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Shortest paths example, sp = (N*°, min, +,co, 0)

The adjacency matrix

1 2 3 4

2 5 4 1 oo 2 1 6

/J\ 2 2 oo 5 ™

1 1 3 3 5 l\ = 3 1 5 0 4
\T/ 4 6 oo 4
6 \g) 5 c0c 4 3 o
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Shortest paths solution

1 2 3 4 5

1f[0215 4

22037 4

{— % ~ 3/13043
# 457407
s|44370

solves this global optimality
problem:

A(i, )= per;;;,nl) w(p),

where P(i, j) is the set of all paths
from i to j.
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Widest paths example, bw = (N>, max, min, 0, o)

AN

1 2 3 4 5
2 5 4 1[oo 4 4 6 4
/k 2| 4 0 5 4 4
A* = 3| 4 5 © 4 4
1 1 3 3 5
ﬁ/ © 4| 6 4 4 x 4
6 4 514 4 4 4
\é solves this global optimality
problem:

A By
(i, J) pg,%fj) w(p),

where w(p) is now the minimal
edge weight in p.
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Unfamiliar example, (212 © ¢t u, N, {}, {a, b, ¢})

We want A* to solve this global
optimality problem:

@ tabel {e) A )= | wip),
a0,
where w(p) is now the intersection
{ab} {b} of all edge weights in p.

®

For x € {a, b, c}, interpret x € A*(i, j) to mean that there is at least
one path from j to j with x in every arc weight along the path. J

A*(4, 1) ={a, b} A*(4, 5)={b}
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Another unfamiliar example, (212 2 ¢} N, U)

We want matrix R to solve this
global optimality problem:

ta {abe} {c} A )= () )
S N
where w(p) is now the union of all
{ab} {b} edge weights in p.

®

For x € {a, b, c}, interpret x € R(/, j) to mean that every path from i
to j has at least one arc with weight containing x. J

A*(4, 1) ={b} A*(4,5)={b} A5 1)={}
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We will start by looking at Semirings

possible routing use
minimum-weight routing
greatest-capacity routing

name S ® ® 1

0

(0.9)

1 most-reliable routing
1

w

sp N min  +
bw N  max min
rel [0, 1] max x
use {0, 1} max min
2w u N
2w n U

usable-path routing
shared link attributes?
{} shared path attributes?

SC o o o 3| ol

A wee bit of notation!

Symbol Interpretation

Natural numbers (starting with zero)
Natural numbers, plus infinity
Identity for &

Identity for ®

—~lolzZ
8
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Recommended Reading on Semiring Theory

Path Problems in

Networks
Michel Gondran
Michel Minoux
John Baras

i A Graphs, Dioids
and Semirings

New Models and Algorithms

S'I.\ THESIS LECTURES ON
CoMMUNICATION NETWORKS

@ Springer
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Semirings (generalise (R, +, x,0,1))

We will look at the axioms of semirings. The most important are

distributivity

< : a®((baec) (avb)®(a®c)
N~ (aeb)ec = (avc)d(bwc)
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Distributivity, illustrated

(O—( o

av(beoc) = (avb)@(a®c)

j makes the choice = i makes the choice
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Should distributivity hold in Internet Routing? No!

long path through a customer

customer provider

short path through a peer

@ j prefers long path though one of its customers (not the shorter
path through a competitor)

@ given two routes from a provider, i prefers the one with a shorter
path

More on this later in the term ...
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The (Tentative) Plan

1 9 October : Motivation, overveiw

2 13 October : Semigroups and Orders

3 16 October : Semirings — Theory, algorithms
4 20 October : Semirings — Constructions
5

6

7

8

9

23 October : Semirings — Constructions
27 October : Semirings — Constructions
30 October : Beyond Semirings — AMEs — “functions on arc
3 November : AME Constructions (HW 1 due)
6 November : Protocols : RIP, EIGRP (from a theoretical persy
10 10 November : Inter-domain routing in the Internet |
11 13 November : Inter-domain routing in the Internet Il
12 17 November : Beyond Semirings — Global vs Local optimality
13 20 November : More on Global vs Local optimality
14 24 November : Dijkstra revisited (HW 2 due)
15 27 November : Bellman-Ford revisited
16 1 December : Other algorithms

12 January : HW 3 due
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@ What is a semigroup?

@ A few important semigroup properties.
@ Cayley’s Theorem for semigroups.

@ Constructing new semigroups from old.
@ Homework 1.
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Semigroups

Semigroup

A semigroup (S, e) is a non-empty set S with a binary operation such
that

AS associative = Va,b,c€ S, ae(bec)=(aeb)ec

Important Assumption — We will ignore trival semigroups
We will impicitly assume that 2 <| S |.

Note

Many useful binary operations are not semigroup operations. For
example, (R, o), where ae b= (a+ b)/2.
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Some Important Semigroup Properties

D identity
AN annihilator
CM commutative
SIL selective
IP  idempotent

dJae S, Vae S, a=aea=aea
Jwe S, VaeS w=wea=aew
Va,be S, aeb=bea
Va,be S, aebe {a, b}

Vae S, aea=a

A semigroup with an identity is called a monoid.
Note that
SL(S, o) = IP(S, o)
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A few concrete semigroups

S ) description a | w |CM|SL |IP
S left xlefty = x * | *
S right | xrighty =y * | *
S* - | concatenation | €
St - | concatenation
{t, f} | A conjunction t | f | x| x| %
{t, f} | Vv disjunction flt | = | x| %
N min minimum 0| % * | o
N max maximum 0 * * | x
2w U union O lwl « *
2w N | intersection | W | {}| = *
fin(2Y) | U union {3 * *
fin(2Y) | n | intersection O] * *
N + addition 0 *
N X multiplication | 1 | 0 | *

W a finite set, U an infinite set. Forset Y, fin(Y) = {X € Y | X is finite}
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A few abstract semigroups

S e | description a |w |CM|SL|IP
2V U union O Tul « *
2V | n| intersection | U |[{}| * *

2UxU 1 x| relational join | Zy | {}
X — X | o | composition | Ax.x

U an infinite set
XxY={x,z)eUxU|3Iyel, (x,y) e XA (y, 2)e Y}
Zy={(u, u) |ue U}

subsemigroup

Suppose (S, o) is a semigroupand T C S. If T is closed w.r.t e (that
is,Vx,y € T,xey e T),then (T, o) is a subsemigroup of S.
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Isomorphism

