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Shortest paths example, sp = (N∞, min, +,∞, 0)
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The adjacency matrix

A =



1 2 3 4 5

1 ∞ 2 1 6 ∞
2 2 ∞ 5 ∞ 4
3 1 5 ∞ 4 3
4 6 ∞ 4 ∞ ∞
5 ∞ 4 3 ∞ ∞
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Shortest paths solution
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3 A∗ =



1 2 3 4 5

1 0 2 1 5 4
2 2 0 3 7 4
3 1 3 0 4 3
4 5 7 4 0 7
5 4 4 3 7 0


solves this global optimality
problem:

A∗(i , j) = min
p∈P(i, j)

w(p),

where P(i , j) is the set of all paths
from i to j .
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Widest paths example, bw = (N∞, max, min, 0, ∞)
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A∗ =



1 2 3 4 5

1 ∞ 4 4 6 4
2 4 ∞ 5 4 4
3 4 5 ∞ 4 4
4 6 4 4 ∞ 4
5 4 4 4 4 ∞


solves this global optimality
problem:

A∗(i , j) = max
p∈P(i, j)

w(p),

where w(p) is now the minimal
edge weight in p.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lectures 01 — 08T.G.Griffin c©2015 4 / 119



Unfamiliar example, (2{a, b, c}, ∪, ∩, {}, {a, b, c})
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{a}

{b c} {b}

{a b} {b}

{a b c} {c}

We want A∗ to solve this global
optimality problem:

A∗(i , j) =
⋃

p∈P(i, j)

w(p),

where w(p) is now the intersection
of all edge weights in p.

For x ∈ {a, b, c}, interpret x ∈ A∗(i , j) to mean that there is at least
one path from i to j with x in every arc weight along the path.

A∗(4, 1) = {a, b} A∗(4, 5) = {b}
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Another unfamiliar example, (2{a, b, c}, ∩, ∪)

1

2

3

4

5

{a}

{b c} {b}

{a b} {b}

{a b c} {c}

We want matrix R to solve this
global optimality problem:

A∗(i , j) =
⋂

p∈P(i, j)

w(p),

where w(p) is now the union of all
edge weights in p.

For x ∈ {a, b, c}, interpret x ∈ R(i , j) to mean that every path from i
to j has at least one arc with weight containing x .

A∗(4, 1) = {b} A∗(4, 5) = {b} A∗(5, 1) = {}
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We will start by looking at Semirings

name S ⊕, ⊗ 0 1 possible routing use

sp N∞ min + ∞ 0 minimum-weight routing
bw N∞ max min 0 ∞ greatest-capacity routing
rel [0, 1] max × 0 1 most-reliable routing
use {0, 1} max min 0 1 usable-path routing

2W ∪ ∩ {} W shared link attributes?
2W ∩ ∪ W {} shared path attributes?

A wee bit of notation!
Symbol Interpretation
N Natural numbers (starting with zero)
N∞ Natural numbers, plus infinity
0 Identity for ⊕
1 Identity for ⊗
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Recommended Reading on Semiring Theory
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Semirings (generalise (R,+,×,0,1))

We will look at the axioms of semirings. The most important are

distributivity

l : a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c)
r : (a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c)
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Distributivity, illustrated

di j

a

b

c

a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c)

j makes the choice = i makes the choice
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Should distributivity hold in Internet Routing? No!

short path through a peer

customer provider

long path through a customer

i j d

j prefers long path though one of its customers (not the shorter
path through a competitor)
given two routes from a provider, i prefers the one with a shorter
path

More on this later in the term ...
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The (Tentative) Plan
1 9 October : Motivation, overveiw
2 13 October : Semigroups and Orders
3 16 October : Semirings — Theory, algorithms
4 20 October : Semirings — Constructions
5 23 October : Semirings — Constructions
6 27 October : Semirings — Constructions
7 30 October : Beyond Semirings — AMEs — “functions on arcs”
8 3 November : AME Constructions (HW 1 due)
9 6 November : Protocols : RIP, EIGRP (from a theoretical perspective)
10 10 November : Inter-domain routing in the Internet I
11 13 November : Inter-domain routing in the Internet II
12 17 November : Beyond Semirings — Global vs Local optimality
13 20 November : More on Global vs Local optimality
14 24 November : Dijkstra revisited (HW 2 due)
15 27 November : Bellman-Ford revisited
16 1 December : Other algorithms

12 January : HW 3 due
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What is a semigroup?
A few important semigroup properties.
Cayley’s Theorem for semigroups.
Constructing new semigroups from old.
Homework 1.
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Semigroups

Semigroup
A semigroup (S, •) is a non-empty set S with a binary operation such
that

AS associative ≡ ∀a,b, c ∈ S, a • (b • c) = (a • b) • c

Important Assumption — We will ignore trival semigroups
We will impicitly assume that 2 ≤| S |.

Note
Many useful binary operations are not semigroup operations. For
example, (R, •), where a • b ≡ (a + b)/2.
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Some Important Semigroup Properties

ID identity ≡ ∃α ∈ S, ∀a ∈ S, a = α • a = a • α
AN annihilator ≡ ∃ω ∈ S, ∀a ∈ S, ω = ω • a = a • ω
CM commutative ≡ ∀a,b ∈ S, a • b = b • a
SL selective ≡ ∀a,b ∈ S, a • b ∈ {a, b}
IP idempotent ≡ ∀a ∈ S, a • a = a

A semigroup with an identity is called a monoid.

Note that

SL(S, •) =⇒ IP(S, •)
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A few concrete semigroups

S • description α ω CM SL IP
S left x left y = x ? ?
S right x right y = y ? ?
S∗ · concatenation ε
S+ · concatenation
{t , f} ∧ conjunction t f ? ? ?
{t , f} ∨ disjunction f t ? ? ?
N min minimum 0 ? ? ?
N max maximum 0 ? ? ?

2W ∪ union {} W ? ?

2W ∩ intersection W {} ? ?

fin(2U) ∪ union {} ? ?

fin(2U) ∩ intersection {} ? ?
N + addition 0 ?
N × multiplication 1 0 ?

W a finite set, U an infinite set. For set Y , fin(Y ) ≡ {X ∈ Y | X is finite}
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A few abstract semigroups

S • description α ω CM SL IP
2U ∪ union {} U ? ?

2U ∩ intersection U {} ? ?

2U×U on relational join IU {}
X → X ◦ composition λx .x

U an infinite set
X on Y ≡ {(x , z) ∈ U × U | ∃y ∈ U, (x , y) ∈ X ∧ (y , z) ∈ Y}
IU ≡ {(u, u) | u ∈ U}

subsemigroup
Suppose (S, •) is a semigroup and T ⊆ S. If T is closed w.r.t • (that
is, ∀x , y ∈ T , x • y ∈ T ), then (T , •) is a subsemigroup of S.
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Isomorphism

Reminder of function terminology
f ∈ X → Y
f is injective (one-to-one) ≡ ∀x , y ∈ X , f (x) = f (y) =⇒ x = y
f is surjective (onto) ≡ ∀y ∈ Y , ∃x ∈ X , f (x) = y
f is bijective ≡ f is injective and f is surjective

Isomorphism
If S and T are algebraic structures, then they are said to be
isomorphic, written S ≈ T , if there exists a bijective funtion f ∈ S → T
which preserves structure.
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Semigroup Isomorphism S ≈ T

(S, •) a semigroup
(T , �) a semigroup
f ∈ S → T a bijection
∀a,b ∈ S, f (a • b) = f (a) � f (b)

Cayley’s Theorem for Semigroups
Every semigroup (S, •) is isomorphic to a subsemigroup of
(S → S, ◦).
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Partial proof of Cayley’s theorem

fs(a) ≡ s • a φ ∈ S → T
T ≡ {fs | s ∈ S} ⊆ S → S φ(s) ≡ fs

φ(s • t) = φ(s) ◦ φ(t)
fs•t(a) = (s • t) • a

= s • (t • a)
= s • ft(a)
= fs(ft(a))
= (fs ◦ ft)(a)

Wait, is it injective?

fs = ft ⇔ ∀a ∈ S, fs(a) = ft(a)⇔ ∀a ∈ S, s • a = t • a

But we want s = t ! If there is an identity α ∈ S, then letting a = α we
have s • α = t • α, that is s = t .

