\oplus) \\ \mathbb{Z}\mathbb{A}(\mathsf{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) \;\;\Leftrightarrow\;\; \mathbb{Z}\mathbb{A}(S,\,\oplus,\,\otimes) \\ \mathbb{D}\mathbb{A}(\mathsf{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) \;\;\Leftrightarrow\;\; \mathbb{R}\mathbb{R}\mathbb{U}\mathbb{E} \\ \mathbb{R}\mathbb{A}\mathbb{B}(\mathsf{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) \;\;\Leftrightarrow\;\; \mathbb{R}\mathbb{A}\mathbb{B}(S,\,\oplus,\,\otimes) \wedge \mathbb{IP}(S,\,\oplus) \\ \mathbb{L}\mathbb{A}\mathbb{B}(\mathsf{AddOne}(\overline{1},\,(S,\,\oplus,\,\otimes))) \;\;\Leftrightarrow\;\; \mathbb{L}\mathbb{A}\mathbb{B}(S,\,\oplus,\,\otimes) \wedge \mathbb{IP}(S,\,\oplus)
```

We have to start somewhere!

S	\oplus	\otimes	0	1	LD	$ \mathbb{RD} $	$\mathbb{Z}\mathbb{A}$	$\mathbb{O}\mathbb{A}$	LAB	$\mathbb{R}\mathbb{A}\mathbb{B}$
\mathbb{N}	min	+		0	*	*		*	*	*
\mathbb{N}	max	+	0	0	*	*			*	*
\mathbb{N}	max	min	0		*	*	*		*	*
\mathbb{N}	min	max		0	*	*		*	*	*

Introducing Minimax

Some examples ...

$$\operatorname{inl}(17) \min_{\overline{\infty}}^{\operatorname{id}} \operatorname{inr}(\infty) = \operatorname{inl}(17)$$

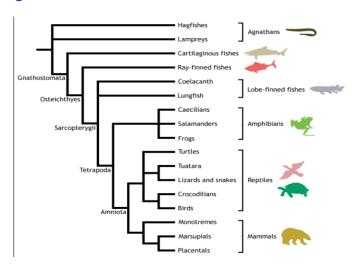
$$inl(17) \max_{\overline{\infty}}^{an} inr(\infty) = inr(\infty)$$

... which we will usually write as

$$17 \min \infty = 17$$

$$17 \max \infty = \infty$$

Dendrograms



http://www.instituteofcaninebiology.org/ how-to-read-a-dendrogram.html

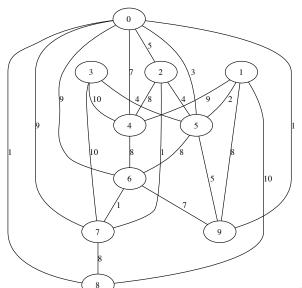
An application of Minimax

- Given an adjacency matrix A over minimax,
- suppose that $\mathbf{A}(i, j) = 0 \Leftrightarrow i = j$,
- suppose that **A** is symmetric ($\mathbf{A}(i, j) = \mathbf{A}(j, i)$,
- interpret $\mathbf{A}(i, j)$ as <u>measured</u> dissimilarity of i and j,
- interpret $\mathbf{A}^*(i, j)$ as <u>inferred</u> dissimilarity of i and j,

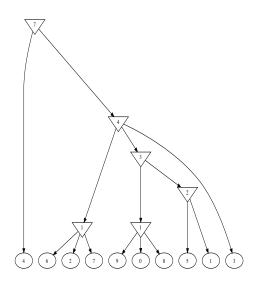
Many uses

- Hierarchical clustering of large data sets
- Classification in Machine Learning
- Computational phylogenetic
- ...

A (random) minimax matrix A drawn as a graph



The solution A* drawn as a dendrogram



Hierarchical clustering? Why?

Suppose $(Y, \leq, +)$ is a totally ordered with least element 0.

Metric

A <u>metric</u> for set X over $(Y, \leq, +)$ is a function $d \in X \times X \rightarrow Y$ such that

- $\forall x, y \in X, \ d(x, \ y) = 0 \Leftrightarrow x = y$
- $\bullet \ \forall x,y \in X, \ d(x,\ y) = d(y,\ x)$
- $\bullet \ \forall x,y,z \in X, \ d(x,\ y) \leq d(x,\ z) + d(z,\ y)$

Ultrametric

An <u>ultrametric</u> for set X over (Y, \leq) is a function $d \in X \times X \rightarrow Y$ such that

- $\forall x \in X, \ d(x, \ x) = 0$
- \bullet $\forall x, y \in X, d(x, y) = d(y, x)$
- $\forall x, y, z \in X$, $d(x, y) \leq d(x, z) \max d(z, y)$

Fun Facts

minimax and ultrametrics

If **A** is an $n \times n$ symmetric minimax adjacency matrix, then **A*** is a finite ultrametric for $\{0, 1, \ldots, n-1\}$ over $(\mathbb{N}^{\infty}, \leq)$).