Reminder of function terminology
efeX—=Y
@ fisinjective (one-to-one) =vx,y € X, f(x)=f(y) = x=y
@ fis surjective (onto) =Vy e Y, Ix e X, f(x)=y
@ fis bijective = f is injective and f is surjective

Isomorphism

If Sand T are algebraic structures, then they are said to be
isomorphic, written S = T, if there exists a bijective funtion f € S — T
which preserves structure.
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Semigroup Isomorphism S~ T

@ (S, e) a semigroup

@ (T, o) asemigroup

@ fe S — T abijection

e Va,be S, f(aeb)=f(a)of(b)

Cayley’s Theorem for Semigroups

Every semigroup (S, e) is isomorphic to a subsemigroup of
(S—S, o).
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Partial proof of Cayley’s theorem

fs(a) = sea ¢ € S=>T
T = {ff|seS}CS—S o(s) = fs
¢(s e t) =g(s) o o(t)

fset(@) = (set)ea
= Se(tea)
= Se f,(a)
= fs(ft(a))
= (fsof)(a) )

Wait, is it injective?
fs=fevae S, ff(a)=1fi(a)eVac S, sea=1tea

But we want s = t! If there is an identity a € S, then letting a = a we
have sea = te q, thatis s =t.

But when there is no identity? (See Homework 1.) ]
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Add identity

AddId(a, (S, o)) = (S {a},e)
where
a (if b=inr(«))
aelp = b (if a = inr(a))
inl(x e y) (if a=inl(x), b=1inl(y))

disjoint union

Aw B = {inl(a) | a € A} U {inr(b) | b € B}
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Add identity

Easy Exercises

AS(AddId(a, (S, e))) < AS(S,e)
ID(AddId(a, (S, ) < TRUE
AN(AddId(«, (S, @))) & AN(S,e)
CM(AddId(c, (S, @))) < CM(S,e)
IP(AddId(c, (S, e))) < IP(S,e)
SL(AddId(c, (S, e))) < SL(S,e)
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Inserting an annihilator

AddAn(w, (S, #)) = (S {w}, ™)

where
inr(w)  (if b = inr(w))

ael’b = inrf(w)  (if a = inr(w))
inl(x e y) (if a = inl(x), b = inl(y))
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Add annihilator

Easy Exercises

AS(AddAn(a, (S, e))) < AS(S,e)
D(AddAn(a, (S, »))) < ID(S,e)
N(AddAn(a, (S, e))) < TRUE
M(AddAn(«, (S, »))) < CM(S,e)
P(AddAn(a, (S, e))) < IP(S,e)
L(AddAn(c, (S, »))) < SL(S,e)
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Lexicographic Product of Semigroups

Lexicographic product semigroup

Suppose that semigroup (S, ) is commutative, idempotent, and
selective and that (T, ¢) is a semigroup.

(S, o) X (T, 0)=(SxT, %)
where x = e X ¢ is defined as
(31 ® S, 1 <>t2) S{ =8510S =95

(s1, t) x(S2, k) = | (51 @52, ty) S1 =518 # S
(1082, o) S1 #5105 =8
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Examples
(N, min) x (N, min)

(1, 17)%(2,3) = (1,17)

(2, 17)%(2,3) = (2,3)

(2, 3)x(2,3) = (2,3)
(N, min) x (N, max)

(1,17)x(2,3) = (1,17)

(2, 17)%(2,3) = (2,17)

(2,3)x(2,3) = (2,9)
(N, max) x (N, min)

(1,17)%(2,3) = (2,3)

(2,17)%(2,3) = (2,3)

(2,3)%(2,3) = (2,3)

v
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Assuming AS(S,e) A CI\\/JI(S o)
AS

>

IP(S, o) ASL(S, o)

AS(T, o)

ID(S, ) AID(T, )
AN(S, o) NAN(T, o)
CM(T, o)

IP(T,)

SL(T,¢)

FALSE

FALSE

DEOEHHEE
ey
\'
2

1

All easy, except for AS (See Homework 1!).
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Direct Product of Semigroups

Let (S, o) and (T, ©) be semigroups.
Definition (Direct product semigroup)
The direct product is denoted
(S, @) x (T, 0)=(SxT, %)
where
*x =0 X O

is defined as
(s1, t1) x(S2, b)) = (S @S2, 1y o ).
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Easy exercises

AS((S,e) x (T,©))
ID((S,e) x (T,0))

S,e) AS(S,e) AN AS(T, )
S.e)
AN((S,e) x (T,0))
S.e)
S,e)

(S, o) AID(T, o)
AN(S, o) A AN(T, )
CM(S, ) A CM(T, )
IP(S, e) AIP(T, )

CM((S,e) x (T,o))
IP((S,e) x (T,©))

teoee

What about SIL?

Consider the product of two selective semigroups, such as
(N, min) x (N, max).

(10, 10) = (1, 3) = (1, 10) ¢ {(10, 10), (1, 3)}

The result in this case is not selective!
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Direct product and SIL?

SL((S,e) x (T,0)) & (IR(S,e) AIR(T,o))V (IL(S, ) AIL(T, o))

v

IR isright = Vs te S,set=1
IL isleft = Vs,te S,set=3s

See Homework 1

IR((S, ) x (T,0)) < IR(S,e)AIR(T,0)
IL((S, ) x (T,0)) < IL(S,e) AIL(T,o)
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Revisit other constructions ...

IR(AddId(a, (S, e))) < FALSE
IL(AddId(c, (S, »))) < FALSE

IR(AddAn(a, (S, ))) < FALSE
IL(AddAn(a, (S, »))) < FALSE

Assuming AS(S, e) A CM(S,e) AIP(S,e) ASL(S,e)

IR((S,e)%(T,¢)) « FALSE
IL((S,)%(T,0)) <« FALSE
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Lifted Product

Lifted product semigroup
Assume (S, o) is a semigroup. Let lift(S, ) = (fin(25), ¢) where

XeY ={xey|xeX, yecY}

{1,3,17} + {1, 3, 17} = {2, 4, 6, 18, 20, 34}
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AS(lift(S,8)) < AS(S,e)
ID(lift(S, ) < ID(S,e) (&= {al})

AN(lift(S,s)) < TRUE (w={})

CM(lift(S,¢)) < CM(S,e)

SL(1ift(S,e)) < IL(S,e) VIR(S,e)V (IP(S,e) A|S|=2)
IP(lify(S,¢)) < SL((S,s))

IL(lift(S, s)) < FALSE

IR(lift(S,)) < FALSE
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Why bother with all of these < rules?

| would rather calculate than prove!