But when there is no identity? (See Homework 1.)
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Add identity

AddId(α, (S, •)) ≡ (S ] {α}, •id
α)

where

a •id
α b ≡


a (if b = inr(α))
b (if a = inr(α))

inl(x • y) (if a = inl(x), b = inl(y))

disjoint union

A ] B ≡ {inl(a) | a ∈ A} ∪ {inr(b) | b ∈ B}
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Add identity

Easy Exercises

AS(AddId(α, (S, •))) ⇔ AS(S, •)
ID(AddId(α, (S, •))) ⇔ TRUE
AN(AddId(α, (S, •))) ⇔ AN(S, •)
CM(AddId(α, (S, •))) ⇔ CM(S, •)
IP(AddId(α, (S, •))) ⇔ IP(S, •)
SL(AddId(α, (S, •))) ⇔ SL(S, •)
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Inserting an annihilator

AddAn(ω, (S, •)) ≡ (S ] {ω}, •an
ω )

where

a •an
ω b ≡


inr(ω) (if b = inr(ω))
inr(ω) (if a = inr(ω))

inl(x • y) (if a = inl(x), b = inl(y))
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Add annihilator

Easy Exercises

AS(AddAn(α, (S, •))) ⇔ AS(S, •)
ID(AddAn(α, (S, •))) ⇔ ID(S, •)
AN(AddAn(α, (S, •))) ⇔ TRUE
CM(AddAn(α, (S, •))) ⇔ CM(S, •)
IP(AddAn(α, (S, •))) ⇔ IP(S, •)
SL(AddAn(α, (S, •))) ⇔ SL(S, •)
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Lexicographic Product of Semigroups

Lexicographic product semigroup
Suppose that semigroup (S, •) is commutative, idempotent, and
selective and that (T , �) is a semigroup.

(S, •) ~× (T , �) ≡ (S × T , ?)

where ? ≡ • ~× � is defined as

(s1, t1) ? (s2, t2) =


(s1 • s2, t1 � t2) s1 = s1 • s2 = s2

(s1 • s2, t1) s1 = s1 • s2 6= s2

(s1 • s2, t2) s1 6= s1 • s2 = s2
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Examples
(N, min) ~× (N, min)

(1, 17) ? (2,3) = (1,17)
(2, 17) ? (2,3) = (2,3)
(2, 3) ? (2,3) = (2,3)

(N, min) ~× (N, max)

(1, 17) ? (2,3) = (1,17)
(2, 17) ? (2,3) = (2,17)
(2, 3) ? (2,3) = (2,3)

(N, max) ~× (N, min)

(1, 17) ? (2,3) = (2,3)
(2, 17) ? (2,3) = (2,3)
(2, 3) ? (2,3) = (2,3)
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Assuming AS(S, •) ∧ CM(S, •) ∧ IP(S, •) ∧ SL(S, •)
AS((S, •)~×(T , �)) ⇔ AS(T , �)
ID((S, •)~×(T , �)) ⇔ ID(S, •) ∧ ID(T , �)
AN((S, •)~×(T , �)) ⇔ AN(S, •) ∧ AN(T , �)
CM((S, •)~×(T , �)) ⇔ CM(T , �)
IP((S, •)~×(T , �)) ⇔ IP(T , �)
SL((S, •)~×(T , �)) ⇔ SL(T , �)
IR((S, •)~×(T , �)) ⇔ FALSE
IL((S, •)~×(T , �)) ⇔ FALSE

All easy, except for AS (See Homework 1!).
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Direct Product of Semigroups

Let (S, •) and (T , �) be semigroups.

Definition (Direct product semigroup)
The direct product is denoted

(S, •)× (T , �) ≡ (S × T , ?)

where
? = • × �

is defined as
(s1, t1) ? (s2, t2) = (s1 • s2, t1 � t2).
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Easy exercises

AS((S, •)× (T , �)) ⇔ AS(S, •) ∧ AS(T , �)
ID((S, •)× (T , �)) ⇔ ID(S, •) ∧ ID(T , �)
AN((S, •)× (T , �)) ⇔ AN(S, •) ∧ AN(T , �)
CM((S, •)× (T , �)) ⇔ CM(S, •) ∧ CM(T , �)
IP((S, •)× (T , �)) ⇔ IP(S, •) ∧ IP(T , �)

What about SL?
Consider the product of two selective semigroups, such as
(N, min)× (N, max).

(10, 10) ? (1, 3) = (1, 10) 6∈ {(10, 10), (1, 3)}

The result in this case is not selective!
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Direct product and SL?

SL((S, •)× (T , �)) ⇔ (IR(S, •) ∧ IR(T , �)) ∨ (IL(S, •) ∧ IL(T , �))

IR is right ≡ ∀s, t ∈ S, s • t = t
IL is left ≡ ∀s, t ∈ S, s • t = s

See Homework 1
IR((S, •)× (T , �)) ⇔ IR(S, •) ∧ IR(T , �)
IL((S, •)× (T , �)) ⇔ IL(S, •) ∧ IL(T , �)
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Revisit other constructions ...

IR(AddId(α, (S, •))) ⇔ FALSE
IL(AddId(α, (S, •))) ⇔ FALSE

IR(AddAn(α, (S, •))) ⇔ FALSE
IL(AddAn(α, (S, •))) ⇔ FALSE

Assuming AS(S, •) ∧ CM(S, •) ∧ IP(S, •) ∧ SL(S, •)
IR((S, •)~×(T , �)) ⇔ FALSE
IL((S, •)~×(T , �)) ⇔ FALSE
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Lifted Product

Lifted product semigroup

Assume (S, •) is a semigroup. Let lift(S, •) ≡ (fin(2S), •̂) where

X •̂Y = {x • y | x ∈ X , y ∈ Y}.

{1, 3, 17} +̂ {1, 3, 17} = {2, 4, 6, 18, 20, 34}
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AS(lift(S, •)) ⇔ AS(S, •)
ID(lift(S, •)) ⇔ ID(S, •) (α̂ = {α})
AN(lift(S, •)) ⇔ TRUE (ω = {})
CM(lift(S, •)) ⇔ CM(S, •)
SL(lift(S, •)) ⇔ IL(S, •) ∨ IR(S, •) ∨ (IP(S, •) ∧ | S | = 2)
IP(lift(S, •)) ⇔ SL((S, •))
IL(lift(S, •)) ⇔ FALSE
IR(lift(S, •)) ⇔ FALSE
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Why bother with all of these⇔ rules?

I would rather calculate than prove!

IP(lift(lift({t , f}, ∧))
⇔ SL({t , f}, ∧)
⇔ IL({t , f}, ∧) ∨ IR({t , f}, ∧) ∨ (IP({t , f}, ∧) ∧ | {t , f} | = 2)
⇔ FALSE ∨ FALSE ∨ (TRUE ∧ TRUE)
⇔ TRUE

Note
This kind of calculation will become more interesting as we introduce
more complex constructors and consider more complex properties —
such as those associated with semirings.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lectures 01 — 08T.G.Griffin c©2015 34 / 119



Homework 1

Each question is 25 points.
1 Finish the proof of Cayley’s theorem.
2 Prove

SL((S, •)× (T , �))
⇔

(IR(S, •) ∧ IR(T , �)) ∨ (IL(S, •) ∧ IL(T , �))

3 Assume that AS(S, •), AS(T , �), CM(S, •), IP(S, •), and SL(S, •)
hold. Prove that AS((S, •)~×(T , �)). Did you really need CM(S, •)?

