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Probabilistic Topic Modelling Probabilistic topic modelling provides a
suite of techniques for automatically finding structure in documents. Latent
Dirichlet Allocation (LDA) is one prominent example of an approach to topic
modelling, based on Bayesian probabilistic modelling. LDA attempts to find
themes, or topics, in a set of documents, with the idea that these themes can be
used for some downstream searching or browsing task. For example, a scientific
search engine could organise its search results by topic (e.g. genetics, evolution,
disease, computation), rather than simply provide a ranked list.

Crucially, the set of topics is not fixed in advance, nor does LDA rely on any
human manual annotation. This is attractive because LDA can be applied to
any document set, and the user does not require any knowledge in advance of
what topics might be present; nor does the user have to perform any expensive
annotation. Essentially we can think of LDA as performing clustering: grouping
documents (probabilistically) into clusters, each document cluster corresponding
to a topic; and grouping words (probabilistically) into clusters, each word cluster
defining a topic.

One downside of LDA is that the topics are not automatically provided with
labels — they’re simply clusters. Hence how to label, or interpret, clusters after
they have been produced is an important research problem.

Key Assumptions behind LDA LDA makes the following modelling as-
sumptions. First, each document is a mixture of topics. However, it is typically
assumed that each document contains only a few topics. (The latter assumption
is controlled by one of the model’s parameters.) LDA is a probabilistic model
with a corresponding generative process, and each document is assumed to be
created, or generated, by that process. The structure of the process, defined
by a graphical model which encodes some random variables and independence
assumptions, is given in advance; hence the inference problem, given a set of
documents, is to infer the parameters which determine the various probabilities
associated with the graphical model.



A topic is defined as a probability distribution over a fixed vocabulary of words.
Note that each topic is a distribution over the same vocabulary, so it’s not
strictly correct to say that LDA groups words into topics (at least hard top-
ics); however, the words which appear “at the top” of the distribution with
high probability will be different for each topic. Hence LDA does perform a
probabilistic, soft clustering of the vocabulary.

One feature of LDA which is important to grasp is that it’s a Bayesian modelling
framework, in that the probability distributions themselves are also generated as
part of the generative process. Topics are generated first, before the documents.
Hence we require distributions over distributions, which is where the Dirichlet
distribution comes in. The Dirichlet distribution allows us to encode a prior
expectation that each topic will be dominated by a relatively small number of
words (in terms of the probability mass assigned to those words); and also that
each document will be made up of only a few topics.

The only parameters that require specifying in advance are the number of topics,
and the parameters of the Dirichlet distributions (which encode how sparse we'd
like the topic and document distributions to be).

Example Topics The clusters on the slide are the 15 most probable words
taken from a set of topics (with the corresponding probabilities not shown). So
here we've effectively created a hard clustering by applying a cut-off after the
top 15 words in each topic. In this example, taken from David Blei, the topics
have been obtained from a set of scientific documents. The topics are relatively
coherent and meaningful. It is interesting to consider what label you might
assign to each topic to best describe it.

Documents and Topics The example on the slide is designed to show how
a document can be thought of as a small set of topics, with each word in the
document assigned to a single topic. The words in yellow appear to be related
to genes; the words in purple to life and evolution; and the words in blue to
computational analysis. Other topics may be less meaningful, or contain words
with less semantic content (such as function words). How to subsequently use,
or interpret, the topics is a separate research question.

The next slide, again from David Blei, shows the generative process applied to
a single document.

The Generative Process The first task, before any documents are gener-
ated, is to generate the topic distributions (topics shown to the left on the
pictorial slide, but not in the pseudocode); how this is done will be explained
later. The first task when generating a document is to generate a distribution
over topics. Intuitively, we want to say something like: 45% of this document
will be made up of the “gene” topic, 20% of the “life” topic, and so on. Now



each word is generated. This is done by first choosing a topic (according to the
distribution just created), and then choosing a word from that topic (which is
a distribution over words, remember).

Note that, as a statistical model of text, the generative process is extremely sim-
ple: it’s a bag-of-words model where each word is generated independently of
every other word. Other than a “set-of-words” model, the bag-of-words model
is as simple as it gets when it comes to modelling text (and from a linguistic
perspective totally stupid).! However, decades of work in NLP, and IR in par-
ticular, has shown that it’s possible to build effective NLP applications using
this model.

The (Formal) Generative Process The joint distribution at the bottom of
the slide is the probability of a set of documents, from 1 to D, together with
the associated probability distributions. First choose the topics, §;, from 1 to
K, each one independently; these will be chosen according to a Dirichlet distri-
bution, with parameter 7. For each document d, choose the topic proportions,
04, again independently and again according to a Dirichlet distribution (with
parameter «). Then, for each word position n in document d, independently
choose a topic z4,,. Finally, choose a word wg,,, for that position, given the topic
(distribution), where each word is conditionally independent given the topic.