IP(lift(life({t, f}, A))

SL({t, f}, A)

TL({t, f}, A)VIR({t, f}, A)V (IP({t, f}, A) A|{t, f}|=2)
FALSE v FALSE Vv (TRUE A TRUE)

TRUE

This kind of calculation will become more interesting as we introduce
more complex constructors and consider more complex properties —
such as those associated with semirings.
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Homework 1

Each question is 25 points.
@ Finish the proof of Cayley’s theorem.

@ Prove
SL((S,e) x (T,9))
&
(IR(S, &) ATR(T,0)) V (IL(S, o) ATL(T, o))

© Assume that AS(S,e), AS(T, ), CM(S,e), IP(S,e), and SL(S, e)
hold. Prove that AS((S, e)%(T,<)). Did you really need CM(S, e)?
© (Rather difficult). Prove
SL(lift(S, o))

~
IL(S, o) VIR(S, o) V (IP(S,8) A|S|=2)
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Bi-semigroups and Pre-Semirings

(S, @, ®) is a bi-semigroup when
@ (S, @) is a semigroup
@ (S, ®)is a semigroup

(S, @, ®) is a pre-semiring when
° (S, @, ®)is abi-semigroup
@ @ is commutative

and left- and right-distributivity hold,

LD : a®(bdc) = (a®@b)d(a®ce)
RD : (aeb)®c = (avc)d(b®c)
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Semirings

(S, ®, ®, 0, 1) is a semiring when
@, ®)is a pre-semiring

@, 0) is a (commutative) monoid
®, 1) is a monoid

0 is an annihilator for ®

(s
(S,
(S,
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Examples

Pre-semirings

name S &, ® 0 1
min_plus N min + 0
max_min N max min 0

Semirings
name S ®, ® 0 1
sp N* min + oo 0

bw N*® max min 0 oo

Note the sloppiness — the symbols +, max, and min in the two tables
represent different functions....
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How about (max, +)?

Pre-semiring

name S @, ® 0
max_plus N max + O

@ What about “0 is an annihilator for ©”? No!

Fix that ...

name S ®& ® 0 1
max_plus™® Nw{—-oco} max + —-oo O
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Matrix Semirings

e (S, @, ®, 0, 1) asemiring
@ Define the semiring of n x n-matrices over S : (M,(S), @, ®, J, 1)

@ and ®
(AeB)(i, j) = A(, ))®B(, ))
(A®B)(i, j) = P A(, q9)®B(q, ))
1<g<n
Jandl
J(i, j) = 0

T (ifi=))

0 (otherwise)

v
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M,(S) is a semiring!
For example, here is left distribution J

A2 (BaC)=(AzB)® (A C)

(A® (B C))(/, j)
= P Al 9@ (B@C)a, j)
1<q<n
= P A(, 9)®(B(q, j)®C(q, j))
1<g<n
= P (A(, 99 ®B(q, j)) @ (A(i, 9) @ C(q, j))

1<g<n

— (P AG 9 eBg )e( @ Al q)=Ca 1)

1<qg<n 1<g<n

= (A®B)® (A®C))(, j)

Note : we only needed left-distributivity on S.
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Matrix encoding path problems

° (S, @, ®, 0, 1) asemiring
@ G = (V, E) adirected graph
@ w e E — S a weight function

Path weight
The weight of a path p = i3, o, i3, - - - , Ik iS
w(p) = w(iy, ) @ W(ip, i3) ® - @ W(lk—1, Ix)-

The empty path is given the weight 1.

Adjacency matrix A

w(i, j) if(i, j) € E,

0 otherwise

v
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The general problem of finding globally optimal path

weights

Given an adjacency matrix A, find A* such that for all i, j € V
A )= D wip)
pEP(i, f)

where P(i, j) represents the set of all paths from i to j.

How can we solve this problem?
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Matrix methods

Matrix powers, A%
A0 = |

Ak+1 —_ A®Ak

Closure, A*
AK) = 1oA"oA2 - @ AK

A = IoA'oA’ .- . oA D ...
Note: A* might not exist. Why?
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Matrix methods can compute optimal path weights

@ Let P(i,j) be the set of paths from i/ to j.
@ Let PX(i,}) be the set of paths from i to j with exactly k arcs.
@ Let P(K(j, j) be the set of paths from i to j with at most k arcs.

Theorem
(1) A, j) = P wlp)
pEPX(i, j)

(@) AW j) = P wip)

peP®(i, )

B wip

peP(i, J)

3) A, )

Warning again: for some semirings the expression A*(i, j) might not
be well-defeind. Why?
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Proof of (1)

By induction on k. Base Case: k = 0.

PO(i, i) = {e},
so A°(i i) =I(i, i) = T = w(e).

And i # j implies PO(i, ) = {}. By convention

D wip) =0=1(i, ).

pe{}
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Proof of (1)

Induction step.
AL ) = (Ao AR, ))

= P A(, 92 A q. ))

1<g<n
- D aigel @ we)
1<q<n pePX(q, j)

= P P AL gewp)

1=9=npeP(q, )

- b D w w(p)

(i, Q)€E pePk(q.)

= EB w(p)

pePKTI(i, j)
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When does A* exist? Try a general approach.

e (S, @ ®, 0, 1) asemiring

Powers, a*
aQ =1
atl = g g
Closure, a*
ak = PpaleLe---qa
ad = Pfoadedo - -0de -

Definition (g stability)

If there exists a g such that al@ = a(@t") then ais g-stable. By
induction: Vt,0 < t,al@t) = a(d, Therefore, a* = a(9.
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Fun Facts

Fact 1

If 1 is an annihiltor for @, then every a € S is 0-stable!

Fact 2
If Sis O-stable, then M,(S) is (n — 1)-stable. That is,

A*:A(”_1):|€BA1@Az@---®A”_1

Why? Because we can ignore paths with loops.
(azwcob)o(avb)=av(1ec)eb=aciob=acb

Think of ¢ as the weight of a loop in a path with weight a ® b.
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Shortest paths example, (N*°, min, +)

/q>\ The adjacency matrix
0o 1

2" 5 4 0o 2

1 2 oo

01 é\ 3\QD A= 215
\T/ 3| 6 o

6 4 4 | oo 4

e

Note that the longest shortest path is (1, 0, 2, 3) of length 3 and
weight 7.