4 (Rather difficult). Prove

SL(lift(S, •))
⇔

IL(S, •) ∨ IR(S, •) ∨ (IP(S, •) ∧ | S | = 2)
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Bi-semigroups and Pre-Semirings

(S, ⊕, ⊗) is a bi-semigroup when
(S, ⊕) is a semigroup
(S, ⊗) is a semigroup

(S, ⊕, ⊗) is a pre-semiring when
(S, ⊕, ⊗) is a bi-semigroup
⊕ is commutative

and left- and right-distributivity hold,

LD : a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c)
RD : (a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c)
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Semirings

(S, ⊕, ⊗, 0, 1) is a semiring when
(S, ⊕, ⊗) is a pre-semiring
(S, ⊕, 0) is a (commutative) monoid
(S, ⊗, 1) is a monoid
0 is an annihilator for ⊗
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Examples

Pre-semirings

name S ⊕, ⊗ 0 1

min_plus N min + 0
max_min N max min 0

Semirings

name S ⊕, ⊗ 0 1

sp N∞ min + ∞ 0
bw N∞ max min 0 ∞

Note the sloppiness — the symbols +, max, and min in the two tables
represent different functions....
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How about (max, +)?

Pre-semiring

name S ⊕, ⊗ 0 1

max_plus N max + 0 0

What about “0 is an annihilator for ⊗”? No!

Fix that ...
name S ⊕, ⊗ 0 1

max_plus−∞ N ] {−∞} max + −∞ 0
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Matrix Semirings
(S, ⊕, ⊗, 0, 1) a semiring
Define the semiring of n× n-matrices over S : (Mn(S), ⊕, ⊗, J, I)

⊕ and ⊗
(A⊕ B)(i , j) = A(i , j)⊕ B(i , j)

(A⊗ B)(i , j) =
⊕

1≤q≤n

A(i , q)⊗ B(q, j)

J and I

J(i , j) = 0

I(i , j) =


1 (if i = j)

0 (otherwise)
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Mn(S) is a semiring!

For example, here is left distribution

A⊗ (B⊕ C) = (A⊗ B)⊕ (A⊗ C)

(A⊗ (B⊕ C))(i , j)
=

⊕
1≤q≤n

A(i , q)⊗ (B⊕ C)(q, j)

=
⊕

1≤q≤n

A(i , q)⊗ (B(q, j)⊕ C(q, j))

=
⊕

1≤q≤n

(A(i , q)⊗ B(q, j))⊕ (A(i , q)⊗ C(q, j))

= (
⊕

1≤q≤n

A(i , q)⊗ B(q, j))⊕ (
⊕

1≤q≤n

A(i , q)⊗ C(q, j))

= ((A⊗ B)⊕ (A⊗ C))(i , j)

Note : we only needed left-distributivity on S.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lectures 01 — 08T.G.Griffin c©2015 41 / 119



Matrix encoding path problems

(S, ⊕, ⊗, 0, 1) a semiring
G = (V , E) a directed graph
w ∈ E → S a weight function

Path weight
The weight of a path p = i1, i2, i3, · · · , ik is

w(p) = w(i1, i2)⊗ w(i2, i3)⊗ · · · ⊗ w(ik−1, ik ).

The empty path is given the weight 1.

Adjacency matrix A

A(i , j) =


w(i , j) if (i , j) ∈ E ,

0 otherwise
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The general problem of finding globally optimal path
weights

Given an adjacency matrix A, find A∗ such that for all i , j ∈ V

A∗(i , j) =
⊕

p∈P(i, j)

w(p)

where P(i , j) represents the set of all paths from i to j .

How can we solve this problem?
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Matrix methods

Matrix powers, Ak

A0 = I

Ak+1 = A⊗ Ak

Closure, A∗

A(k) = I⊕ A1 ⊕ A2 ⊕ · · · ⊕ Ak

A∗ = I⊕ A1 ⊕ A2 ⊕ · · · ⊕ Ak ⊕ · · ·

Note: A∗ might not exist. Why?
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Matrix methods can compute optimal path weights

Let P(i , j) be the set of paths from i to j .
Let Pk (i , j) be the set of paths from i to j with exactly k arcs.
Let P(k)(i , j) be the set of paths from i to j with at most k arcs.

Theorem

(1) Ak (i , j) =
⊕

p∈Pk (i, j)

w(p)

(2) A(k)(i , j) =
⊕

p∈P(k)(i, j)

w(p)

(3) A∗(i , j) =
⊕

p∈P(i, j)

w(p)

Warning again: for some semirings the expression A∗(i , j) might not
be well-defeind. Why?
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Proof of (1)

By induction on k . Base Case: k = 0.

P0(i , i) = {ε},

so A0(i , i) = I(i , i) = 1 = w(ε).

And i 6= j implies P0(i , j) = {}. By convention⊕
p∈{}

w(p) = 0 = I(i , j).
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Proof of (1)

Induction step.

Ak+1(i , j) = (A⊗ Ak )(i , j)

=
⊕

1≤q≤n

A(i , q)⊗ Ak (q, j)

=
⊕

1≤q≤n

A(i , q)⊗ (
⊕

p∈Pk (q, j)

w(p))

=
⊕

1≤q≤n

⊕
p∈Pk (q, j)

A(i , q)⊗ w(p)

=
⊕

(i, q)∈E

⊕
p∈Pk (q,j)

w(i , q)⊗ w(p)

=
⊕

p∈Pk+1(i, j)

w(p)
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When does A∗ exist? Try a general approach.

(S, ⊕, ⊗, 0, 1) a semiring

Powers, ak

a0 = 1
ak+1 = a ⊗ ak

Closure, a∗

a(k) = a0 ⊕ a1 ⊕ a2 ⊕ · · · ⊕ ak

a∗ = a0 ⊕ a1 ⊕ a2 ⊕ · · · ⊕ ak ⊕ · · ·

Definition (q stability)

If there exists a q such that a(q) = a(q+1), then a is q-stable. By
induction: ∀t ,0 ≤ t ,a(q+t) = a(q). Therefore, a∗ = a(q).
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Fun Facts

Fact 1
If 1 is an annihiltor for ⊕, then every a ∈ S is 0-stable!

Fact 2
If S is 0-stable, then Mn(S) is (n − 1)-stable. That is,

A∗ = A(n−1) = I⊕ A1 ⊕ A2 ⊕ · · · ⊕ An−1

Why? Because we can ignore paths with loops.

(a⊗ c ⊗ b)⊕ (a⊗ b) = a⊗ (1⊕ c)⊗ b = a⊗ 1⊗ b = a⊗ b

Think of c as the weight of a loop in a path with weight a⊗ b.
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Shortest paths example, (N∞, min, +)

0

1

2

3

4

6

5 42

1

4

3

The adjacency matrix

A =



0 1 2 3 4

0 ∞ 2 1 6 ∞
1 2 ∞ 5 ∞ 4
2 1 5 ∞ 4 3
3 6 ∞ 4 ∞ ∞
4 ∞ 4 3 ∞ ∞



Note that the longest shortest path is (1, 0, 2, 3) of length 3 and
weight 7.
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(min,+) example

Our theorem tells us that A∗ = A(n−1) = A(4)

A∗ = A(4) = I min A min A2 min A3 min A4 =



0 1 2 3 4

0 0 2 1 5 4
1 2 0 3 7 4
2 1 3 0 4 3
3 5 7 4 0 7
4 4 4 3 7 0
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(min,+) example

A =



0 1 2 3 4

0 ∞ 2 1 6 ∞
1 2 ∞ 5 ∞ 4
2 1 5 ∞ 4 3
3 6 ∞ 4 ∞ ∞
4 ∞ 4 3 ∞ ∞



A2 =



0 1 2 3 4

0 2 6 7 5 4
1 6 4 3 8 8
2 7 3 2 7 9
3 5 8 7 8 7
4 4 8 9 7 6



A3 =



0 1 2 3 4

0 8 4 3 8 10
1 4 8 7 7 6
2 3 7 8 6 5
3 8 7 6 11 10
4 10 6 5 10 12



A4 =



0 1 2 3 4

0 4 8 9 7 6
1 8 6 5 10 10
2 9 5 4 9 11
3 7 10 9 10 9
4 6 10 11 9 8


First appearance of final value is in red and underlined. Remember:
we are looking at all paths of a given length, even those with cycles!
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A “better” way — our basic algorithm

A〈0〉 = I
A〈k+1〉 = AA〈k〉 ⊕ I

Lemma

A〈k〉 = A(k) = I⊕ A1 ⊕ A2 ⊕ · · · ⊕ Ak
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back to (min,+) example

A〈1〉 =



0 1 2 3 4

0 0 2 1 6 ∞
1 2 0 5 ∞ 4
2 1 5 0 4 3
3 6 ∞ 4 0 ∞
4 ∞ 4 3 ∞ 0



A〈2〉 =



0 1 2 3 4

0 0 2 1 5 4
1 2 0 3 8 4
2 1 3 0 4 3
3 5 8 4 0 7
4 4 4 3 7 0



A〈3〉 =



0 1 2 3 4

0 0 2 1 5 4
1 2 0 3 7 4
2 1 3 0 4 3
3 5 7 4 0 7
4 4 4 3 7 0
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A note on A vs. A⊕ I

Lemma
If ⊕ is idempotent, then

(A⊕ I)k = A(k).

