Category Theory & Logic

Andrew.Pitts@cl.cam.ac.uk
What is category theory?

What we are probably seeking is a "purer" view of functions: a theory of functions in themselves, not a theory of functions derived from sets. What, then, is a pure theory of functions? Answer: category theory

Dana Scott, Relating theories of the λ-calculus, p406
What is category theory?

SET THEORY gives an element-oriented account of mathematical structure whereas CATEGORY THEORY takes a function-oriented view: understand structures not via their elements, but by how they transform, i.e. via "morphisms".

(Both are part of LOGIC, broadly construed.)
General Theory of Natural Equivalences

By

Samuel Eilenberg and Saunders MacLane

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>231</td>
</tr>
<tr>
<td>I. Categories and functors</td>
<td>237</td>
</tr>
<tr>
<td>1. Definition of categories</td>
<td>237</td>
</tr>
<tr>
<td>2. Examples of categories</td>
<td>239</td>
</tr>
<tr>
<td>3. Functors in two arguments</td>
<td>241</td>
</tr>
<tr>
<td>4. Examples of functors</td>
<td>242</td>
</tr>
<tr>
<td>5. Slicing of functors</td>
<td>245</td>
</tr>
<tr>
<td>6. Foundations</td>
<td>246</td>
</tr>
<tr>
<td>II. Natural equivalence of functors</td>
<td>248</td>
</tr>
<tr>
<td>7. Transformations of functors</td>
<td>248</td>
</tr>
<tr>
<td>8. Categories of functors</td>
<td>250</td>
</tr>
<tr>
<td>9. Composition of functors</td>
<td>250</td>
</tr>
<tr>
<td>10. Examples of transformations</td>
<td>251</td>
</tr>
<tr>
<td>11. Groups as categories</td>
<td>256</td>
</tr>
<tr>
<td>12. Construction of functors by transformations</td>
<td>257</td>
</tr>
<tr>
<td>13. Combination of the arguments of functors</td>
<td>258</td>
</tr>
<tr>
<td>III. Functors and groups</td>
<td>260</td>
</tr>
<tr>
<td>14. Subfunctors</td>
<td>260</td>
</tr>
<tr>
<td>15. Quotient functors</td>
<td>262</td>
</tr>
<tr>
<td>16. Examples of subfunctors</td>
<td>263</td>
</tr>
<tr>
<td>17. The isomorphism theorems</td>
<td>265</td>
</tr>
<tr>
<td>18. Direct products of functors</td>
<td>267</td>
</tr>
<tr>
<td>19. Characters</td>
<td>270</td>
</tr>
<tr>
<td>IV. Partially ordered sets and projective limits</td>
<td>272</td>
</tr>
<tr>
<td>20. Quasi-ordered sets</td>
<td>272</td>
</tr>
<tr>
<td>21. Direct systems as functors</td>
<td>273</td>
</tr>
<tr>
<td>22. Inverse systems as functors</td>
<td>276</td>
</tr>
<tr>
<td>23. The categories Dir and $\mathbb{3}$</td>
<td>277</td>
</tr>
<tr>
<td>24. The lifting principle</td>
<td>280</td>
</tr>
<tr>
<td>25. Functors which commute with limits</td>
<td>281</td>
</tr>
<tr>
<td>V. Applications to topology</td>
<td>283</td>
</tr>
<tr>
<td>26. Complexes</td>
<td>283</td>
</tr>
<tr>
<td>27. Homology and cohomology groups</td>
<td>284</td>
</tr>
<tr>
<td>28. Duality</td>
<td>287</td>
</tr>
<tr>
<td>29. Universal coefficient theorems</td>
<td>288</td>
</tr>
<tr>
<td>30. Čech homology groups</td>
<td>290</td>
</tr>
<tr>
<td>31. Miscellaneous remarks</td>
<td>292</td>
</tr>
<tr>
<td>Appendix. Representations of categories</td>
<td>292</td>
</tr>
</tbody>
</table>

Introduction. The subject matter of this paper is best explained by an example, such as that of the relation between a vector space L and its “dual”

Presented to the Society, September 8, 1942; received by the editors May 15, 1945.
Category Theory emerges

1945 Eilenberg & MacLane, "General Theory of Natural Equivalences", Trans AMS 58, 231-294.

Algebraic topology, abstract algebra

50s Grothendieck, algebraic geometry

60s Lawvere, logic & foundations

70s Joyal & Tierney, topos theory

80s Dana Scott, Semantics

Lambek, linguistics
"Category Theory has ... become part of the standard "tool-box" in many areas of theoretical informatics, from programming languages to automata, from process calculi to Type Theory."