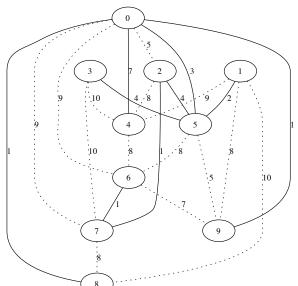
minimax and spanning trees

The set of arcs

$$\{(i, j) \in E \mid \mathbf{A}(i, j) = \mathbf{A}^*(i, j)\}$$

contain a spanning tree

A spanning tree derived from **A** and **A***



Recall

Lexicographic Product of Semigroups

Suppose that

$$\mathbb{AS}(S, \oplus_{S}) \wedge \mathbb{CM}(S, \oplus_{S}) \wedge \mathbb{SL}(S, \oplus_{S}) \wedge \mathbb{AS}(T, \oplus_{T}).$$

Let

$$(S, \oplus_{S}) \stackrel{\vec{\times}}{\times} (T, \oplus_{T}) \equiv (S \times T, \oplus_{S} \stackrel{\vec{\times}}{\times} \oplus_{T})$$

where

$$(s_1,\ t_1)\ \oplus_S\ ec{ imes}\ \oplus_T\ (s_2,\ t_2) \equiv egin{cases} (s_1\oplus_S s_2,\ t_1\oplus_T t_2) & s_1=s_1\oplus_S s_2=s_2\ (s_1\oplus_S s_2,\ t_1) & s_1=s_1\oplus_S s_2
eq s_2\ (s_1\oplus_S s_2,\ t_2) & s_1
eq s_1\oplus_S s_2=s_2\ \end{cases}$$

Lexicographic product for Bi-semigroups

Suppose that

$$\mathbb{AS}(S, \oplus_{S}) \wedge \mathbb{CM}(S, \oplus_{S}) \wedge \mathbb{SL}(S, \oplus_{S}) \wedge \mathbb{AS}(T, \oplus_{T}).$$

Let

$$(S, \oplus_{S}, \otimes_{S}) \vec{\times} (T, \oplus_{T}, \otimes_{T}) \equiv (S \times T, \oplus_{S} \vec{\times} \oplus_{T}, \otimes_{S} \times \otimes_{T})$$

Examples

$$\oplus = \min \vec{\times} \max, \otimes = + \times \min$$

$$(3,10) \otimes ((17,21) \oplus (11,4)) = (3,10) \otimes (11,4) = (14,4)$$

$$((3,10)\otimes(17,21))\oplus((3,10)\otimes(11,4)) = (20,10)\oplus(14,4) = (14,4)$$

$$\oplus = \max \vec{\times} \min, \otimes = \min \times +$$

$$(3,10) \otimes ((17,21) \oplus (11,4)) = (3,10) \otimes (17,21) = (3,31)$$

$$((3,10)\otimes(17,21))\oplus((3,10)\otimes(11,4)) = (3,31)\oplus(3,14)$$

= (3,14)

Distributivity?

Theorem: If \oplus_{S} is commutative and selective, then

$$\mathbb{LD}((S, \oplus_{S}, \otimes_{S}) \times (T, \oplus_{T}, \otimes_{T})) \Leftrightarrow \\ \mathbb{LD}(S, \oplus_{S}, \otimes_{S}) \wedge \mathbb{LD}(T, \oplus_{T}, \otimes_{T}) \wedge (\mathbb{LC}(S, \otimes_{S}) \vee \mathbb{LK}(T, \otimes_{T}))$$

$$\mathbb{RD}((S, \oplus_{S}, \otimes_{S}) \times (T, \oplus_{T}, \otimes_{T})) \Leftrightarrow \\ \mathbb{RD}(S, \oplus_{S}, \otimes_{S}) \wedge \mathbb{RD}(T, \oplus_{T}, \otimes_{T}) \wedge (\mathbb{RC}(S, \otimes_{S}) \vee \mathbb{RK}(T, \otimes_{T}))$$

Left and Right Cancellative

$$\mathbb{LC}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a = c \bullet b \Rightarrow a = b$$

$$\mathbb{RC}(X, \bullet) \equiv \forall a, b, c \in X, a \bullet c = b \bullet c \Rightarrow a = b$$

Left and Right Constant

$$\mathbb{LK}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a = c \bullet b$$

$$\mathbb{RK}(X, \bullet) \equiv \forall a, b, c \in X, a \bullet c = b \bullet c$$

Why bisemigroups?

