Machine Learning for Language Processing ACS 2015/16 Stephen Clark L2: POS Tagging with HMMs

The POS Tagging Problem

```
England | NNP 's | POS fencers | NNS won | VBD gold | NN on | IN day | NN 4 | CD in | IN Delhi | NNP with | IN a | DT medal | JJ -winning | JJ performance | NN . | .
```

```
This | DT is | VBZ Dr. | NNP Black | NNP 's | POS second | JJ gold | NN of | IN the | DT Games | NNP . | .
```

Problem is difficult because of ambiguity

Probabilistic Formulation

$$y^* = \arg\max_{y \in Y} P(y|x)$$

where $x=(x_1,\ldots,x_n)$ is a sentence and $y=(y_1,\ldots,y_n)\in Y$ is a possible tag sequence for x

- Two problems:
 - where do the probabilities come from? (age-old question in statistical approaches to AI)
 - how do we find the arg max?
- Problem 1 is the problem of model estimation
- Problem 2 is the search problem

HMM Tagging Model

• $P(T|W) = \frac{P(W|T)P(T)}{P(W)}$

(Bayes theorem)

• $\operatorname{arg\,max}_T P(T|W) = \operatorname{arg\,max}_T P(W|T)P(T)$

(W is constant)

Using Chain Rule and (Markov) independence assumptions:

$$P(W|T) = P(w_1, \dots, w_n | t_1, \dots, t_n)$$

$$= P(w_1 | t_1, \dots, t_n) P(w_2 | w_1, t_1, \dots, t_n) P(w_3 | w_2, w_1, t_1, \dots, t_n)$$

$$= P(w_n | w_{n-1}, \dots, w_1, t_1, \dots, t_n)$$

$$\approx \prod_{i=1}^n P(w_i | t_i)$$

$$P(T) = P(t_1, ..., t_n)$$

$$= P(t_1)P(t_2|t_1)P(t_3|t_2, t_1)...P(t_n|t_{n-1}, ..., t_1)$$

$$\approx \prod_{i=1}^{n} P(t_i|t_{i-1})$$

N-gram Generative Taggers

- A tagger which conditions on the previous tag is called a bigram tagger
- Trigram taggers are typically used (condition on previous 2 tags)
- HMM taggers use a generative model, so-called because the tags and words can be thought of as being generated according to some stochastic process
- More sophisticated discriminative models (e.g. CRFs) can condition on more aspects of the context, e.g. suffix information

Parameter Estimation

- Two sets of parameters:
 - $P(t_i|t_{i-1})$
 - $P(w_i|t_i)$

tag transition probabilities word emission probabilities

- Note *not* $P(t_i|w_i)$ (reversed because of use of Bayes theorem)
 - one of the original papers on stochastic POS tagging reportedly got this wrong
- Estimation based on counting from manually labelled corpora
 - so we have a supervised machine learning approach
- For this problem, simple counting (relative frequency) method gives maximum likelihood estimates

Relative Frequency Estimation

- $\hat{P}(t_i|t_{i-1}) = \frac{f(t_{i-1},t_i)}{f(t_{i-1})}$
 - where $f(t_{i-1}, t_i)$ is the number of times t_i follows t_{i-1} in the training data; and $f(t_{i-1})$ is the number of times t_{i-1} appears in the data
- $\hat{P}(w_i|t_i) = \frac{f(w_i,t_i)}{f(t_i)}$
 - where $f(w_i, t_i)$ is the number of times w_i has tag t_i in the training data
- It turns out that for an HMM the intuitive relative frequency estimates are the estimates which maximise the probability of the training data
- What if the numerator (or denominator) is zero?

Smoothing for Tagging

Tag sequence probabilities can be smoothed (or backed off):

$$\tilde{P}(t_i|t_{i-1}, t_{i-2}) = \lambda_1 \hat{P}(t_i|t_{i-1}, t_{i-2})$$

$$+ (1 - \lambda_1)(\lambda_2 \hat{P}(t_i|t_{i-1}) + (1 - \lambda_2)\hat{P}(t_i))$$

A simple solution for unknown words is to replace them with UNK:

$$P(w_i|t_i) = P(\mathsf{UNK}|t_i)$$

where any word in the training data occurring less than, say, 5 times is replaced with UNK

Better Handling of Unknown Words

- Lots of clues as to what the tag of an unknown word might be:
 - proper nouns (NNP) likely to be unknown
 - if the word ends in ing, likely to be VBG

– . . .

$$P(w|t) = \frac{1}{Z} P(\text{unknown word}|t) P(\text{capitalized}|t) P(\text{endings}|t)$$

- but now we're starting to see the weaknesses of generative models for taggers
- Conditional models can deal with these features directly

The Search Problem for Tagging

$$T^* = \arg\max_T P(T|W) = \arg\max_T P(W|T)P(T)$$

- ullet Number of tag sequences for a sentence of length n is $O(T^n)$ where T is the size of the tagset
- OK, but why is there a non-trivial search problem?
 - e.g. for a unigram model we can just take the most probable tag for each word, an algorithm which runs in O(nT) time

A Non-Trivial Search Problem

$$T^* = \arg\max_T P(T|W) = \arg\max_T P(W|T)P(T)$$

- But what about a bigram model?
- ullet Intuition: suppose I have two competing tags for word w_i , t_i^1 and t_i^2
- Compare:

Score
$$(t_i^1) = P(t_i^1|t_{i-1})P(w_i|t_i^1)$$

Score $(t_i^2) = P(t_i^2|t_{i-1})P(w_i|t_i^2)$

Suppose $Score(t_i^1) > Score(t_i^2)$; can we be sure t_i^1 is part of the highest scoring tag *sequence*?

The Viterbi Algorithm

- Dynamic Programming (DP) algorithm, so requires the "optimal subproblem property"
 - i.e. optimal solution to the complete problem can be defined in terms of optimal solutions to sub-problems
- So what are the sub-problems in this case?
 - intuition: suppose we want the optimal tag sequence ending at w_n , and we know the optimal sub-sequence ending at w_{n-1} , for all possible tags at w_{n-1}

Viterbi for a Bigram Tagger

$$\delta_{t_j}(n+1) = \max_{t_i} \delta_{t_i}(n) P(t_j|t_i) P(w_{n+1}|t_j)$$

where $\delta_{t_j}(n+1)$ is the probability of the most probable tag sequence ending in tag t_j at position n+1

- Recursion bottoms out at position 1 in the sentence
- Most probable tag sequence can be obtained by following the recursion from the right backwards
- Time complexity is $O(T^2n)$ where T is the size of the tagset

Practicalities

- Choice of tags to be assigned to a particular word usually governed by a "tag dictionary"
- Accuracy measured by taking a manually created "gold-standard" for a set of held-out test sentences
- Accuracy of POS taggers on newspaper data is over 97%, close to the upper bound represented by human agreement (and existence of noise in the data)
- Linear time process (in length of sentence) means tagging can be performed very fast, e.g. hundreds of thousands of words per second