Dagstuhl Perspectives Workshop on Categorical Methods at the Crossroads, April 2014
This course

CT basic concepts

- adjunction
- natural transformation
- functor
- category

applied to

- equational logic
- typed λ-calculus
- first order logic
Definition

A category \(\mathcal{C} \) is specified by

- a collection \(\text{Obj} \mathcal{C} \) of \(\mathcal{C} \)-objects \(X, Y, Z, \ldots \)
- for each \(X, Y \in \text{Obj} \mathcal{C} \), a collection \(\mathcal{C}(X, Y) \) of \(\mathcal{C} \)-morphisms from \(X \) to \(Y \)
- an operation assigning to each \(X \in \text{Obj} \mathcal{C} \), an identity morphism \(\text{id}_X \in \mathcal{C}(X, X) \)
- an operation assigning to each \(f \in \mathcal{C}(X,Y) \) & \(g \in \mathcal{C}(Y,Z) \) a composition \(g \circ f \in \mathcal{C}(X,Z) \)

Satisfying ...
Definition, cont.

Associativity: for all \(f \in C(X, Y) \), \(g \in C(Y, Z) \) and \(h \in C(Z, W) \)

\[
h \circ (g \circ f) = (h \circ g) \circ f
\]

Unity: for all \(f \in C(X, Y) \)

\[
id_Y \circ f = f = f \circ id_X
\]
Associated notation & terminology

\[f : X \to Y \quad \text{or} \quad \xrightarrow{f} Y \]

means \(f \in \mathcal{C}(X,Y) \)

in which case we say

\(X \) is the domain of \(f \)

\(Y \) is the co-domain of \(f \)

and write

\[X = \text{dom } f \]

\[Y = \text{cod } f \]

(which category \(\mathcal{C} \) we are referring to is left implicit)
Commutative diagrams in a category C are

diagram

- directed graphs whose vertices are C-objects and whose edges are C-morphisms

- Such that any two finite paths between two vertices determine equal morphisms under composition
Examples of commutative diagrams
Alternative notation

I’ll often write

\(C \) for \(\text{Obj} \ C \)

\(\text{id} \) for \(\text{id}_x \)

Some people write

\(1_x \) for \(\text{id}_x \)

\(gf \) for \(\text{gof} \)

\(f;g \), or \(fg \) for \(\text{gof} \)
Alternative definition of category
(The definition I gave is "dependent-type friendly").

See [Awodey, Def 1.1] for an alternative (equivalent) formulation.

One gives the whole collection of morphisms Mor_C (equivalent to $\Sigma_{X,Y \in \text{Obj}_C} C(X,Y)$ in our definition) plus operations $\text{dom}, \text{cod} : \text{Mor}_C \to \text{Obj}_C$. Composition is a partial op $\text{Mor}_C \times \text{Mor}_C \to \text{Mor}_C$ defined at (f, g) if $\text{cod} f = \text{dom} g$.)
Example: category of sets, Set

- Obj Set = some fixed universe of sets
- Set(X, Y) = \{ f \subseteq X \times Y \mid f \text{ is single-valued and total} \}

Cartesian product consists of all ordered pairs \((x, y)\) with \(x \in X \& y \in Y\)

\((x, y) = (x', y') \iff x = x' \land y = y'\)
Example: category of sets, Set

- $\text{Obj } \text{Set} = \text{some fixed universe of sets}$
- $\text{Set}(X,Y) = \{ f \subseteq X \times Y \mid f \text{ is single-valued & total} \}$

Single-valued:

$$(\forall x \in X)(\forall y,y' \in Y) ((x,y) \in f \land (x,y') \in f \Rightarrow y = y')$$

Total:

$$(\forall x \in X)(\exists y \in Y)(x,y) \in f$$
Example: category of sets, Set

- \text{Obj Set} = \text{Some fixed universe of sets}

- \text{Set}(X,Y) = \{ f \subseteq X \times Y \mid f \text{ is single-valued \& total} \}

- \text{id}_X \triangleq \{ (x,x) \mid x \in X \}

- \text{Composition of } f \in \text{Set}(X,Y) \& g \in \text{Set}(Y,Z) \text{ is } \text{g of } = \{ (x,z) \mid (\exists y \in Y)(x,y) \in f \land (y,z) \in g \}

[Check associativity \& unity properties hold.]
Example: category of sets, \textbf{Set}

Notation:

given \(f \in \text{Set}(X, Y) \) & \(x \in X \)

it's usual to write \(fx \) (or \(f(x) \))

for the unique \(y \in Y \) with \((x, y) \in f \).

Thus \(\text{id}_X x = x \)

\((g \circ f) x = g(f(x)) \)