2

1
5
0
4
3

3
6
o
4
o
o
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(min, 4-) example

Our theorem tells us that A* = A(™=1) = A(4)

o 1 2 3 4

o[0 2 1 5 4

112 03 7 4

A =A® =1 min Amin A2mnASmnA*=2|1 3 0 4 3
3|5 7 40 7

4|4 4370
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(min, 4-) example

0 1 2 3 4 0 1 2 3 4

0o 2 1 6 o o[ 8 4 3 8 10

1 2 oo 5 o0 4 1 4 8 7 7 6

A = 2|1 5 oo 4 3 A = 3 78 6 5
3 6 oo 4 oo 3 8 7 6 11 10

4 oo 4 3 o0 o0 4110 6 5 10 12

0O 1 2 3 4 0 1 2 3 4

o[2 6 7 5 4 o[4 8 9 7 6

116 4 3 8 8 118 6 5 10 10

A2 = 2|7 3279 A* = 219 5 4 9 11
3|5 87 87 3|7 10 9 10 9

414 8 9 7 6 4 |6 10 11 9 8

First appearér?ce of final value is in red and underlined. Remember:
we are looking at all paths of a given length, even those with cycles!
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A “better” way — our basic algorithm

A0 — |
Ak — AAK o

Lemma
A — A 1A' A2 - AK
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back to (min, +) example

3 0 4 3

3 0 4 3

1

54/119

L11: Algebraic Path Problems with applice T.G.Griffin©2015

tgg22 (cl.cam.ac.uk)



Anoteon Avs. A9l

Lemma
If © is idempotent, then

(A = Ak,

Proof. Base case: When k = 0 both expressions are I.
Assume (A @ 1)k = A(K), Then

(Aa Dkt = (Aal)(A® )k

(A @ )AK)

AAKK) ¢ A(K)
AloAD--- oA o Al
= ApA2q...0 AT g AW
— Ak+1 @A(k)

—  Alk+1)
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Order Relations

We are interested in order relations < C Sx S

Definition (Important Order Properties)

RX reflexive = a<a
TR transitve = a<bAb<c—a<c

AY antisymmetric a<bAnb<a—a=b

TO total = a<bvb<a
partial preference total
pre-order order order order
RX * * * *
TR * * * *
AY * *
TO * *
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Canonical Pre-order of a Commutative Semigroup

Definition (Canonical pre-orders)

a<fib = 3ceS:b=aec
a<tb = JceS:a=bec

Lemma (Sanity check)
Associativity of e implies that these relations are transitive.

Proof.

Note that a <f bmeans 3c; € S: b= ae ¢y, and b <7 ¢ means
dc, € S:c=becy. Letting c3 = ¢1 o ¢, we have
c=beco,=(aeci)ec,=ae(ciecy) =aecs. Thatis,

Jc3 € S:c=aecs, 50 a<f c. The proof for <t is similar.
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Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, ) is canonically ordered when a <f ¢
and a <} c are partial orders.

Definition (Groups)

A monoid is a group if for every a € S there exists a a~' € S such that
aea'=a'lea=o.
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Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)
Only a trivial group is canonically ordered.

Proof.

lfa, bc S,thena=ca.ea=(beb ')ea=be (b 'ea)=bec,for
c=b"ea soa<kb. Inasimilar way, b <7 a. Thereforea=b. [

v
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Natural Orders
Definition (Natural orders)
Let (S, o) be a semigroup.
a<tb = a=aeb

a<fb = b=aeb

Lemma

If o is commutative and idempotent, then a<P b < a <P b, for
De{R, L}.

Proof.

a<fb «— b=aec=(aea)ec=ae(aec)
= aeb <= a<fp

adtb <= a=bec=(beb)ec=be(bec)
= bea=aeb «— a<ktb

’_‘
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Special elements and natural orders
Lemma (Natural Bounds)

@ Ifa exists, then forall a, a <t o and o < a
o Ifw exists, then for all a, w <L aand a <F w
@ Ifa and w exist, then S is bounded.

wgfagfa
aSHa<Rw

Remark (Thanks to lljitsch van Beijnum)
Note that this means for (min, +) we have

0 <L. g <L

IEIH TEII"I ce
ce <m|n a <m|n O

and still say that this is bounded, even though one might argue with the
terminology!

v
tgg22 (cl.cam.ac.uk)
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Examples of special elements

S ° « w
N min oo | O
N™ | max| O

PW)| u | {}| W
PW)| n | W| {}

!
8
U 1IN 1V AV
N1V IA IV
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Property Management

Lemma

LetD e {R, L}.

Q IP(S, o) < RX(S, <7)

Q CM(S, o) — AY(S, <P)

Q AS(S, o) — TR(S, <P

Q CM(S, o) = (SL(S, o) <« TO(S, <P))

Proof.
Q@ a<Pa— a=aeaq,
Q a<tbrb<la «— a=aebAb=bea — a=0>b

Q a<ibrb<lc «— a=aebAb=bec — a=ae(bec)=
(aeb)ec=aec — a<ic

Q@ a=aebvb=aeb «— a<tbvb<la

O]

v
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Bounds

Suppose (S, <) is a partially ordered set.

greatest lower bound

For a, b € S, the element ¢ € S is the greatest lower bound of a and b,
written ¢ = a glb b, if it is a lower bound (¢ < aand ¢ < b), and for
every d € Swithd < aand d < b, we have d < c.

least upper bound

For a, b € S, the element ¢ € S is the least upper bound of a and b,
written ¢ = alub b, if it is an upper bound (a < ¢ and b < ¢), and for
every d € Switha<dand b < d, we have c < d.
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Semi-lattices

Suppose (S, <) is a partially ordered set.

meet-semilattice
S is a meet-semilattice if a glb b exists for each a, b € S.

join-semilattice

S is a join-semilattice if a lub b exists for each a, b € S.
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Fun Facts

Fact 3

Suppose (S, o) is a commutative and idempotent semigroup.
@ (S, <L) is a meet-semilattice with aglb b= a e b.
e (S, <P)is ajoin-semilattice with alub b = ae b.

Fact 4
Suppose (S, <) is a partially ordered set.

@ If (S, <) is a meet-semilattice, then (S, glb) is a commutative and
idempotent semigroup.

e If (S, <) is ajoin-semilattice, then (S, lub) is a commutative and
idempotent semigroup.