But wait! How could any semiring satisfy either of these properties?

$$\mathbb{LC}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a = c \bullet b \Rightarrow a = b$$

$$\mathbb{LK}(X, \bullet) \equiv \forall a, b, c \in X, c \bullet a = c \bullet b$$

- For \mathbb{LC} , note that we always have $\overline{0} \otimes a = \overline{0} \otimes b$, so \mathbb{LC} could only hold when $S = {\overline{0}}$.
- For LK, let $a = \overline{1}$ and $b = \overline{0}$ and LK leads to the conclusion that every c is equal to $\overline{0}$ (again!).

Normally we will add a zero and/or a one as the last step(s) of constructing a semiring. Alternatively, we might want to complicate our properties so that things work for semirings. A design trade-off!

Proof of \Leftarrow for \mathbb{LD}

Assume

- (1) $\mathbb{LD}(S, \oplus_{S}, \otimes_{S})$
- (2) $\mathbb{LD}(T, \oplus_T, \otimes_T)$
- (3) $\mathbb{LC}(S, \otimes_S) \vee \mathbb{LK}(T, \otimes_T)$
- (4) $\mathbb{IP}(S, \oplus_{S})$.

Let $\oplus \equiv \oplus_{\mathcal{S}} \, \vec{\times} \oplus_{\mathcal{T}}$ and $\otimes \equiv \otimes_{\mathcal{S}} \times \otimes_{\mathcal{T}}$. Suppose

$$(s_1,t_1), (s_2,t_2), (s_3,t_3) \in S \times T.$$

We want to show that

lhs
$$\equiv (s_1, t_1) \otimes ((s_2, t_2) \oplus (s_3, t_3))$$

= $((s_1, t_1) \otimes (s_2, t_2)) \oplus ((s_1, t_1) \otimes (s_3, t_3))$
 $\equiv \text{rhs}$

Proof of \Leftarrow for \mathbb{LD}

We have

lhs
$$\equiv$$
 $(s_1, t_1) \otimes ((s_2, t_2) \oplus (s_3, t_3))$
 $= (s_1, t_1) \otimes (s_2 \oplus_S s_3, t_{lhs})$
 $= (s_1 \otimes_S (s_2 \oplus_S s_3), t_1 \otimes_T t_{lhs})$
rhs $\equiv ((s_1, t_1) \otimes (s_2, t_2)) \oplus ((s_1, t_1) \otimes (s_3, t_3))$
 $= (s_1 \otimes_S s_2, t_1 \otimes_T t_2) \oplus (s_1 \otimes_S s_3, t_1 \otimes_T t_3)$
 $= ((s_1 \otimes_S s_2) \oplus_S (s_1 \otimes_S s_3), t_{rhs})$
 $=_{(1)} (s_1 \otimes_S (s_2 \oplus_S s_3), t_{rhs})$

where $t_{\rm lhs}$ and $t_{\rm rhs}$ are determined by the appropriate case in the definition of \oplus . Finally, note that

$$lhs = rhs \Leftrightarrow t_{rhs} = t_1 \otimes t_{lhs}.$$

Proof by cases on $s_2 \oplus_S s_3$

Case 1 : $s_2 = s_2 \oplus_S s_3 = s_3$. Then $t_{lhs} = t_2 \oplus_T t_3$ and

$$t_1 \otimes_{\mathcal{T}} t_{\text{lhs}} = t_1 \otimes_{\mathcal{T}} (t_2 \oplus_{\mathcal{T}} t_3) =_{(2)} (t_1 \otimes_{\mathcal{T}} t_2) \oplus_{\mathcal{T}} (t_1 \otimes_{\mathcal{T}} t_3).$$

Since $s_2=s_3$ we have $s_1\otimes_{\mathcal{S}} s_2=s_1\otimes_{\mathcal{S}} s_3$ and