Proof. Base case: When k = 0 both expressions are I.
Assume (A⊕ I)k = A(k). Then

(A⊕ I)k+1 = (A⊕ I)(A⊕ I)k

= (A⊕ I)A(k)

= AA(k) ⊕ A(k)

= A(I⊕ A⊕ · · · ⊕ Ak )⊕ A(k)

= A⊕ A2 ⊕ · · · ⊕ Ak+1 ⊕ A(k)

= Ak+1 ⊕ A(k)

= A(k+1)
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Order Relations

We are interested in order relations ≤ ⊆ S × S

Definition (Important Order Properties)

RX reflexive ≡ a ≤ a

TR transitive ≡ a ≤ b ∧ b ≤ c → a ≤ c

AY antisymmetric ≡ a ≤ b ∧ b ≤ a→ a = b

TO total ≡ a ≤ b ∨ b ≤ a

partial preference total
pre-order order order order

RX ? ? ? ?
TR ? ? ? ?
AY ? ?
TO ? ?
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Canonical Pre-order of a Commutative Semigroup

Definition (Canonical pre-orders)

a ER
• b ≡ ∃c ∈ S : b = a • c

a EL
• b ≡ ∃c ∈ S : a = b • c

Lemma (Sanity check)
Associativity of • implies that these relations are transitive.

Proof.
Note that a ER

• b means ∃c1 ∈ S : b = a • c1, and b ER
• c means

∃c2 ∈ S : c = b • c2. Letting c3 = c1 • c2 we have
c = b • c2 = (a • c1) • c2 = a • (c1 • c2) = a • c3. That is,
∃c3 ∈ S : c = a • c3, so a ER

• c. The proof for EL
• is similar.
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Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, •) is canonically ordered when a ER
• c

and a EL
• c are partial orders.

Definition (Groups)

A monoid is a group if for every a ∈ S there exists a a−1 ∈ S such that
a • a−1 = a−1 • a = α.
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Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)
Only a trivial group is canonically ordered.

Proof.
If a, b ∈ S, then a = α• • a = (b • b−1) • a = b • (b−1 • a) = b • c, for
c = b−1 • a, so a EL

• b. In a similar way, b ER
• a. Therefore a = b.
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Natural Orders
Definition (Natural orders)
Let (S, •) be a semigroup.

a ≤L
• b ≡ a = a • b

a ≤R
• b ≡ b = a • b

Lemma
If • is commutative and idempotent, then a ED

• b ⇐⇒ a ≤D
• b, for

D ∈ {R, L}.

Proof.

a ER
• b ⇐⇒ b = a • c = (a • a) • c = a • (a • c)

= a • b ⇐⇒ a ≤R
• b

a EL
• b ⇐⇒ a = b • c = (b • b) • c = b • (b • c)

= b • a = a • b ⇐⇒ a ≤L
• b
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Special elements and natural orders
Lemma (Natural Bounds)

If α exists, then for all a, a ≤L
• α and α ≤R

• a
If ω exists, then for all a, ω ≤L

• a and a ≤R
• ω

If α and ω exist, then S is bounded.

ω ≤L
• a ≤L

• α

α ≤R
• a ≤R

• ω

Remark (Thanks to Iljitsch van Beijnum)
Note that this means for (min, +) we have

0 ≤L
min a ≤L

min ∞
∞ ≤R

min a ≤R
min 0

and still say that this is bounded, even though one might argue with the
terminology!
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Examples of special elements

S • α ω ≤L
• ≤R

•
N∞ min ∞ 0 ≤ ≥
N−∞ max 0 −∞ ≥ ≤
P(W ) ∪ {} W ⊆ ⊇
P(W ) ∩ W {} ⊇ ⊆
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Property Management
Lemma
Let D ∈ {R, L}.

1 IP(S, •) ⇐⇒ RX(S, ≤D
• )

2 CM(S, •) =⇒ AY(S, ≤D
• )

3 AS(S, •) =⇒ TR(S, ≤D
• )

4 CM(S, •) =⇒ (SL(S, •) ⇐⇒ TO(S, ≤D
• ))

Proof.
1 a ≤D

• a ⇐⇒ a = a • a,
2 a ≤L

• b ∧ b ≤L
• a ⇐⇒ a = a • b ∧ b = b • a =⇒ a = b

3 a ≤L
• b ∧ b ≤L

• c ⇐⇒ a = a • b ∧ b = b • c =⇒ a = a • (b • c) =
(a • b) • c = a • c =⇒ a ≤L

• c
4 a = a • b ∨ b = a • b ⇐⇒ a ≤L

• b ∨ b ≤L
• a
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Bounds

Suppose (S, ≤) is a partially ordered set.

greatest lower bound
For a, b ∈ S, the element c ∈ S is the greatest lower bound of a and b,
written c = a glb b, if it is a lower bound (c ≤ a and c ≤ b), and for
every d ∈ S with d ≤ a and d ≤ b, we have d ≤ c.

least upper bound
For a, b ∈ S, the element c ∈ S is the least upper bound of a and b,
written c = a lub b, if it is an upper bound (a ≤ c and b ≤ c), and for
every d ∈ S with a ≤ d and b ≤ d , we have c ≤ d .
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Semi-lattices

Suppose (S, ≤) is a partially ordered set.

meet-semilattice
S is a meet-semilattice if a glb b exists for each a, b ∈ S.

join-semilattice
S is a join-semilattice if a lub b exists for each a, b ∈ S.
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Fun Facts

Fact 3
Suppose (S, •) is a commutative and idempotent semigroup.

(S, ≤L
•) is a meet-semilattice with a glb b = a • b.

(S, ≤R
• ) is a join-semilattice with a lub b = a • b.

Fact 4
Suppose (S, ≤) is a partially ordered set.

If (S, ≤) is a meet-semilattice, then (S, glb) is a commutative and
idempotent semigroup.
If (S, ≤) is a join-semilattice, then (S, lub) is a commutative and
idempotent semigroup.