That is, semi-lattices represent the same class of structures as
commutative and idempotent semigroups.
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Semigroup properties (so far)

AS(S, o) = Vab,ce S, ae(bec)=(aeb)ec
IID(S, o, ) = Vae S, a=aea=aea

ID(S, o) = Fae S, IID(S, o, )
TIAN(S, o, w) = Vae S w=wea=aew

AN(S, o) = Jwe S, IAN(S, o, w)

CM(S, e) = Va,be S, aeb=bea

SL(S, ¢) = Vabe S, aebe{a, b}

IP(S, o) = Vac$§, aea=a

IR(S, o) = Vs, te S,set=t

IL(S, ¢) = Vs,te S,set=s

Recall that is right (IR) and is left (IL) are forced on us by wanting an

&-rule for SL((S, e) x (T,0))

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin@©2015 67/119



Bisemigroup properties (so far)

AAS(S, @, ®) = AS(S, @)
AID(S, @, ®) = ID(S, @)
ACM(S, @, ®) = CM(S, @)
MAS(S, &, ®) = AS(S, ®)
MID(S, @, ®) = ID(S, ®)
LD(S, &, ®) = Vab,ceS, ap(bdc)=(a®b)e(axc)
RD(S, @, ®) = Va,b,ce S, (adb)ec=(avc)d(b®c)
ZA(S, @, ®) = 30¢€ S, ID(S, @, 0) AIAN(S, ®, 0)
0A(S, ®, ®) = d1€ 8, IID(S, ®, 1) AIAN(S, @, 1)
ASL(S, @, ®) = SL(S, &)
AIP(S, @, ®) = IP(S, @)
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Operations for adding a zero, a one

AddZero(0, (S, ®, ®)) = (Sw{0}, &Y, )

Addone(T, (S, @, ®)) = (Sw{T}, o, &Y

Recall
a (if b =inr(«))
aedp = b (if a = inr(a))
inl(x e y) (if a=inl(x), b = inl(y))
inrf(w)  (if b = inr(w))
aelp = inr(w)  (if a = inr(w))
inl(x e y) (if @ = inl(x), b= inl(y))
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We can “inherit” semigroup rules

Examples

ACM(AddZero(0, (S, @, ®))) CM(AddId(0, (S, @)))

CM(S, @)

(]

MID(AddZero(0, (S, @, ®))) ID(AddAn(0, (S, ®)))

ID(S, ®)

all
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Property management for AddZero

“Inherited” rules
AAS(AddZero(0, (S, @, ®))) < AS(S, @)
AID(AddZero(0, (S, ®, ®))) < TRUE
ACM(AddZero(0, (S, @, ®))) < CM(S, @)
ASL(AddZero(0, (S, @, ®))) < SL(S, @)
ATP(AddZero(0, (S, @, ®))) < IP(S, @)
MAS(AddZero(0, (S, @, ®))) < AS(S, ®)
MID(AddZero(0, (S, @, ®))) < ID(S, ®)
Easy Exercises
LD(AddZero(0, (S, @, ®))) < LD(S, @, ®)
RD(AddZero(0, (S, @, ®))) & RD(S, @, ®)
ZA(AddZero(0, (S, @, ®))) < TRUE
OA(AddZero(0, (S, @, ®))) < OA(S, @, ®)

o
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Easy Exercises?

Consider left distributivity (LD)

a b c ag¥ (ba¥c) | (acd b) ol (ac¥ c)
inl(&) | inl(b') | inl(¢’) || inl(& ® (b’ & ¢)) | inl((& @ b') ® (& @ C))
inr(0) | inl(®’) | inl(c’) inr(0) inr(0)
inl(&) | inr(0) | inl(c’) inl(@ @ ¢) inl(@ @ ¢)
inl(&) | inl(®') | inr(0) inl(d & b') inl(d ® b')
inl(&) | inr(0) | inr(0) inr(0) inr(0)
inr(0) | inr(0) | inr(0) inr(0) inr(0) |
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However, adding a one is more complicated!
Consider left distributivity (L)

a b c agid(ba¥c) | (actb)e (a®lc)
inl() | inl(¥) | inl(¢’) || inl(d @ (V' @ ¢)) | inl((&d ® V) @ (& ® ¢))
inr(1) | inl(®') | inl(¢') inl(b' & ) inl(b' & ¢)
inl(&') | inr(1) | inl(c’) inl(&) inl((& ® (& ®))
inl(&) | inl(p’) | inr(1) inl(&) inl((& @ V') @ &)
inl(&) | inr(1) | inr(1) inl(&) inl(ad @ &)
inr(1) | inr(1) | inr(1) inr(1) inr(1)

v
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What is this?

a=(avb)oa
Suppose @ is idempotent and commutative and we let
a<b=a=aob. We know that

b<c=avb<awxc
sinceb=bacimpliesavb=a® (bdc)=(ab)®(a®c). Thatis
® is order preserving.

Now a = (a® b) @ ais telling us something else, that

a<a®b.

That is, that multiplication is inflationary.
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Absorption

ABsorption properties (name is from lattice theory)

RAB(S, @, ® = Va,be S, a=(agb)da=ad(ax®b)
LAB(S, @, ®) = Va,be S, a=(bea)da=ad(bxa)
Observations
RAB(S, @, ®) AID(S, ®) = IP(S, ®)
LAB(S, ®, ®) AID(S, @) = IP(S, ®)
LD(S, &, ®) AOA(S, &, ®) = RAB(S, &, ®)
RD(S, @, ®) AOA(S, @, ®) = LAB(S, &, ®)

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin@©2015 75/119



Rules for absorption? Consider RAB

AddZero
a b (ae¥ b)ela | adl(agdb)
inl(&) | inl(P') || inl((& @ b') @ a) | inl(d & (& ® b))
inr(0) | inl(b') inr(0) inr(0)
inl(&') | inr(0) inl(&) inl(&)
inr(0) | inr(0) inr(0) inr(0)

RAB(AddZero(0, (S, @, ®))) < RAB(S, &, ®)
0, (S, ®

LAB(AddZero(0, (S,

, ®)) & LAB(S, @, ®)
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Rules for absorption? Consider RAB

AddOne
a b (agilb)ea | aod (ac¥b)
inl(&) | inl(b') || inl((& @ &) ® a) | inl(d @ (& @ b))
inr(1) | inl(b') inr(1) inr(1)
inl(&) | inr(1) inl(&) inl(d & &)
inr(1) | inr(1) inr(1) inr(1) |
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Property management for AddOne