$$s_1 \otimes_S s_2 =_{(4)} (s_1 \otimes_S s_2) \oplus_S (s_1 \otimes_S s_3) =_{(4)} s_1 \otimes_S s_3.$$

Therefore,

$$\textit{t}_{\text{rhs}} = (\textit{t}_1 \otimes_{\textit{T}} \textit{t}_2) \oplus (\textit{t}_1 \otimes_{\textit{T}} \textit{t}_3) = \textit{t}_1 \otimes_{\textit{T}} \textit{t}_{\text{lhs}}.$$

Case 2 : $s_2 = s_2 \oplus_S s_3 \neq s_3$. Then $t_{\text{lhs}} = t_2$ and

$$t_1 \otimes_T t_{lhs} = t_1 \otimes_T t_2.$$

Since $s_2 = s_2 \oplus_S s_3$ we have

$$s_1 \otimes_S s_2 = s_1 \otimes_S (s_2 \oplus_S s_3) =_{(1)} (s_1 \otimes_S s_2) \oplus_S (s_1 \otimes_S s_3).$$

Case 2.1 $s_1 \otimes_S s_2 \neq s_1 \otimes_S s_3$. Then $t_{\text{rhs}} = t_1 \otimes_T t_2 = t_1 \otimes_T t_{\text{lhs}}$. Case 2.2 $s_1 \otimes_S s_2 = s_1 \otimes_S s_3$. Then

$$t_{\text{rhs}} = (t_1 \otimes_{\mathcal{T}} t_2) \oplus_{\mathcal{T}} (t_1 \otimes_{\mathcal{T}} t_3) =_{(2)} t_1 \otimes_{\mathcal{T}} (t_2 \oplus_{\mathcal{T}} t_3)$$

We need to consider two subcases.

Case 2.2.1: Assume $\mathbb{LC}(S, \otimes_S)$. But $s_1 \otimes_S s_2 = s_1 \otimes_S s_3 \Rightarrow s_2 = s_3$, which is a contradiction.

Case 2.2.2 : Assume $\mathbb{LK}(T, \otimes_T)$. In this case we know

$$\forall a, b \in X, \ t_1 \otimes_T a = t_1 \otimes_T b.$$

Letting $a = t_2 \oplus_T t_3$ and $b = t_2$ we have

$$t_{\text{rhs}} = t_1 \otimes_{\mathcal{T}} (t_2 \oplus_{\mathcal{T}} t_3) = t_1 \otimes_{\mathcal{T}} t_2 = t_1 \otimes_{\mathcal{T}} t_{\text{lhs}}.$$

Case 3 : $s_2 \neq s_2 \oplus_S s_3 = s_3$. Similar to Case 2.

Other direction, \Rightarrow

Prove this:

$$\neg \mathbb{LD}(S, \oplus_{S}, \otimes_{S}) \vee \neg \mathbb{LD}(T, \oplus_{T}, \otimes_{T}) \vee (\neg \mathbb{LC}(S, \otimes_{S}) \wedge \neg \mathbb{LK}(T, \otimes_{T}))$$

$$\Rightarrow \neg \mathbb{LD}((S, \oplus_{S}, \otimes_{S}) \times (T, \oplus_{T}, \otimes_{T})).$$

Case 1: $\neg \mathbb{LD}(S, \oplus_{S}, \otimes_{S})$. That is

$$\exists a,b,c\in S,\ a\otimes_S(b\oplus_Sc)\neq (a\otimes_Sb)\oplus_S(a\otimes_Sc).$$

Pick any $t \in T$. Then for some $t_1, t_2, t_3 \in T$ we have

$$(a, t) \otimes ((b, t) \oplus (c, t))$$

$$= (a, t) \otimes (b \oplus_{S} c, t_{1})$$

$$= (a, \otimes_{S} (b \oplus_{S} c), t_{2})$$

$$\neq ((a \otimes_{S} b) \oplus_{S} (a \otimes_{S} c), t_{3})$$

$$= (a \otimes_{S} b, t \otimes_{T} t) \oplus (a \otimes_{S} c, t \otimes_{T} t)$$

$$= ((a, t) \otimes (b, t)) \oplus ((a, t) \otimes (c, t))$$

Case 2: $\neg \mathbb{LD}(T, \oplus_T, \otimes_T)$. Similar.