That is, semi-lattices represent the same class of structures as
commutative and idempotent semigroups.
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Semigroup properties (so far)

AS(S, •) ≡ ∀a,b, c ∈ S, a • (b • c) = (a • b) • c
IID(S, •, α) ≡ ∀a ∈ S, a = α • a = a • α

ID(S, •) ≡ ∃α ∈ S, IID(S, •, α)
IAN(S, •, ω) ≡ ∀a ∈ S, ω = ω • a = a • ω

AN(S, •) ≡ ∃ω ∈ S, IAN(S, •, ω)
CM(S, •) ≡ ∀a,b ∈ S, a • b = b • a
SL(S, •) ≡ ∀a,b ∈ S, a • b ∈ {a, b}
IP(S, •) ≡ ∀a ∈ S, a • a = a
IR(S, •) ≡ ∀s, t ∈ S, s • t = t
IL(S, •) ≡ ∀s, t ∈ S, s • t = s

Recall that is right (IR) and is left (IL) are forced on us by wanting an
⇔-rule for SL((S, •)× (T , �))
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Bisemigroup properties (so far)

AAS(S, ⊕, ⊗) ≡ AS(S, ⊕)
AID(S, ⊕, ⊗) ≡ ID(S, ⊕)

ACM(S, ⊕, ⊗) ≡ CM(S, ⊕)
MAS(S, ⊕, ⊗) ≡ AS(S, ⊗)
MID(S, ⊕, ⊗) ≡ ID(S, ⊗)
LD(S, ⊕, ⊗) ≡ ∀a,b, c ∈ S, a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c)
RD(S, ⊕, ⊗) ≡ ∀a,b, c ∈ S, (a⊕ b)⊗ c = (a⊗ c)⊕ (b ⊗ c)
ZA(S, ⊕, ⊗) ≡ ∃0 ∈ S, IID(S, ⊕, 0) ∧ IAN(S, ⊗, 0)
OA(S, ⊕, ⊗) ≡ ∃1 ∈ S, IID(S, ⊗, 1) ∧ IAN(S, ⊕, 1)
ASL(S, ⊕, ⊗) ≡ SL(S, ⊕)
AIP(S, ⊕, ⊗) ≡ IP(S, ⊕)

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lectures 01 — 08T.G.Griffin c©2015 68 / 119



Operations for adding a zero, a one

AddZero(0, (S, ⊕, ⊗)) ≡ (S ] {0}, ⊕id
0
, ⊗an

0
)

AddOne(1, (S, ⊕, ⊗)) ≡ (S ] {1}, ⊕an
1
, ⊗id

1
)

Recall

a •id
α b ≡


a (if b = inr(α))
b (if a = inr(α))

inl(x • y) (if a = inl(x), b = inl(y))

a •an
ω b ≡


inr(ω) (if b = inr(ω))
inr(ω) (if a = inr(ω))

inl(x • y) (if a = inl(x), b = inl(y))
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We can “inherit” semigroup rules

Examples

ACM(AddZero(0, (S, ⊕, ⊗))) ≡ CM(AddId(0, (S, ⊕)))
⇔ CM(S, ⊕)

MID(AddZero(0, (S, ⊕, ⊗))) ≡ ID(AddAn(0, (S, ⊗)))
⇔ ID(S, ⊗)
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Property management for AddZero

“Inherited” rules

AAS(AddZero(0, (S, ⊕, ⊗))) ⇔ AS(S, ⊕)
AID(AddZero(0, (S, ⊕, ⊗))) ⇔ TRUE

ACM(AddZero(0, (S, ⊕, ⊗))) ⇔ CM(S, ⊕)
ASL(AddZero(0, (S, ⊕, ⊗))) ⇔ SL(S, ⊕)
AIP(AddZero(0, (S, ⊕, ⊗))) ⇔ IP(S, ⊕)
MAS(AddZero(0, (S, ⊕, ⊗))) ⇔ AS(S, ⊗)
MID(AddZero(0, (S, ⊕, ⊗))) ⇔ ID(S, ⊗)

Easy Exercises

LD(AddZero(0, (S, ⊕, ⊗))) ⇔ LD(S, ⊕, ⊗)
RD(AddZero(0, (S, ⊕, ⊗))) ⇔ RD(S, ⊕, ⊗)
ZA(AddZero(0, (S, ⊕, ⊗))) ⇔ TRUE
OA(AddZero(0, (S, ⊕, ⊗))) ⇔ OA(S, ⊕, ⊗)
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Easy Exercises?

Consider left distributivity (LD)

a b c a⊗an
0
(b ⊕id

0
c) (a⊗an

0
b)⊕id

0
(a⊗an

0
c)

inl(a′) inl(b′) inl(c′) inl(a′ ⊗ (b′ ⊕ c′)) inl((a′ ⊗ b′)⊕ (a′ ⊗ c′))

inr(0) inl(b′) inl(c′) inr(0) inr(0)

inl(a′) inr(0) inl(c′) inl(a′ ⊕ c′) inl(a′ ⊕ c′)

inl(a′) inl(b′) inr(0) inl(a′ ⊕ b′) inl(a′ ⊕ b′)

inl(a′) inr(0) inr(0) inr(0) inr(0)

inr(0) inr(0) inr(0) inr(0) inr(0)
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However, adding a one is more complicated!

Consider left distributivity (LD)

a b c a⊗id
1
(b ⊕an

1
c) (a⊗id

1
b)⊕an

1
(a⊗id

1
c)

inl(a′) inl(b′) inl(c′) inl(a′ ⊗ (b′ ⊕ c′)) inl((a′ ⊗ b′)⊕ (a′ ⊗ c′))

inr(1) inl(b′) inl(c′) inl(b′ ⊕ c′) inl(b′ ⊕ c′)

inl(a′) inr(1) inl(c′) inl(a′) inl((a′ ⊕ (a′ ⊗ c′))

inl(a′) inl(b′) inr(1) inl(a′) inl((a′ ⊗ b′)⊕ a′)

inl(a′) inr(1) inr(1) inl(a′) inl(a′ ⊕ a′)

inr(1) inr(1) inr(1) inr(1) inr(1)
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What is this?

a = (a⊗ b)⊕ a
Suppose ⊕ is idempotent and commutative and we let
a ≤ b ≡ a = a⊕ b. We know that

b ≤ c ⇒ a⊗ b ≤ a⊗ c

since b = b⊕ c implies a⊗ b = a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c). That is
⊗ is order preserving.
Now a = (a⊗ b)⊕ a is telling us something else, that

a ≤ a⊗ b.

That is, that multiplication is inflationary.
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Absorption

ABsorption properties (name is from lattice theory)

RAB(S, ⊕, ⊗) ≡ ∀a,b ∈ S, a = (a⊗ b)⊕ a = a⊕ (a⊗ b)
LAB(S, ⊕, ⊗) ≡ ∀a,b ∈ S, a = (b ⊗ a)⊕ a = a⊕ (b ⊗ a)

Observations
RAB(S, ⊕, ⊗) ∧ ID(S, ⊕) ⇒ IP(S, ⊗)
LAB(S, ⊕, ⊗) ∧ ID(S, ⊕) ⇒ IP(S, ⊗)

LD(S, ⊕, ⊗) ∧OA(S, ⊕, ⊗) ⇒ RAB(S, ⊕, ⊗)
RD(S, ⊕, ⊗) ∧OA(S, ⊕, ⊗) ⇒ LAB(S, ⊕, ⊗)
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Rules for absorption? Consider RAB

AddZero

a b (a⊗an
0

b)⊕id
0

a a⊕id
0
(a⊗an

0
b)

inl(a′) inl(b′) inl((a′ ⊗ b′)⊕ a) inl(a′ ⊕ (a′ ⊗ b′))

inr(0) inl(b′) inr(0) inr(0)

inl(a′) inr(0) inl(a′) inl(a′)

inr(0) inr(0) inr(0) inr(0)

RAB(AddZero(0, (S, ⊕, ⊗))) ⇔ RAB(S, ⊕, ⊗)
LAB(AddZero(0, (S, ⊕, ⊗))) ⇔ LAB(S, ⊕, ⊗)
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Rules for absorption? Consider RAB

AddOne

a b (a⊗id
1

b)⊕an
1

a a⊕an
1
(a⊗id

1
b)

inl(a′) inl(b′) inl((a′ ⊗ b′)⊕ a) inl(a′ ⊕ (a′ ⊗ b′))

inr(1) inl(b′) inr(1) inr(1)

inl(a′) inr(1) inl(a′) inl(a′ ⊕ a′)

inr(1) inr(1) inr(1) inr(1)
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Property management for AddOne

“Inherited” rules

AAS(AddOne(1, (S, ⊕, ⊗))) ⇔ AS(S, ⊕)
AID(AddOne(1, (S, ⊕, ⊗))) ⇔ ID(S, ⊕)

