
Machine Learning for Language Processing

Lecture 4: The Perceptron for Structured

Prediction

Stephen Clark

October 8, 2015

Local and Global Features The local features we have already seen for the
maxent tagger can be extended to global features by simply summing up the
values of the indicator functions for each position in the sentence. In other
words, whilst the local features are indicator functions over local contexts, the
global features become count functions over the whole sequence.

These global features are used in CRF taggers. The perceptron tagger that
we describe here can be thought of as an alternative to the CRF: a global
model, but without a probabilistic interpretation and with a different training
algorithm. (The decoding algorithm remains the same: the Viterbi algorithm
for sequences.)

A Linear Tagging Model The linear tagging model is similar to a MaxEnt
model, but without the exponentiation and the normalisation constant. You
may be asking: is a linear model powerful enough to solve complex NLP prob-
lems? (And didn’t Minsky and Papert demonstrate a fundamental weakness
of linear perceptrons back in the 60s?) There are two possible responses. The
first response is to say that it all depends on the features. With a rich enough
feature set, a linear model can always be made powerful enough. Indeed, the
whole point of kernels, which we’ll encounter later in the lecture, is to allow the
use of linear models with extremely complex feature sets.

The second response is to say it’s an empirical question. There is a large volume
of current work applying non-linear neural networks to various tasks, some of
them using many layers in the network; but whether these will turn out to “solve
NLP”, as some researchers are claiming, remains to be seen. In my experience,
the structured perceptron with a large number of features usually provides a
very strong baseline for structured prediction tasks [2].

1



Decoding for a Global Linear Model Decoding is performed in the same
way as it was for the HMM and MaxEnt taggers, using the Viterbi algorithm for
sequences. The restriction on features, in order that the decoding is efficient, is
the same as it was for the MaxEnt tagger: features defined over any part of the
input sentence are fine, but features which look over large parts of the generated
tag sequence increase the complexity (in the same way as for any n-gram tagger,
where the complexity is O(Tn) for a tagset of size T ).

The Perceptron Training Algorithm The algorithm is extremely simple:
perform a number of passes over the training data, decoding the training in-
stances. If the current model makes a mistake on a training instance, do a simple
update. The fact that the weights (potentially) get updated at each instance
means that the training is online. The fact that no update is performed if the
training instance is decoded correctly means that the training is passive.

The Training Algorithm (with words) The update works as follows: for
each local feature instance in the correct, gold sequence, add 1 its weight value;
for each local feature instance in the output given by the tagger, take 1 from its
weight value. I use the term local feature instance here since the overall update
happens globally; i.e. the count of a feature has to be correct across the whole
sequence in order for the corresponding feature weight to receive no update.

Averaging Parameters Intuitively, the perceptron training scheme forces
the model to perform as well as possible on the training data; but this can
lead to overfitting and a lack of generalisation on unseen data. One simple and
effective method to combat overfitting is parameter averaging [1]. The set of
weights is recorded for each training instance, for each pass over the data, and
then averaged. (So for 40,000 training instances and 10 passes, for example,
we’d have 400,000 weight vectors to be averaged.) The idea is to mix the earlier
weight vectors, which haven’t yet converged, with the later ones, which may be
overfitted to the training data.

The averaging parameters idea is closely related to the voted perceptron, where,
instead of averaging the weights, each instance of the weight vector is used for
decoding at test time, and the output is determined through a voting procedure
[1]. The obvious disadvantage with this scheme is that, for 40,000 training
instances and 10 passes over the training data, the test data has to be decoded
separately 400,000 times. The voted perceptron has some theory associated
with it, explaining why it is effective.

Theory of the Perceptron The theory of the perceptron [1] shows that, if
the data is separable with some margin, then the converged model will perform
perfectly on the training data. Having (linearly) separable data in this case
means that there is some setting of the weights values which will score each

2



correct output higher than all the incorrect ones (by some margin), for each
training instance. What if the training data is not linearly separable? There
are guarantees here as well. As long as the data is “close” to being separable,
then the number of mistakes on the training data will be small.

Note that, so far, the theoretical discussion has only been in terms of the training
data, whereas what we care about is generalising to unseen, test data. There
is a pleasing story here as well: if the number of mistakes on the training data
is small, then there is a good chance that the number of mistakes on the test
data will also be small (making the usual assumptions about the training and
test data being drawn from the same distribution, and so on).

A Ranking Perceptron The rest of the lecture is geared towards the use of
kernels, allowing extremely rich and complex feature sets to be computed with
efficiently. We will use the ranking perceptron to motivate the use of kernels,
where we assume that a relatively small number of possible outputs have already
been generated. The reason to focus on the ranking problem is that we’d like
the decoding problem to be trivial, rather than requiring dynamic programming
(which would add an extra layer of complexity).