LDA as a Graphical Model The plate diagram on the slide is a diagram-
matic notation for representing graphical models. The arrows represent condi-
tional independence, as in standard graphical model notation, and the boxes
represent repetition. For example, the box with the D in the bottom corner
means that the 6, distribution has to be generated D times, once for each
document; and the box with the N in the bottom corner means that the 6y
distribution has to be sampled from N times, once for each word position (to
give the z4, distibutions). Note that the N box is within the D box, meaning
that N seperate draws have to be made for each d. Finally, the z4 ,, distribution
(topic) has to be sampled from N times to generate each word, wg,y,.

There is a crucial difference between the unshaded white nodes and the nodes
shaded grey. The grey nodes are observed in the data; i.e. their values are
known. The white nodes are unobserved, and their values have to be inferred.
The plate diagram neatly expresses the significant amount of information we’re
attempting to infer, given only the words in the documents.

The Dirichlet Distribution The key point to remember about the Dirichlet
distribution is that it’s a distribution over distributions. Hence the “observa-
tions” @ on the slide are vectors of values, with the values x; summing to 1.
The parameter « is also a vector, with one parameter «; for each x;.

IThere are many extensions to the basic LDA model, for example one which takes some
word order into account.



The formula for the Dirichlet distribution is provided for completeness on the
slide, with the comment that the Dirichlet is conjugate prior to the multinomial
(and categorical) distribution. If the binomial distribution provides the proba-
bility of the number of heads given a series of coin tosses, the multinomial is the
extension of this to the many-sided die case. The idea of the conjugate prior
is that the form of the posterior distribution (after we’ve seen the data) is the
same as the form of the prior, which greatly simplifies the problem of statistical
inference.

The key intuition underlying the use of the Dirichlet distribution is provided
by the picture. Here we have “observations” which are probability distributions
over 3 values, =, y and z. The plots show how likely a particular distribution
is, given the a values shown. So with a = (6,2,2), for example, the chances
of getting a distribution with most of the mass concentrated on x is high. In
practice for topic modelling, it is typical to use the same value for all the «;s, so
that there is a single « parameter. The effect of the o parameter is to determine
how sparse the resulting distribution is likely to be. For an « value less than 1,
there is pressure to choose distributions over topics which favour just a few of
the topics.

Parameter Estimation Our main concern is to estimate the topic distribu-
tions S, i.e. the probability of each word given the topic. We are also concerned
with the distributions 64 , i.e. the probability of each topic for each document
in the collection. Attempts have been made to estimate these distributions di-
rectly, e.g. using EM, but a more common, and successful, approach has been
to get at these distributions indirectly, via the probability of each word token
in the collection belonging to a particular topic. Technically this is achieved
by marginalising out, i.e. summing over, the distributions 5 and 6. Here we’ll
gloss over this aspect of the mathematics, and proceed directly to the estimates
provided by Gibbs sampling.

Estimates using Gibbs Sampling The application of Gibbs sampling to
a collection of documents is straightforward [1]. For each word token in turn,
estimate the probability of that word token being assigned each topic, keeping
fixed the topic assignments for all the other word tokens. Then using this
distribution over topics, sample a topic, and assign it to the word token.

The Gibbs sampling algorithm stores count matrices C"7 and CPT. CWT
has the counts for each word type and topic, and CPT has the counts for each
document and topic. Initially each word token is assigned a random topic, and
the count matrices are calculated. Then, each word token is considered in turn.
First, the count matrices are decremented by one for the entries that correspond
to the current topic assignment to the token under consideration (since we want
to calculate probabilities based on all the other topic-token assignments). Then
the probability of this token being assigned each topic is given by the formula on
the slide, which is used to generate a sample and the new assignment is made.



The two relative frequencies on the slide have intuitive interpretations. The one
on the left measures how often w; has been assigned topic j across all documents;
and the one on the right measures how often topic 7 has been assigned to words
in document d;. Increasing either of these counts will increase the chance that
the ith token will be assigned topic j. Notice also the effect of n and «, which
are the parameters of the two Dirichlet distributions. Here they can be seen as
acting as smoothing parameters in the relative frequency estimates (much like
add-one smoothing).

Finally, note that the formula given on the slides is an unnormalised probability
estimate. These estimates need to be divided by a normalising constant, which
is a sum of the unnormalised values across all topics.

The Final Estimates Once the Gibbs sampler has been run for a number of
iterations, the final sample can be used for calculating the final count matrices,
which can then be used to calculate the (smoothed) relative frequency estimates
on the slide.

Why does topic modelling work? Behind all the fancy mathematics lies a simple
intuition: words which tend to appear in the same documents get clustered in
the same topics.

Readings for Today’s Lecture David Blei’s topic modelling website has a
host of useful material: http://www.cs.columbia.edu/~blei/topicmodeling.html.
A number of pictures on today’s slides were stolen from David’s 2012 ICML tu-
torial. A good place to start is his general introduction to topic modeling.
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