ACM(AddOne(1, (S, ⊕, ⊗))) ⇔ CM(S, ⊕)
ASL(AddOne(1, (S, ⊕, ⊗))) ⇔ SL(S, ⊕)
AIP(AddOne(1, (S, ⊕, ⊗))) ⇔ IP(S, ⊕)
MAS(AddOne(1, (S, ⊕, ⊗))) ⇔ AS(S, ⊗)
MID(AddOne(1, (S, ⊕, ⊗))) ⇔ TRUE
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Property management for AddOne

LD(AddOne(1, (S, ⊕, ⊗))) ⇔ LD(S, ⊕, ⊗) ∧ RAB(S, ⊕, ⊗)
∧ IP(S, ⊕)

RD(AddOne(1, (S, ⊕, ⊗))) ⇔ RD(S, ⊕, ⊗) ∧ LAB(S, ⊕, ⊗)
∧ IP(S, ⊕)

ZA(AddOne(1, (S, ⊕, ⊗))) ⇔ ZA(S, ⊕, ⊗)
OA(AddOne(1, (S, ⊕, ⊗))) ⇔ TRUE

RAB(AddOne(1, (S, ⊕, ⊗))) ⇔ RAB(S, ⊕, ⊗) ∧ IP(S, ⊕)
LAB(AddOne(1, (S, ⊕, ⊗))) ⇔ LAB(S, ⊕, ⊗) ∧ IP(S, ⊕)
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We have to start somewhere!

S ⊕ ⊗ 0 1 LD RD ZA OA LAB RAB
N min + 0 ? ? ? ? ?

N max + 0 0 ? ? ? ?

N max min 0 ? ? ? ? ?

N min max 0 ? ? ? ? ?
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Introducing Minimax

minimax ≡ AddZero(∞, (N, min, max))

= (N ] {∞}, minid
∞, maxan

∞)

Some examples ...

inl(17) minid
∞ inr(∞) = inl(17)

inl(17) maxan
∞ inr(∞) = inr(∞)

... which we will usually write as

17 min∞ = 17

17 max∞ = ∞
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Dendrograms

http://www.instituteofcaninebiology.org/

how-to-read-a-dendrogram.html
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An application of Minimax

Given an adjacency matrix A over minimax,
suppose that A(i , j) = 0⇔ i = j ,
suppose that A is symmetric (A(i , j) = A(j , i),
interpret A(i , j) as measured dissimilarity of i and j ,
interpret A∗(i , j) as inferred dissimilarity of i and j ,

Many uses
Hierarchical clustering of large data sets
Classification in Machine Learning
Computational phylogenetic
...
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A (random) minimax matrix A drawn as a graph
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The solution A∗ drawn as a dendrogram
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Hierarchical clustering? Why?
Suppose (Y , ≤, +) is a totally ordered with least element 0.

Metric
A metric for set X over (Y , ≤, +) is a function d ∈ X × X → Y such
that

∀x , y ∈ X , d(x , y) = 0⇔ x = y
∀x , y ∈ X , d(x , y) = d(y , x)
∀x , y , z ∈ X , d(x , y) ≤ d(x , z) + d(z, y)

Ultrametric
An ultrametric for set X over (Y , ≤) is a function d ∈ X × X → Y such
that
∀x ∈ X , d(x , x) = 0
∀x , y ∈ X , d(x , y) = d(y , x)
∀x , y , z ∈ X , d(x , y) ≤ d(x , z)max d(z, y)
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Fun Facts

minimax and ultrametrics
If A is an n × n symmetric minimax adjacency matrix, then A∗ is a finite
ultrametric for {0, 1, . . . , n − 1} over (N∞, ≤)).

minimax and spanning trees
The set of arcs

{(i , j) ∈ E | A(i , j) = A∗(i , j)}

contain a spanning tree
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A spanning tree derived from A and A∗
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Recall

Lexicographic Product of Semigroups
Suppose that

AS(S, ⊕S) ∧ CM(S, ⊕S) ∧ SL(S, ⊕S) ∧ AS(T , ⊕T ).

Let
(S, ⊕S) ~× (T , ⊕T ) ≡ (S × T , ⊕S ~×⊕T )

where

(s1, t1) ⊕S ~×⊕T (s2, t2) ≡


(s1 ⊕S s2, t1 ⊕T t2) s1 = s1 ⊕S s2 = s2

(s1 ⊕S s2, t1) s1 = s1 ⊕S s2 6= s2

(s1 ⊕S s2, t2) s1 6= s1 ⊕S s2 = s2
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Lexicographic product for Bi-semigroups

Suppose that

AS(S, ⊕S) ∧ CM(S, ⊕S) ∧ SL(S, ⊕S) ∧ AS(T , ⊕T ).

Let

(S, ⊕S, ⊗S) ~× (T , ⊕T , ⊗T ) ≡ (S × T , ⊕S ~×⊕T , ⊗S ×⊗T )
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Examples

⊕ = min ~×max, ⊗ = +×min

(3,10)⊗ ((17,21)⊕ (11,4)) = (3,10)⊗ (11,4)
= (14,4)

((3,10)⊗ (17,21))⊕ ((3,10)⊗ (11,4)) = (20,10)⊕ (14,4)
= (14,4)

⊕ = max ~×min, ⊗ = min×+

(3,10)⊗ ((17,21)⊕ (11,4)) = (3,10)⊗ (17,21)
= (3,31)

((3,10)⊗ (17,21))⊕ ((3,10)⊗ (11,4)) = (3,31)⊕ (3,14)
= (3,14)
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Distributivity?
Theorem: If ⊕S is commutative and selective, then

LD((S, ⊕S, ⊗S) ~× (T , ⊕T , ⊗T )) ⇔
LD(S, ⊕S, ⊗S) ∧ LD(T , ⊕T , ⊗T ) ∧ (LC(S, ⊗S) ∨ LK(T , ⊗T ))

RD((S, ⊕S, ⊗S) ~× (T , ⊕T , ⊗T )) ⇔
RD(S, ⊕S, ⊗S) ∧ RD(T , ⊕T , ⊗T ) ∧ (RC(S, ⊗S) ∨ RK(T , ⊗T ))

o

Left and Right Cancellative

LC(X , •) ≡ ∀a,b, c ∈ X , c • a = c • b ⇒ a = b
RC(X , •) ≡ ∀a,b, c ∈ X , a • c = b • c ⇒ a = b

Left and Right Constant

LK(X , •) ≡ ∀a,b, c ∈ X , c • a = c • b
RK(X , •) ≡ ∀a,b, c ∈ X , a • c = b • c
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Why bisemigroups?

But wait! How could any semiring satisfy either of these properties?

LC(X , •) ≡ ∀a,b, c ∈ X , c • a = c • b ⇒ a = b
LK(X , •) ≡ ∀a,b, c ∈ X , c • a = c • b

For LC, note that we always have 0⊗ a = 0⊗ b, so LC could only
hold when S = {0}.
For LK, let a = 1 and b = 0 and LK leads to the conclusion that
every c is equal to 0 (again!).

Normally we will add a zero and/or a one as the last step(s) of
constructing a semiring. Alternatively, we might want to complicate our
properties so that things work for semirings. A design trade-off!
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Proof of⇐ for LD

Assume
(1) LD(S, ⊕S, ⊗S)
(2) LD(T , ⊕T , ⊗T )
(3) LC(S, ⊗S) ∨ LK(T , ⊗T )
(4) IP(S, ⊕S).

Let ⊕ ≡ ⊕S ~×⊕T and ⊗ ≡ ⊗S ×⊗T . Suppose

(s1, t1), (s2, t2), (s3, t3) ∈ S × T .