Case 3: $(\neg \mathbb{LC}(S, \otimes_S) \land \neg \mathbb{LK}(T, \otimes_T))$. That is

$$\exists a, b, c \in S, \ c \otimes_{S} a = c \otimes_{S} b \wedge a \neq b$$

and

$$\exists x, y, z \in T, \ z \otimes_T x \neq z \otimes_T y.$$

Since \oplus_S is selective and $a \neq b$, we have $a = a \oplus_S b$ or $b = a \oplus_S b$. Assume without loss of generality that $a = a \oplus_S b \neq b$. Suppose that $t_1, t_2, t_3 \in T$. Then

lhs
$$\equiv$$
 $(c, t_1) \otimes ((a, t_2) \oplus (b, t_3))$
= $(c, t_1) \otimes (a, t_2)$
= $(c \otimes_S a, t_1 \otimes_T t_2)$

rhs
$$\equiv ((c, t_1) \otimes (a, t_2)) \oplus ((c, t_1) \otimes (b, t_3))$$

 $= (c \otimes_S a, t_1 \otimes_T t_2) \oplus (c \otimes_S b, t_1 \otimes_T t_3)$
 $= (c \otimes_S a, (t_1 \otimes_T t_2) \oplus_T (t_1 \otimes_T t_3))$

Our job now is to select t_1 , t_2 , t_3 so that

$$t_{\text{lhs}} \equiv t_1 \otimes_{\mathcal{T}} t_2 \neq (t_1 \otimes_{\mathcal{T}} t_2) \oplus_{\mathcal{T}} (t_1 \otimes_{\mathcal{T}} t_3) \equiv t_{\text{rhs}}.$$

We don't have very much to work with! Only

$$\exists x,y,z\in T,\ z\otimes_T x\neq z\otimes_T y.$$

In addition, we can assume $\mathbb{LD}(T, \oplus_T, \otimes_T)$ (otherwise, use Case 2!), so

$$t_{\rm rhs}=t_1\otimes_T(t_2\oplus_T t_3).$$

We need to select t_1 , t_2 , t_3 so that

$$t_{\text{lhs}} \equiv t_1 \otimes_{\mathcal{T}} t_2 \neq t_1 \otimes_{\mathcal{T}} (t_2 \oplus_{\mathcal{T}} t_3) \equiv t_{\text{rhs}}.$$

Case 3.1: $z \otimes_T x = z \otimes_T (x \oplus_T y)$. Then letting $t_1 = z$, $t_2 = y$, and $t_3 = x$ we have

$$t_{\text{lhs}} = z \otimes_{\mathcal{T}} y \neq z \otimes_{\mathcal{T}} x = z \otimes_{\mathcal{T}} (x \oplus_{\mathcal{T}} y) = t_{\text{rhs}}.$$

Case 3.2: $z \otimes_T y = z \otimes_T (x \oplus_T y)$. Then letting $t_1 = z$, $t_2 = x$, and $t_3 = y$ we have

$$t_{\text{lhs}} = z \otimes_{\mathcal{T}} x \neq z \otimes_{\mathcal{T}} y = z \otimes_{\mathcal{T}} (x \oplus_{\mathcal{T}} y) = t_{\text{rhs}}.$$

Case 3.3: $z \otimes_T x \neq z \otimes_T (x \oplus_T y) \neq z \otimes_T y$. Then letting $t_1 = z$, $t_2 = x$, and $t_3 = y$ we have

$$t_{\text{lhs}} = z \otimes_T x \neq z \otimes_T (x \oplus_T y) = t_{\text{rhs}}.$$

Today

- Widest shortest paths
- Solving some matrix equations
- Counting to infinity, as does RIP

Widest shortest paths

$$\begin{array}{lll} \text{wsp} & \equiv & \text{AddZero}(\infty_2, \ (\mathbb{N}, \ \text{min}, \ +) \ \vec{\times} \ \text{AddOne}(\infty_1, \ (\mathbb{N}, \ \text{max}, \ \text{min}))) \\ \\ & = & \left((\mathbb{N} \times (\mathbb{N} \uplus \{\infty_1\})) \uplus \{\infty_2\}, \ \oplus, \ \otimes, \ \text{inr}(\infty_2), \ \text{inl}(0, \ \text{inr}(\infty_1))) \\ \\ \text{where} \\ \\ & \oplus & = & \left(\text{min} \ \vec{\times} \ \text{max}^{\text{an}}_{\infty_1}\right)^{\text{id}}_{\infty_2} \\ \\ & \otimes & = & \left(+ \times \ \text{min}^{\text{id}}_{\infty_1}\right)^{\text{an}}_{\infty_2} \end{array}$$

Example

```
\begin{array}{ll} & \operatorname{inl}(3,\operatorname{inl}(10))\otimes(\operatorname{inl}(17,\operatorname{inl}(21))\oplus\operatorname{inl}(11,\operatorname{inl}(4))) \\ = & \operatorname{inl}(3,\operatorname{inl}(10))\otimes\operatorname{inl}(11,\operatorname{inl}(4)) \\ = & \operatorname{inl}(14,\operatorname{inl}(4)) \\ & & \left(\operatorname{inl}(3,\operatorname{inl}(10))\otimes\operatorname{inl}(17,\operatorname{inl}(21))\right)\oplus\left(\operatorname{inl}(3,\operatorname{inl}(10))\otimes\operatorname{inl}(11,\operatorname{inl}(4))\right) \\ = & \operatorname{inl}(20,\operatorname{inl}(10))\oplus\operatorname{inl}(14,\operatorname{inl}(4)) \\ = & \operatorname{inl}(14,\operatorname{inl}(4)) \end{array}
```

But is wsp a semiring?