“Inherited” rules

AAS(AddOne(1, (S, @, ®))) <
AID(AddOne(1, (S, @, ®))) <
ACM(AddOne(1, (S, @, ®))) <
ASL(AddOne(1, (S, @, ®))) <
AIP(AddOne(1, (S, @, ®))) <
MAS(AddOne(1, (S, @, ®))) <
MID(AddOne(1, (S, @, ®))) <

AS(S,
ID(S,

CM(S
SL(S,
IP(S,

AS(S,
TRUE

@)
®)
, )
@)
®)
®)
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Property management for AddOne

LD(AddOne(1, (S, @, ®))) & LD(S, @, ®) ARAB(S, &, ®)
ANIP(S, @)
RD(AddOne(1, (S, @, ®))) < RD(S, @, ®) ALAB(S, &, ®)
AIP(S, @)
ZA(AddOne(1, (S, @, ®))) < ZA(S, @, ®)
0A(AddOne(1, (S, @, ®))) < TRUE
RAB(AddOne(1, (S, @, ®))) & RAB(S, @, ®) AIP(S, @)
LAB(AddOne(1, (S, @, ®))) < LAB(S, @, ®)AIP(S, @)
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We have to start somewhere!

S| | ® |0|1|LD|RD|ZA|OA | LAB | RAB
N | min | + 0| » * * * *
Nimax| + |0]|0| x * * *
N |max | min | 0 * * * * *
N | min | max 0| = * * * *
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Introducing Minimax

minimax = AddZero(oco, (N, min, max))
= (N&{oo}, minid, max®)

Some examples ...
inl(17) minid inr(cc) = inl(17)

inl(17) maxZ inr(co) = inr(co)

... which we will usually write as

17 minco = 17

17maxoco = oo
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Dendrograms

Hagfishes

] Agnathans ~=mm

Lampreys

Cartilaginous fishes

Ray-finned fishes ‘4

r— 02| ACANTH

Gnath a

] Lobe-finned fishes

Osteichthyes Lungfish

Caecilians
Sarcopterygn Salamanders Amphiblans q
Frogs _

Turtles =

S Tuatara
Tetrapoda i

Lizards and snakes Reptiles

Crocodilians *

Birds

Monotremes .

Marsupials Mammals &

Placentals -

http://www.instituteofcaninebiology.org/

how-to-read-a-dendrogram.html
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An application of Minimax

@ Given an adjacency matrix A over minimax,

@ suppose that A(/, j) =0« i =,

@ suppose that A is symmetric (A(i, j) = A(j, i),

@ interpret A(i, j) as measured dissimilarity of / and j,
@ interpret A*(/, j) as inferred dissimilarity of / and j,

Many uses
@ Hierarchical clustering of large data sets
@ Classification in Machine Learning
@ Computational phylogenetic
° ..
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A (random) minimax matrix A drawn as a graph
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The solution A* drawn as a dendrogram
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Hierarchical clustering? Why?
Suppose (Y, <, +) is a totally ordered with least element 0.

Metric

A metric for set X over (Y, <, +)isafunctiond € X x X — Y such
that

eVx,yeX,dx,y)=0cx=y
o Vx,y € X, d(x, y)=d(y, x)
e Vx,y,ze X, d(x, y) <d(x, z) +d(z, y)

Ultrametric

An ultrametric for set X over (Y, <) is a function d € X x X — Y such
that

@ Vxe X, dx, x)=0
o Vx,y € X, d(x, y)=d(y, x)
e Vx,y,ze X, d(x, y) <d(x, zymaxd(z, y)

v
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Fun Facts

minimax and ultrametrics

If Ais an n x n symmetric minimax adjacency matrix, then A* is a finite
ultrametric for {0, 1, ..., n— 1} over (N*°, <)).

v

minimax and spanning trees
The set of arcs

{(, /) e ETA(, j) =A(i, j)}
contain a spanning tree
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A spanning tree derived from A and A*

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin©2015 88/119



Recall

Lexicographic Product of Semigroups
Suppose that

AS(S, ®s) ACM(S, &g) ASL(S, ®s) ANAS(T, &71).

Let
(Sa EBS) ; (Ta EBT) = (S X T7 EBS ; G97')
where
(31 Ps So, 11 BT t2) S1 = 81 bs So = S
(s1, ti) ©s X @7 (S2, B) = (S1 Bs S2, 1) $1=5DsS2# S

(81 Ds 82, ) Sy # 81 DsSe =S
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Lexicographic product for Bi-semigroups

Suppose that
AS(S, ®s) ACM(S, ®g) ASL(S, ®s) ANAS(T, &71).

Let

(S, ®s, ®s) X (T, &7, ®7)=(Sx T, s X &7, Qg X OT)
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Examples

@ = min X max, ® = + x min

(3,10)® ((17,21) ® (11,4)) = (3,10)® (11,4)
= (14,4

~—

((38,10)®(17,21)) ® ((3,10) ® (11,4)) = (20,10) @ (14,4)
= (14,4)

@ = max X min, ® = min x+

(3,10)® ((17,21) & (11,4)) = (3,10)®(17,21)
= (3,31)

((3,10)®(17,21)) ® ((3,10) ® (11,4)) = (3,31) @ (3,14)
= (3,14)
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Distributivity?
Theorem: If &g is commutative and selective, then

T7 @7, ®T)) e

LD((S, &s, ®s) X (
YALD(T, &1, ®7) A (LC(S, ®5) VLK(T, ®71))

LD(S, s, ®s
(0]
RD((S, @s, ®s) X (T, &1, ®71)) <
RD(S, &5, ®s) ARD(T, &1, ®7) A (RC(S, ®s) VRK(T, ®71))

v

Left and Right Cancellative

LC(X, o)
RC(X, o)

Va,b,ce X, cea=ceb=a=>
Va,b,ce X, aec=bec=a=>

Left and Right Constant

LK(X, e)
RK(X, o)

Va,b,ce X, cea=ceb
vVa,b,ce X, aec=bec

v
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Why bisemigroups?

But wait! How could any semiring satisfy either of these properties?

LC(X, e) = Vab,ce X, cea=ceb=a=>b
LK(X, ) = Vab,cecX, cea=ceb

@ For ILC, note that we always have 0 ® a= 0 ® b, so ILC could only
hold when S = {0}.