We want to show that

lhs ≡ (s1, t1)⊗ ((s2, t2)⊕ (s3, t3))
= ((s1, t1)⊗ (s2, t2))⊕ ((s1, t1)⊗ (s3, t3))
≡ rhs
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Proof of⇐ for LD

We have

lhs ≡ (s1, t1)⊗ ((s2, t2)⊕ (s3, t3))
= (s1, t1)⊗ (s2 ⊕S s3, tlhs)
= (s1 ⊗S (s2 ⊕S s3), t1 ⊗T tlhs)

rhs ≡ ((s1, t1)⊗ (s2, t2))⊕ ((s1, t1)⊗ (s3, t3))
= (s1 ⊗S s2, t1 ⊗T t2)⊕ (s1 ⊗S s3, t1 ⊗T t3)
= ((s1 ⊗S s2)⊕S (s1 ⊗S s3), trhs)

=(1) (s1 ⊗S (s2 ⊕S s3), trhs)

where tlhs and trhs are determined by the appropriate case in the
definition of ⊕. Finally, note that

lhs = rhs⇔ trhs = t1 ⊗ tlhs.
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Proof by cases on s2 ⊕S s3
Case 1 : s2 = s2 ⊕S s3 = s3. Then tlhs = t2 ⊕T t3 and

t1 ⊗T tlhs = t1 ⊗T (t2 ⊕T t3) =(2) (t1 ⊗T t2)⊕T (t1 ⊗T t3).

Since s2 = s3 we have s1 ⊗S s2 = s1 ⊗S s3 and

s1 ⊗S s2 =(4) (s1 ⊗S s2)⊕S (s1 ⊗S s3) =(4) s1 ⊗S s3.

Therefore,
trhs = (t1 ⊗T t2)⊕ (t1 ⊗T t3) = t1 ⊗T tlhs.

Case 2 : s2 = s2 ⊕S s3 6= s3. Then tlhs = t2 and

t1 ⊗T tlhs = t1 ⊗T t2.

Since s2 = s2 ⊕S s3 we have

s1 ⊗S s2 = s1 ⊗S (s2 ⊕S s3) =(1) (s1 ⊗S s2)⊕S (s1 ⊗S s3).
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Case 2.1 s1 ⊗S s2 6= s1 ⊗S s3. Then trhs = t1 ⊗T t2 = t1 ⊗T tlhs.
Case 2.2 s1 ⊗S s2 = s1 ⊗S s3. Then

trhs = (t1 ⊗T t2)⊕T (t1 ⊗T t3) =(2) t1 ⊗T (t2 ⊕T t3)

We need to consider two subcases.
Case 2.2.1: Assume LC(S, ⊗S). But s1 ⊗S s2 = s1 ⊗S s3 ⇒ s2 = s3,
which is a contradiction.
Case 2.2.2 : Assume LK(T , ⊗T ). In this case we know

∀a,b ∈ X , t1 ⊗T a = t1 ⊗T b.

Letting a = t2 ⊕T t3 and b = t2 we have

trhs = t1 ⊗T (t2 ⊕T t3) = t1 ⊗T t2 = t1 ⊗T tlhs.

Case 3 : s2 6= s2 ⊕S s3 = s3. Similar to Case 2.
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Other direction,⇒
Prove this:

¬LD(S, ⊕S, ⊗S) ∨ ¬LD(T , ⊕T , ⊗T ) ∨ (¬LC(S, ⊗S) ∧ ¬LK(T , ⊗T ))
⇒ ¬LD((S, ⊕S, ⊗S) ~× (T , ⊕T , ⊗T )).

Case 1: ¬LD(S, ⊕S, ⊗S). That is

∃a,b, c ∈ S, a⊗S (b ⊕S c) 6= (a⊗S b)⊕S (a⊗S c).

Pick any t ∈ T . Then for some t1, t2, t3 ∈ T we have

(a, t)⊗ ((b, t)⊕ (c, t))
= (a, t)⊗ (b ⊕S c, t1)
= (a,⊗S(b ⊕S c), t2)
6= ((a⊗S b)⊕S (a⊗S c), t3)
= (a⊗S b, t ⊗T t)⊕ (a⊗S c, t ⊗T t)
= ((a, t)⊗ (b, t))⊕ ((a, t)⊗ (c, t))

Case 2: ¬LD(T , ⊕T , ⊗T ). Similar.
tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lectures 01 — 08T.G.Griffin c©2015 98 / 119



Case 3: (¬LC(S, ⊗S) ∧ ¬LK(T , ⊗T )). That is

∃a,b, c ∈ S, c ⊗S a = c ⊗S b ∧ a 6= b

and
∃x , y , z ∈ T , z ⊗T x 6= z ⊗T y .

Since ⊕S is selective and a 6= b, we have a = a⊕S b or b = a⊕S b.
Assume without loss of generality that a = a⊕S b 6= b.
Suppose that t1, t2, t3 ∈ T . Then

lhs ≡ (c, t1)⊗ ((a, t2)⊕ (b, t3))
= (c, t1)⊗ (a, t2)
= (c ⊗S a, t1 ⊗T t2)

rhs ≡ ((c, t1)⊗ (a, t2))⊕ ((c, t1)⊗ (b, t3))
= (c ⊗S a, t1 ⊗T t2)⊕ (c ⊗S b, t1 ⊗T t3)
= (c ⊗S a, (t1 ⊗T t2)⊕T (t1 ⊗T t3))
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Our job now is to select t1, t2, t3 so that

tlhs ≡ t1 ⊗T t2 6= (t1 ⊗T t2)⊕T (t1 ⊗T t3) ≡ trhs.

We don’t have very much to work with! Only

∃x , y , z ∈ T , z ⊗T x 6= z ⊗T y .

In addition, we can assume LD(T , ⊕T , ⊗T ) (otherwise, use Case 2!),
so

trhs = t1 ⊗T (t2 ⊕T t3).
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We need to select t1, t2, t3 so that

tlhs ≡ t1 ⊗T t2 6= t1 ⊗T (t2 ⊕T t3) ≡ trhs.

Case 3.1: z ⊗T x = z ⊗T (x ⊕T y). Then letting t1 = z, t2 = y , and
t3 = x we have

tlhs = z ⊗T y 6= z ⊗T x = z ⊗T (x ⊕T y) = trhs.

Case 3.2: z ⊗T y = z ⊗T (x ⊕T y). Then letting t1 = z, t2 = x , and
t3 = y we have

tlhs = z ⊗T x 6= z ⊗T y = z ⊗T (x ⊕T y) = trhs.

Case 3.3: z ⊗T x 6= z ⊗T (x ⊕T y) 6= z ⊗T y . Then letting t1 = z,
t2 = x , and t3 = y we have

tlhs = z ⊗T x 6= z ⊗T (x ⊕T y) = trhs.
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Today

Widest shortest paths
Solving some matrix equations
Counting to infinity, as does RIP
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Widest shortest paths

wsp ≡ AddZero(∞2, (N, min, +) ~× AddOne(∞1, (N, max, min)))

= ((N× (N ] {∞1})) ] {∞2}, ⊕, ⊗, inr(∞2), inl(0, inr(∞1)))

where
⊕ = (min ~×maxan

∞1
)id
∞2

⊗ = (+×minid
∞1

)an
∞2
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Example

inl(3, inl(10))⊗ (inl(17, inl(21))⊕ inl(11, inl(4)))
= inl(3, inl(10))⊗ inl(11, inl(4))
= inl(14, inl(4))

(inl(3, inl(10))⊗ inl(17, inl(21)))⊕ (inl(3, inl(10))⊗ inl(11, inl(4)))
= inl(20, inl(10))⊕ inl(14, inl(4))
= inl(14, inl(4))

But is wsp a semiring?
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Turn the cranks!
Turning the crank for LD:

LD(AddZero(∞2, (N, min, +) ~× AddOne(∞1, (N, max, min))))

⇔ LD((N, min, +) ~× AddOne(∞1, (N, max, min)))

⇔ LD(N, min, +) ∧ LD(AddOne(∞1, (N, max, min)))
∧ (LC(N, +) ∨ LK(AddID(∞1, (N, min)))

⇔ TRUE ∧ (LD(N, max, min) ∧ RAB(N, max, min) ∧ IP(N, max))
∧ (TRUE ∨ LK(AddID(∞1, (N, min)))

⇔ TRUE ∧ (TRUE ∧ TRUE ∧ TRUE)
∧ (TRUE ∨ LK(AddID(∞1, (N, min)))

⇔ TRUE
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Solving (some) equations
Theorem 6.1
If A is q-stable, then A∗ solves the equations

L = AL⊕ I

and
R = RA⊕ I.