In order to ground the discussion, suppose that we have 1,000 parse trees gener-
ated by a statistical parser, for a number of training examples, with the correct
tree among those 1,000. The goal of the ranking perceptron is to use models
with complex features in order to rank each set of 1,000 trees, so that the correct
tree is scored higher than all the incorrect ones (for each training instance). The
intention is that the rich models will perform better than the original parsing
model (which was likely constrained in terms of the features it could exploit
due to the use of DP, or other methods, for navigating the original, very large
search space).

Training (with the new notation) The pseudocode on the slide shows just
one pass over the training data. It’s the same algorithm as before, but using
the notation introduced on the previous slide. The purpose of the new notation
will become clear.

Note that the calculating the arg max in the ranking scenario is trivial: just ex-
haustively loop through the candidates C(s) for training sentence s, calculating
the score for each.

Perceptron Training (a duel form) The key to the duel form perceptron
training is the scoring function G(x), where x is a feature vector (in our example
the features associated with a parse tree). The new scoring function works by
taking x and comparing it with every other parse tree feature vector in the
training data. G(x) will be high if x is more similar to the correct parse trees
in the data than the incorrect ones.

3



The training procedure also has a set of weights, but this time a weight αij for
each parse tree vector xij in the training data. Note that αij gets increased
if the tree xij is returned as the highest scoring one for sentence si. The idea
is that, if an incorrect parse tree is getting returned as the correct tree for a
sentence, then we’d like that tree to have more impact in the training process
(in order to fix the incorrect decision).

Equivalence of the two Forms It turns out the two scoring functions F (x)
and G(x) are equivalent. (Exercise left for the reader.) So comparing a parse
tree feature vector with all the other examples in the training data, and calcu-
lating a dot product between the feature vector and (original) weight vector,
lead to the same score. It may seem counter-intuitive that there are situations
where the first comparison is more efficient than the second, but this is the case
if the feature vector is exponentially large. Note that, in the duel form training,
the feature vector does not need to be explicitly represented, as long as the inner
product between two parse tree vectors can be calculated.

Complexity of the two Forms One pass over the data for the standard
perceptron learning algorithm takes O(Td) time, where T is the total number
of parse trees in the training data (e.g. 1,000 trees for each sentence × 40,000
sentences), and d is the size of the feature vector (since each dot product calcu-
lation between feature and weight vector takes O(d) time).

One pass over the data for the duel form perceptron takes O(Tnk) time, where
n is the number of sentences: for each sentence, each of the 1,000 trees needs
comparing with all T trees (in order to score each tree). Hence if each tree
comparison (dot product between tree vectors) takes O(k) time, then we have
O(n× 1, 000× T × k) = O(Tnk).

Hence there can be efficiency gains with the dual form if nk, the number of
sentences times the time taken to compute the similarity of objects (e.g. trees),
is much smaller than d, the size of the feature vector.

Complexity of Inner Products Can nk ever be much smaller than d? Yes,
if the feature vector representation is exponentially large, and if the dot product
between such vectors can be calculated efficiently (i.e. without ever explicitly
representing the feature vector).

Two examples of feature representations which are exponentially large are rep-
resentations which a) track all sub-sequences in a sequence (since the number
of sub-sequences grows exponentially with the length of the sequence); and b)
representations which track all sub-trees in a tree (since the number of sub-trees
grows exponentially with the size of the tree).

4



Tree Kernels A tree kernel is a function which returns the number of subtrees
in common between two trees. The feature vector representation is one where
the basis elements of each vector correspond to a subtree, and the corresponding
value is the number of times the subtree appears in the whole tree.

Computation of Subtree Kernel The number of subtrees in common be-
tween trees T1 and T2 can be calculated efficiently, without ever explicitly rep-
resenting all subtrees. The algorithm on the slide is a DP algorithm which runs
over all pairs of nodes (n1, n2) from T1 and T2, recursively counting the number
of subtrees in common where the subtrees are rooted at n1 and n2, f(n1, n2).

Two cases are straightforward. If the context-free productions with parents n1
and n2 are different, then the number of subtrees in common rooted at n1 and
n2 has to be zero. For the base case, i.e. when n1 and n2 are pre-terminals,
f(n1, n2) = 1 if the productions rooted at n1 and n2 are the same.

For the recursive case, if the productions rooted at n1 and n2 are the same, then
we get a count for the production itself, which combines with a recursive call on
each of the child pairs from n1 and n2. (Exercise for the reader: run through
some examples to convince yourself that the recursive case is correct.)

Readings for Today’s Lecture

• Michael Collins and Nigel Duffy. New Ranking Algorithms for Parsing
and Tagging: Kernels over Discrete Structures, and the Voted Perceptron.
ACL 2002.

References

[1] Michael Collins. Discriminative training methods for hidden markov mod-
els: Theory and experiments with perceptron algorithms. In Proceedings of
EMNLP, pages 1–8, Philadelphia, USA, 2002.

[2] Yue Zhang and Stephen Clark. Syntactic processing using the generalized
perceptron and beam search. Computational Linguistics, 37(1):105–151,
2011.

5