Turn the cranks!

Turning the crank for LD:

```
\mathbb{LD}(\text{AddZero}(\infty_2, \ (\mathbb{N}, \ \text{min}, \ +) \ \vec{\times} \ \text{AddOne}(\infty_1, \ (\mathbb{N}, \ \text{max}, \ \text{min}))))
```

- $\Leftrightarrow \mathbb{LD}((\mathbb{N}, \min, +) \times AddOne(\infty_1, (\mathbb{N}, \max, \min)))$
- $\Leftrightarrow \ \mathbb{L}\mathbb{D}(\mathbb{N}, \ \mathsf{min}, \ +) \wedge \mathbb{L}\mathbb{D}(\mathrm{AddOne}(\infty_1, \ (\mathbb{N}, \ \mathsf{max}, \ \mathsf{min}))) \\ \wedge \left(\mathbb{L}\mathbb{C}(\mathbb{N}, \ +) \vee \mathbb{L}\mathbb{K}(\mathrm{AddID}(\infty_1, \ (\mathbb{N}, \ \mathsf{min})))\right)$
- $\Leftrightarrow \quad \mathbb{TRUE} \wedge (\mathbb{LD}(\mathbb{N}, \, \text{max}, \, \text{min}) \wedge \mathbb{RAB}(\mathbb{N}, \, \text{max}, \, \text{min}) \wedge \mathbb{IP}(\mathbb{N}, \, \text{max})) \\ \wedge \left(\mathbb{TRUE} \vee \mathbb{LK}(\text{AddID}(\infty_1, \, (\mathbb{N}, \, \text{min})))\right)$
- $\Leftrightarrow \quad \text{TRUE} \land (\text{TRUE} \land \text{TRUE} \land \text{TRUE}) \\ \land (\text{TRUE} \lor \text{LK}(\text{AddID}(\infty_1, (\mathbb{N}, \text{min})))$
- \Leftrightarrow TRUE

Solving (some) equations

Theorem 6.1

If **A** is q-stable, then **A*** solves the equations

$$L = AL \oplus I$$

and

$$R = RA \oplus I$$
.

For example, to show $\mathbf{L} = \mathbf{A}^*$ solves the first equation:

$$\mathbf{A}^* = \mathbf{A}^{(q)}$$

$$= \mathbf{A}^{(q+1)}$$

$$= \mathbf{A}^{q+1} \oplus \mathbf{A}^q \oplus \ldots \oplus \mathbf{A}^2 \oplus \mathbf{A} \oplus \mathbf{I}$$

$$= \mathbf{A}(\mathbf{A}^q \oplus \mathbf{A}^{q-1} \oplus \ldots \oplus \mathbf{A} \oplus \mathbf{I}) \oplus \mathbf{I}$$

$$= \mathbf{A}\mathbf{A}^{(q)} \oplus \mathbf{I}$$

$$= \mathbf{A}\mathbf{A}^* \oplus \mathbf{I}$$

Note that if we replace the assumption "**A** is q-stable" with "**A*** exists," then we require that \otimes distributes over <u>infinite</u> sums.

A more general result

Theorem Left-Right

If **A** is q-stable, then $\mathbf{L} = \mathbf{A}^* \mathbf{B}$ solves the equation

$$L = AL \oplus B$$

and $\mathbf{R} = \mathbf{B}\mathbf{A}^*$ solves

$$R = RA \oplus B$$
.