@ ForLK,leta=1 and b = 0 and LK leads to the conclusion that
every c is equal to 0 (again!).

constructing a semiring. Alternatively, we might want to complicate our

Normally we will add a zero and/or a one as the last step(s) of
properties so that things work for semirings. A design trade-off! J

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin@©2015 93/119



Proof of « for LD

Assume
(1) LD(S, @s, ®s)
(2) LD(T, ©r, ®@1)
(3) LC(S, ®g) VLK(T, ®71)
(4) IP(S, @g).

Let® = dg X 1 and @ = ®g X 7. Suppose
(s1,t1), (S2,2), (s3,83) € Sx T.
We want to show that

lhs

(317 t1)®((32, t2)@(837 tS))
((s1, 1) @ (s2, &) & ((s1, 1) ® (83, 13))
rhs
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Proof of « for LD

We have
lhs = (s1, i) @((S2, ) D (83, 13))
= (81, ti) ®(S2 ®s S3, lins)
= (51 ®s(S2®s83), t @7 lins)
ths = ((s1, 1) ®(S2, B))®((S1, ) @ (S5, t3))

(

(51 ®s 82, h @7 1) D (S1 ®s S, 1 AT B3)
= ((51 ®s82) @5 (S1 @5 83), bns)

=(1) (31 ®s (32 Ds 33)7 trhs)

where tns and iy are determined by the appropriate case in the
definition of . Finally, note that

lhs = ths & ths = B @ fins.
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Proof by cases on s, &g S3
Case1:58 =8 ®gS3=2583. Then tp, = b D7 t3 and

b @7t =t T (L OT13) =(2) (H @7 8) OT (4 V7 B3).
Since s, = s3 we have s1 ®g S = 1 ®g $3 and

S1 ®s S2 =4 (51 ®s S2) Ds (S1 ®s S3) =(4) S1 Vs S3-

Therefore,
ths = ( @7 L) © (4 ®T B3) = b DT lins.
Case 2 : s, = S> ®g S3 # S3. Then fyps = b and

h 71 ths = H Q7 2.
Since s> = s> $g S3 we have

$1 @5 S2 = S1 ®s (S2 Bs S3) =(1) (51 ®s S2) Ps (S1 ®s S3)-
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Case2.151 58 # 81 ®gS3. Thentys = H 7 b = H @7 bips.
Case 2.2 51 ®g Sp = S1 ®g S3. Then

bns = (t @7 &) OT (h OT3) =(2) & OT (2 DT B3)

We need to consider two subcases.

Case 2.2.1: Assume LC(S, ®g). But 81 ®5 S2 = S1 ®5 S3 = S» = S3,
which is a contradiction.

Case 2.2.2 : Assume LK(T, ®7). In this case we know

Va,be X, h®ra=H4 71 b.
Letting a=t &7 t3 and b = t, we have

bhs = QT (L ®TB) =1 @7 =t QT lps.

Case 3: s, # S» g S3 = S3. Similar to Case 2.
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Other direction, =
Prove this:

ﬁ]L]D(S, s, ®3)\/—\]L]D)(T, DT, ®T)\/(—|]L(C(S, ®S)/\—|LK(T, ®T))
= ﬁI[‘]D)(('Sv ®s, ®S) X (T7 o7, ®T))

Case 1: -LD(S, ®g, ®g). Thatis
da,b,ce S, a®s(b®sc) # (a®sb) bs(a®g ).
Pick any t € T. Then for some t;, >, t3 € T we have

(a ) ((b, )@ (c, 1))
= (a )e(bosc, t)
= (av ®S(b s C)7 t2)
# ((a®sb) &s(a®sC), )
= (awsgh, tert)d(a®sec, taTl)
= ((a )e(b t)a((a ) (c 1)

Case 2: -LD(T, &7, ®7). Similar.
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Case 3: (-LC(S, ®s) A -LK(T, ®71)). That is
da,b,ce S, cersa=cxgbna#b

and
X, y,zeT, ZQr X £ ZRTY.

Since @g is selective and a # b, we have a=a®gbor b= adgb.
Assume without loss of generality that a= a®g b # b.
Suppose that t;, &, 13 € T. Then

lhs = (c, h)®((a k) (b, &)
(¢, h)®(a, k)
= (c®sa hoTh)

ths = ((c, )@ (a b)D((c, ) (b, t3))
= (c®sa hTh)d(c®sh, iy ¥T13)
= (c®sa, (horb)or (@1 hB))
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Our job now is to select t, o, t3 so that
ths =t @7 b # (4 @7 0) OT (h QT B3) = bins.-
We don’t have very much to work with! Only
Ix,y,zeT, zrx#zZRT1Y.

In addition, we can assume LD(T, ©7, ®71) (otherwise, use Case 2!),
SO

ths = ty @1 (L ©T 13).
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We need to select ty, &, I3 so that

s = QT b #t Q7 (L &7 l3) = bis-

Case3.1: z@rx=z®7 (x®7Yy). Thenletting ty = z, &, = y, and
f3 = x we have

bhs =ZQTY #ZQR7X=ZQ7 (XBTY) = tins.

Case3.2: z@ry=z®7(X®T1Yy). Then letting t; = z, &, = x, and
3 = y we have

bhs =ZQRQTX#ZQRT7Y =27 (XDBTY) = bis.

Case33: zrx#z@7(x®rYy)#z®T7Yy. Thenletting t; = z,
lr = x, and &3 = y we have

tlhs:Z®TX7éz®T(X@Ty): ths-

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin@©2015

101/119



Today

@ Widest shortest paths

@ Solving some matrix equations
@ Counting to infinity, as does RIP
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Widest shortest paths

wsp = AddZero(oop, (N, min, +) X AddOne(coy, (N, max, min)))
= ((Nx (Nw{oo1})) W {ooz}, ®, ®, inr(coz), inl(0, inr(coy)))
where . .
& = (minxmax& )i
id
© = (+xmind ),
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Example

inl(3,inl(10)) ® (inl(17,inl(21)) & inl(11,inl(4)))
inl(3,inl(10)) ® inl(11,inl(4))
inl(14,inl(4))

(inl(3,inl(10)) ® inl(17,1inl(21))) @ (inl(3,inl(10)) ® inl(11,inl(4)))
= inl(20,inl(10)) ¢ inl(14,inl(4))
inl(14,inl(4))

But is wsp a semiring?
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Turn the cranks!
Turning the crank for LD:

LD(AddZero(coz, (N, min, +) X AddOne(ooq, (N, max, min))))
< LD((N, min, +) X AddOne(coq, (N, max, min)))

< LD(N, min, +) A LD(AddOne(co1, (N, max, min)))
A (LC(N, 4) V LK(AddID(co1, (N, min)))

< TRUE A (LD(N, max, min) A RAB(N, max, min) A IP(N, max))
A (TRUE VvV LK(AddID(co4, (N, min)))

& TRUE A (TRUE A TRUE A TRUE)
A (TRUE V LK(AddID(c01, (N, min)))

& TRUE

v
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Solving (some) equations
Theorem 6.1
If A is g-stable, then A* solves the equations

L=ALsI
and
R=RAal |
For example, to show L = A* solves the first equation:
A = A@
— Alg+1)

AT A0 .. . oA’ ABI
AAacAT T .. .aAa]) ol
AA@) g1
= AA* ol
Note that if we replace the assumption “A is g-stable” with “A* exists,”

then we require that ® distributes over infinite sums.
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A more general result

Theorem Left-Right
If A is g-stable, then L = A*B solves the equation

L=AL®B
and R = BA* solves
R=RA@B. |
For the first equation:
A'B = AUB
— Ale+)B

= (Ao A ... oA’ AIB
= (A" oAe... oA’ A)BDB
= AA0A"o..oADI)BaB
= AA@B)¢B
= A(A*B)&B
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The “best” solution

If Ais g-stable and g < k, then

Suppose Y is a matrix such that
} Y =AY ¢ A*
Y=AY®I
Y = AYal Vg A
A'Y & A and if & is idempotent, then
= A((AYa ) al
= A2YoAql Y<tA
_ A2 1
B A Y_@A( ) So A* is the largest solution. What
s does this mean in terms of the sp
= Aty g AW semiring?
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Example with zero weighted cycles using sp semiring

A* (= A@lin this case) solves
/ X=XAal
10
But so does this (dishonest) matrix!
0

0 0o 1 2
0 0 9 9
10 F = 1|10 00
\ 2|l oo 0 O
For example :
o 1 2
o [oco 10 10 (FA ®1)(0,1)
A = o oo 0 = min F(0,q) + A(g,1)
2l oo 0 o0 qe_{0,1,2}
= min(0+ 10,9 + 00,9+ 0)
= 9
= F(0,1)
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Recall our basic iterative algorithm

A0 — |
A+ —  AAK g

A closer look ...
ARG ) = (i) @ @D AU, u)A¥ (u,j)
u

= Ii)o P Al uAR(u,))

(i,u)eE

v

This is the basis of distributed Bellman-Ford algorithms (as in RIP and
BGP) — a node i computes routes to a destination j by applying its link
weights to the routes learned from its immediate neighbors. It then

makes these routes available to its neighbors and the process
continues...
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What if we start iteration in an arbitrary state M?

In a distributed environment the topology (captured here by A) can
change and the state of the computation can start in an arbitrary state
(with respect to a new A).

A — M
AU = AAl g1

Theorem
For 1 < k,
Al — AkM g A

If A is g-stable and g < k, then

Al — A“M @ A

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applice T.G.Griffin@©2015 111/119



RIP-like example — counting to convergence (1)

AN A
S N

Adjacency matrix Aq Adjacency matrix Ao
o 1 2 3 o 1 2 3

0 [ oo 1 1 oo 0 [0 1 1 o0

1 1 oo 1 A1 1 1 oo 1 o©

2 1 1 o~ 10 2 1 1 oo 10

3| oo 1 10 o0 3| oo oo 10 oo

See RFC 1058.
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RIP-like example — counting to convergence (2)

AN, AT
Lo b

The solution A} The solution A3
o1 2 3 o 1 2 3
o0 1 1 2 of 0 1 1 11
11011 {1 0 1 11
2|1 10 2 211 1 0 10
32120 3 11 11 10 0
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RIP-like example — counting to convergence (3)

The scenario: we arrived at A7, but then links {(1,3), (3,1)} fail. So
we start iterating using the new matrix Ao.

Let Bk represent A2§Vl|(>, where M = Aj.
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)

4

(

RIP-like example — counting to convergence

10

11

o ~ N ™ - N ™ - N ™
I I I
™ < Lo
m m [11]
[S2] M AN O Mmoo
1
N~NO a+~r-0Q -o2
— O QN
- O ~
o - ~—
O+~ QA AR - T
L 1
SO -~ N ™ — N ™ - AN ™
I I I
o — [
m m m
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RIP-like example — counting to convergence (5)

o 1 2 3 o 1 2 3
o0 1 1 7 ol 0 1 1 107
11101 7 111 0 1 10
I36_21107 Bg‘211010
32120 3 [ 11 11 10 0 |
0 1 2 3 o 1 2 3
ol 0 1 1 8] ol 0 1 1 117
111 0 1 8 111 0 1 11
Bz = ,11 1 0 8 Bo = , 11 1 0 10
3 [ 11 11 10 0 | 3 [ 11 11 10 0 |
0 1 2 3
o[ 0O 1 1 97
11 0 1 9
Bs = , 1 1 0 9
3 [ 11 11 10 0 |
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RIP-like example — counting to infinity (1)

1 1 1 1
O SR OO R CING
The solution A} The solution Aj
01 2 3 o 1 2 3
o[0 1 1 2 o[ 0 1 1 o0
1.0 11 111 0 1 o0
2|1 10 2 2| 1 1 0 o
312120 300 o0 oo O

Now let Bk represent A3|<vl|(>’ where M = A7.
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RIP-like example — counting to infinity (2)

B>

0
o[ O
11
o2 01
3 2
0
o[ O
I N
o201
3 | o©
0
o[ O
N
o201
3 | o

_L_LO_L_L

840448-;0-;4

2 3
1 2
1 1
0 2
20 Bszs =
2 3
1 2
1 3
0 2
oo 0 |
23 Bogg =
1 3
1 3
0 3
oo 0 |

TN =2 o

w2 o
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RIP-like example — What’s going on?

Recall
A (i, ) = AM(i, ) @ A*(i, j)

@ A*(i, j) may be arrived at very quickly

@ but AXM(/, j) may be better until a very large value of k is reached
(counting to convergence)

@ or it may always be better (counting to infinity).

Solutions?
@ RIP: co =16

@ In the next lecture we will explore various ways of adding paths to
metrics and eliminating those paths with loops ....
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