1. [8/40 marks] Let V be the category with three distinct objects L, P, R and whose only non-identity morphisms are $p : P \to L$ and $q : P \to R$.

(a) Complete the definition of V by giving the nine sets $V(X,Y)$ of morphisms between pairs of objects $X,Y \in \{L, P, R\}$ and defining the composition operations.

(b) Do either of V or V^{op} have a terminal object?

(c) Do either of V or V^{op} have binary products? [Hint: recall that in a pre-ordered set regarded as a category, products are given by greatest lower bounds.]

2. [8/40 marks] Let $\Sigma = \{a, b\}$ be a two-element set ($a \neq b$) and let $_ \oplus _ : \Sigma \times \Sigma \to \Sigma$ and $_ \otimes _ : \Sigma \times \Sigma \to \Sigma$ be binary operations on Σ defined by the following tables:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

(so that $a \oplus b = a$, $a \otimes b = b$, etc.)

(a) Show that for suitable choices of elements $1_M, 1_N \in \Sigma$, there are monoids $M = (\Sigma, \oplus, 1_M)$ and $N = (\Sigma, \otimes, 1_N)$.

(b) Show that M and N are not isomorphic in the category Mon of monoids and monoid homomorphisms. [Hint: assume they are isomorphic and derive a contradiction.]

3. [6/40 marks] Let C be a category with binary products. Given a C-object X, the diagonal morphism $\delta_X \in C(X, X \times X)$ and the twist morphism $\tau_X \in C(X \times X, X \times X)$ are defined by:

$$\delta_X \triangleq (\text{id}_X, \text{id}_X)$$

$$\tau_X \triangleq (\pi_2, \pi_1)$$

(a) For each $f \in C(X,Y)$, show that $\delta_Y \circ f = (f \times f) \circ \delta_X \in C(X,Y \times Y)$ (where $f \times f$ denotes the product of morphisms introduced in Ex. Sh. 2, question 1b).

(b) Show that $\tau_X \circ \delta_X = \delta_X$.

(c) Show that $\tau_X \circ \tau_X = \text{id}_{X \times X}$.

4. [4/40 marks] Consider an algebraic signature with

- two sorts D and L
- two function symbols $\text{emp} : [] \to L$ and $\text{cons} : [D, L] \to L$

A particular structure for this signature in a cartesian category C interprets D and L as the C-objects X and Y respectively; and interprets the function symbols emp and cons as the morphisms $e \in C(1, Y)$ and $c \in C(X \times Y, Y)$ respectively (where 1 is terminal in C). With respect to this structure, give the morphisms in C that are the interpretation of the following valid typing judgements:
(a) \(x : D, y : L \vdash \text{cons}(x, \text{cons}(x, y)) : L \)
(b) \(x : D, y : L \vdash \text{cons}(x, \text{cons}(x, \text{emp}())) : L \)

5. [8/40 marks] Let \(C \) be a category. A pair of \(C \)-morphisms is said to be parallel if their domains are equal and their codomains are equal. Given such a parallel pair of morphisms \(f, g \in C(X, Y) \), an equalizer for \(f \) and \(g \) is by definition a \(C \)-morphism \(e : E \to X \) satisfying \(f \circ e = g \circ e \) and with the following property:

For all \(C \)-objects \(Z \) and morphisms \(h \in C(Z, X) \), if \(f \circ h = g \circ h \in C(Z, Y) \), then there exists a unique morphism \(k \in C(Z, E) \) satisfying \(e \circ k = h \).

(a) Show that every equalizer is a monomorphism (see Ex. Sh. 1, question 4).
(b) Suppose that \(f \in C(X, Y) \) is a split monomorphism, that is, there is a morphism \(g \in C(Y, X) \) with \(g \circ f = \text{id}_X \) (see Ex. Sh. 1, question 4). Show that \(f : X \to Y \) is the equalizer of the parallel pair \(f \circ g \) and \(\text{id}_Y \).
(c) Show that the category \(\text{Set} \) of sets and functions possesses equalizers for all parallel pairs of morphisms.

6. [6/40 marks] Let \(X \) be an object of a category \(C \). The slice category \(C/X \) is defined by:

- The objects of \(C/X \) are pairs \((A, p) \) where \(A \in \text{obj} \ C \) and \(p \in C(A, X) \).
- Given two such objects \((A, p) \) and \((B, q) \), a morphism \(f : (A, p) \to (B, q) \) in \(C/X \) is a \(C \)-morphism \(f : A \to B \) such that \(q \circ f = p \)

- Composition and identities in \(C/X \) are given by those in \(C \).

(a) Show that \(C/X \) always has a terminal object.
(b) When \(C = \text{Set} \), the category of sets and functions, show that \(\text{Set}/X \) has binary products. [Hint: given \((A, p), (B, q) \in \text{obj}(\text{Set}/X) \), consider a suitable subset of \(\{(a, b) \mid a \in A \land b \in B\} \).]