For the first equation:

$$\mathbf{A}^*\mathbf{B} = \mathbf{A}^{(q)}\mathbf{B} \\
= \mathbf{A}^{(q+1)}\mathbf{B} \\
= (\mathbf{A}^{q+1} \oplus \mathbf{A}^q \oplus \ldots \oplus \mathbf{A}^2 \oplus \mathbf{A} \oplus \mathbf{I})\mathbf{B} \\
= (\mathbf{A}^{q+1} \oplus \mathbf{A}^q \oplus \ldots \oplus \mathbf{A}^2 \oplus \mathbf{A})\mathbf{B} \oplus \mathbf{B} \\
= \mathbf{A}(\mathbf{A}^q \oplus \mathbf{A}^{q-1} \oplus \ldots \oplus \mathbf{A} \oplus \mathbf{I})\mathbf{B} \oplus \mathbf{B} \\
= \mathbf{A}(\mathbf{A}^{(q)}\mathbf{B}) \oplus \mathbf{B} \\
= \mathbf{A}(\mathbf{A}^*\mathbf{B}) \oplus \mathbf{B}$$

The "best" solution

Suppose Y is a matrix such that

$$\mathbf{Y} = \mathbf{AY} \oplus \mathbf{I}$$

$$Y = AY \oplus I
= A^{1}Y \oplus A^{(0)}
= A((AY \oplus I)) \oplus I
= A^{2}Y \oplus A \oplus I
= A^{2}Y \oplus A^{(1)}
\vdots \vdots \vdots
= A^{k+1}Y \oplus A^{(k)}$$

If **A** is q-stable and q < k, then

$$\mathbf{Y} = \mathbf{A}^k \mathbf{Y} \oplus \mathbf{A}^*$$

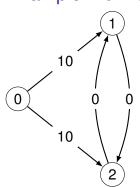
$$\mathbf{Y} \leq^{L}_{\oplus} \mathbf{A}^{*}$$

and if \oplus is idempotent, then

$$\mathbf{Y} \leq^L_{\oplus} \mathbf{A}^*$$

So A* is the largest solution. What does this mean in terms of the sp semiring?

Example with zero weighted cycles using sp semiring



$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & \begin{bmatrix} \infty & 10 & 10 \\ \infty & \infty & 0 \\ 2 & \infty & 0 & \infty \end{bmatrix}$$

 A^* (= $A \oplus I$ in this case) solves

$$\mathbf{X} = \mathbf{X}\mathbf{A} \oplus \mathbf{I}$$
.

But so does this (dishonest) matrix!

$$\mathbf{F} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 9 & 9 \\ \infty & 0 & 0 \\ 2 & \infty & 0 & 0 \end{bmatrix}$$

For example:

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \infty & 0 & 0 \\ 0 & 0 & \infty & 0 & \infty \end{bmatrix}$$

$$\begin{aligned} & (\mathbf{FA} \oplus \mathbf{I})(0,1) \\ & = \min_{q \in \{0,1,2\}} \mathbf{F}(0,q) + \mathbf{A}(q,1) \\ & = \min(0+10,9+\infty,9+0) \\ & = \mathbf{9} \\ & = \mathbf{F}(0,1) \end{aligned}$$

Recall our basic iterative algorithm

$$egin{array}{lll} \mathbf{A}^{\langle 0
angle} &=& \mathbf{I} \ \mathbf{A}^{\langle k+1
angle} &=& \mathbf{A} \mathbf{A}^{\langle k
angle} \oplus \mathbf{I} \end{array}$$

A closer look ...

$$\mathbf{A}^{\langle k+1 \rangle}(i,j) = \mathbf{I}(i,j) \oplus \bigoplus_{u} \mathbf{A}(i,u) \mathbf{A}^{\langle k \rangle}(u,j)$$
$$= \mathbf{I}(i,j) \oplus \bigoplus_{(i,u) \in E} \mathbf{A}(i,u) \mathbf{A}^{\langle k \rangle}(u,j)$$

This is the basis of distributed Bellman-Ford algorithms (as in RIP and BGP) — a node *i* computes routes to a destination *j* by applying its link weights to the routes learned from its immediate neighbors. It then makes these routes available to its neighbors and the process continues...

What if we start iteration in an arbitrary state M?

In a distributed environment the topology (captured here by $\bf A$) can change and the state of the computation can start in an arbitrary state (with respect to a new $\bf A$).