For example, to show L = A∗ solves the first equation:

A∗ = A(q)

= A(q+1)

= Aq+1 ⊕ Aq ⊕ . . .⊕ A2 ⊕ A⊕ I
= A(Aq ⊕ Aq−1 ⊕ . . .⊕ A⊕ I)⊕ I
= AA(q) ⊕ I
= AA∗ ⊕ I

Note that if we replace the assumption “A is q-stable” with “A∗ exists,”
then we require that ⊗ distributes over infinite sums.
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A more general result
Theorem Left-Right
If A is q-stable, then L = A∗B solves the equation

L = AL⊕ B

and R = BA∗ solves
R = RA⊕ B.

For the first equation:

A∗B = A(q)B
= A(q+1)B
= (Aq+1 ⊕ Aq ⊕ . . .⊕ A2 ⊕ A⊕ I)B
= (Aq+1 ⊕ Aq ⊕ . . .⊕ A2 ⊕ A)B⊕ B
= A(Aq ⊕ Aq−1 ⊕ . . .⊕ A⊕ I)B⊕ B
= A(A(q)B)⊕ B
= A(A∗B)⊕ B
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The “best” solution

Suppose Y is a matrix such that

Y = AY⊕ I

Y = AY⊕ I
= A1Y⊕ A(0)

= A((AY⊕ I))⊕ I
= A2Y⊕ A⊕ I
= A2Y⊕ A(1)

...
...

...
= Ak+1Y⊕ A(k)

If A is q-stable and q < k , then

Y = AkY⊕ A∗

Y EL
⊕ A∗

and if ⊕ is idempotent, then

Y ≤L
⊕ A∗

So A∗ is the largest solution. What
does this mean in terms of the sp
semiring?
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Example with zero weighted cycles using sp semiring

0

1

2

10

10

00

A =


0 1 2

0 ∞ 10 10
1 ∞ ∞ 0
2 ∞ 0 ∞



A∗ (= A⊕ I in this case) solves

X = XA⊕ I.

But so does this (dishonest) matrix!

F =


0 1 2

0 0 9 9
1 ∞ 0 0
2 ∞ 0 0


For example :

(FA⊕ I)(0,1)
= min

q∈{0,1,2}
F(0,q) + A(q,1)

= min(0 + 10,9 +∞,9 + 0)
= 9
= F(0,1)
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Recall our basic iterative algorithm

A〈0〉 = I
A〈k+1〉 = AA〈k〉 ⊕ I

A closer look ...

A〈k+1〉(i , j) = I(i , j)⊕
⊕

u

A(i ,u)A〈k〉(u, j)

= I(i , j)⊕
⊕

(i,u)∈E

A(i ,u)A〈k〉(u, j)

This is the basis of distributed Bellman-Ford algorithms (as in RIP and
BGP) — a node i computes routes to a destination j by applying its link
weights to the routes learned from its immediate neighbors. It then
makes these routes available to its neighbors and the process
continues...
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What if we start iteration in an arbitrary state M?

In a distributed environment the topology (captured here by A) can
change and the state of the computation can start in an arbitrary state
(with respect to a new A).

A〈0〉M = M
A〈k+1〉

M = AA〈k〉M ⊕ I

Theorem
For 1 ≤ k ,

A〈k〉M = AkM⊕ A(k−1)

If A is q-stable and q < k , then

A〈k〉M = AkM⊕ A∗
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RIP-like example — counting to convergence (1)

0

1

2 3

1 11

1 10

Adjacency matrix A1


0 1 2 3

0 ∞ 1 1 ∞
1 1 ∞ 1 1
2 1 1 ∞ 10
3 ∞ 1 10 ∞



0

1

2 3

11

1 10

Adjacency matrix A2


0 1 2 3

0 ∞ 1 1 ∞
1 1 ∞ 1 ∞
2 1 1 ∞ 10
3 ∞ ∞ 10 ∞


See RFC 1058.
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RIP-like example — counting to convergence (2)

0

1

2 3

1 11

1 10

The solution A∗1


0 1 2 3

0 0 1 1 2
1 1 0 1 1
2 1 1 0 2
3 2 1 2 0



0

1

2 3

11

1 10

The solution A∗2


0 1 2 3

0 0 1 1 11
1 1 0 1 11
2 1 1 0 10
3 11 11 10 0
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RIP-like example — counting to convergence (3)

The scenario: we arrived at A∗1, but then links {(1,3), (3,1)} fail. So
we start iterating using the new matrix A2.

Let BK represent A2
〈k〉
M , where M = A∗1.
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RIP-like example — counting to convergence (4)

B0 =


0 1 2 3

0 0 1 1 2
1 1 0 1 1
2 1 1 0 2
3 2 1 2 0



B1 =


0 1 2 3

0 0 1 1 2
1 1 0 1 3
2 1 1 0 2
3 11 11 10 0



B2 =


0 1 2 3

0 0 1 1 3
1 1 0 1 3
2 1 1 0 3
3 11 11 10 0



B3 =


0 1 2 3

0 0 1 1 4
1 1 0 1 4
2 1 1 0 4
3 11 11 10 0



B4 =


0 1 2 3

0 0 1 1 5
1 1 0 1 5
2 1 1 0 5
3 11 11 10 0



B5 =


0 1 2 3

0 0 1 1 6
1 1 0 1 6
2 1 1 0 6
3 11 11 10 0
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RIP-like example — counting to convergence (5)

B6 =


0 1 2 3

0 0 1 1 7
1 1 0 1 7
2 1 1 0 7
3 2 1 2 0



B7 =


0 1 2 3

0 0 1 1 8
1 1 0 1 8
2 1 1 0 8
3 11 11 10 0



B8 =


0 1 2 3

0 0 1 1 9
1 1 0 1 9
2 1 1 0 9
3 11 11 10 0



B9 =


0 1 2 3

0 0 1 1 10
1 1 0 1 10
2 1 1 0 10
3 11 11 10 0



B10 =


0 1 2 3

0 0 1 1 11
1 1 0 1 11
2 1 1 0 10
3 11 11 10 0
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RIP-like example — counting to infinity (1)

0

1

2 3

1 11

1 10

The solution A∗1


0 1 2 3

0 0 1 1 2
1 1 0 1 1
2 1 1 0 2
3 2 1 2 0



0

1

2 3

11

1

The solution A∗3


0 1 2 3

0 0 1 1 ∞
1 1 0 1 ∞
2 1 1 0 ∞
3 ∞ ∞ ∞ 0


Now let BK represent A3

〈k〉
M , where M = A∗1.
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RIP-like example — counting to infinity (2)

B0 =


0 1 2 3

0 0 1 1 2
1 1 0 1 1
2 1 1 0 2
3 2 1 2 0



B1 =


0 1 2 3

0 0 1 1 2
1 1 0 1 3
2 1 1 0 2
3 ∞ ∞ ∞ 0



B2 =


0 1 2 3

0 0 1 1 3
1 1 0 1 3
2 1 1 0 3
3 ∞ ∞ ∞ 0



...
...

...

B376 =


0 1 2 3

0 0 1 1 377
1 1 0 1 377
2 1 1 0 377
3 ∞ ∞ ∞ 0


...

...
...

B998 =


0 1 2 3

0 0 1 1 999
1 1 0 1 999
2 1 1 0 999
3 ∞ ∞ ∞ 0


...

...
...
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RIP-like example — What’s going on?

Recall

A〈k〉M (i , j) = AkM(i , j)⊕ A∗(i , j)

A∗(i, j) may be arrived at very quickly
but AkM(i , j) may be better until a very large value of k is reached
(counting to convergence)
or it may always be better (counting to infinity).

Solutions?
RIP:∞ = 16
In the next lecture we will explore various ways of adding paths to
metrics and eliminating those paths with loops ....
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