$$\begin{array}{ccc} \textbf{A}_{\textbf{M}}^{\langle 0 \rangle} & = & \textbf{M} \\ \textbf{A}_{\textbf{M}}^{\langle k+1 \rangle} & = & \textbf{A} \textbf{A}_{\textbf{M}}^{\langle k \rangle} \oplus \textbf{I} \end{array}$$

Theorem

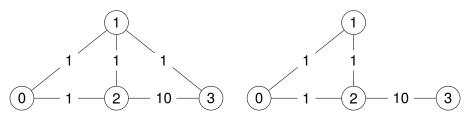
For $1 \leq k$,

$$\mathbf{A}_{\mathbf{M}}^{\langle k \rangle} = \mathbf{A}^k \mathbf{M} \oplus \mathbf{A}^{(k-1)}$$

If **A** is q-stable and q < k, then

$$\mathbf{A}_{\mathbf{M}}^{\langle k \rangle} = \mathbf{A}^k \mathbf{M} \oplus \mathbf{A}^*$$

RIP-like example — counting to convergence (1)



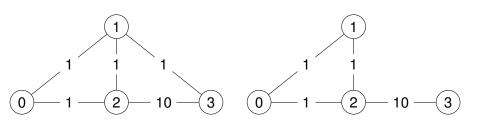
Adjacency matrix A₁

Adjacency matrix A₂

$$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & \infty & 1 & 1 & \infty \\ 1 & \infty & 1 & \infty \\ 2 & 1 & 1 & \infty & 10 \\ \infty & \infty & 10 & \infty \end{bmatrix}$$

See RFC 1058.

RIP-like example — counting to convergence (2)



The solution A₁*

The solution \mathbf{A}_2^*

RIP-like example — counting to convergence (3)

The scenario: we arrived at \mathbf{A}_1^* , but then links $\{(1,3),\ (3,1)\}$ fail. So we start iterating using the new matrix \mathbf{A}_2 .

Let \mathbf{B}_K represent $\mathbf{A}_{2\mathbf{M}}^{\langle k \rangle}$, where $\mathbf{M} = \mathbf{A}_1^*$.

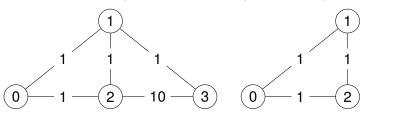
RIP-like example — counting to convergence (4)

RIP-like example — counting to convergence (5)

$$\begin{array}{c} \textbf{B}_{6} \ = \ \begin{array}{c} 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 7 \\ 1 & 0 & 1 & 7 \\ 2 & 1 & 1 & 0 & 7 \\ 2 & 1 & 2 & 0 \\ \end{array} \\ \textbf{B}_{7} \ = \ \begin{array}{c} 0 & 1 & 1 & 8 \\ 1 & 1 & 0 & 1 & 8 \\ 1 & 0 & 1 & 8 \\ 1 & 1 & 0 & 8 \\ 3 & 11 & 11 & 10 & 0 \\ \end{array} \\ \textbf{B}_{8} \ = \ \begin{array}{c} 0 & 1 & 1 & 9 \\ 1 & 0 & 1 & 9 \\ 1 & 1 & 0 & 9 \\ 3 & 11 & 11 & 10 & 0 \\ \end{array} \end{array}$$

$$\mathbf{B}_{9} \ = \begin{array}{c} \begin{smallmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 10 \\ 1 & 0 & 1 & 10 \\ 2 & 1 & 1 & 0 & 10 \\ 3 & 11 & 11 & 10 & 0 \\ \end{smallmatrix} \\ \mathbf{B}_{10} \ = \begin{array}{c} \begin{smallmatrix} 0 & 1 & 2 & 3 \\ 2 & 1 & 1 & 10 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & 11 \\ 1 & 0 & 1 & 11 \\ 1 & 1 & 0 & 10 \\ 3 & 1 & 11 & 10 & 0 \\ \end{smallmatrix} \\ \end{bmatrix}$$

RIP-like example — counting to infinity (1)



The solution A₁*

The solution A_3^*

$$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 1 & \infty \\ 1 & 0 & 1 & \infty \\ 2 & 1 & 1 & 0 & \infty \\ \infty & \infty & \infty & 0 \end{bmatrix}$$

Now let $\mathbf{B}_{\mathcal{K}}$ represent $\mathbf{A}_{3\mathbf{M}}^{\langle k \rangle}$, where $\mathbf{M} = \mathbf{A}_{1}^{*}$.

RIP-like example — counting to infinity (2)

RIP-like example — What's going on?

Recall

$$\mathbf{A}_{\mathbf{M}}^{\langle k \rangle}(i, j) = \mathbf{A}^{k}\mathbf{M}(i, j) \oplus \mathbf{A}^{*}(i, j)$$

- A*(i, j) may be arrived at very quickly
- but A^kM(i, j) may be better until a very large value of k is reached (counting to convergence)
- or it may always be better (counting to infinity).

Solutions?

- RIP: $\infty = 16$
- In the next lecture we will explore various ways of adding paths to metrics and eliminating those paths with loops

