
Lecture 7: Clustering
Information Retrieval

Computer Science Tripos Part II

Ronan Cummins1

Natural Language and Information Processing (NLIP) Group

ronan.cummins@cl.cam.ac.uk

2016

1Adapted from Simone Teufel’s original slides
271

ronan.cummins@cl.cam.ac.uk


Upcoming

272



Upcoming

What is clustering?

272



Upcoming

What is clustering?

Applications of clustering in information retrieval

272



Upcoming

What is clustering?

Applications of clustering in information retrieval

K -means algorithm

272



Upcoming

What is clustering?

Applications of clustering in information retrieval

K -means algorithm

Introduction to hierarchical clustering

272



Upcoming

What is clustering?

Applications of clustering in information retrieval

K -means algorithm

Introduction to hierarchical clustering

272



Upcoming

What is clustering?

Applications of clustering in information retrieval

K -means algorithm

Introduction to hierarchical clustering

272



Upcoming

What is clustering?

Applications of clustering in information retrieval

K -means algorithm

Introduction to hierarchical clustering

Single-link and complete-link clustering

272



Overview

1 Clustering: Introduction

2 Non-hierarchical clustering

3 Hierarchical clustering



Clustering: Definition

273



Clustering: Definition

(Document) clustering is the process of grouping a set of
documents into clusters of similar documents.

273



Clustering: Definition

(Document) clustering is the process of grouping a set of
documents into clusters of similar documents.

Documents within a cluster should be similar.

273



Clustering: Definition

(Document) clustering is the process of grouping a set of
documents into clusters of similar documents.

Documents within a cluster should be similar.
Documents from different clusters should be dissimilar.

273



Clustering: Definition

(Document) clustering is the process of grouping a set of
documents into clusters of similar documents.

Documents within a cluster should be similar.
Documents from different clusters should be dissimilar.

Clustering is the most common form of unsupervised learning.

273



Clustering: Definition

(Document) clustering is the process of grouping a set of
documents into clusters of similar documents.

Documents within a cluster should be similar.
Documents from different clusters should be dissimilar.

Clustering is the most common form of unsupervised learning.

Unsupervised = there are no labeled or annotated data.

273



Difference clustering–classification

Classification Clustering
supervised learning unsupervised learning
classes are human-defined
and part of the input to the
learning algorithm

Clusters are inferred from
the data without human in-
put.

output = membership in
class only

Output = membership in
class + distance from cen-
troid (“degree of cluster
membership”)

274



The cluster hypothesis

275



The cluster hypothesis

Cluster hypothesis.

Documents in the same cluster behave similarly with respect to
relevance to information needs.

275



The cluster hypothesis

Cluster hypothesis.

Documents in the same cluster behave similarly with respect to
relevance to information needs.

All applications of clustering in IR are based (directly or indirectly)
on the cluster hypothesis.

275



The cluster hypothesis

Cluster hypothesis.

Documents in the same cluster behave similarly with respect to
relevance to information needs.

All applications of clustering in IR are based (directly or indirectly)
on the cluster hypothesis.

Van Rijsbergen’s original wording (1979): “closely associated
documents tend to be relevant to the same requests”.

275



Applications of Clustering

IR: presentation of results (clustering of documents)

Summarisation:

clustering of similar documents for multi-document
summarisation
clustering of similar sentences for re-generation of sentences

Topic Segmentation: clustering of similar paragraphs (adjacent
or non-adjacent) for detection of topic structure/importance

Lexical semantics: clustering of words by cooccurrence
patterns

276



Clustering search results

277



Clustering news articles

278



Clustering Words

2

2https://colah.github.io/posts/2015-01-Visualizing-Representations/
279



Types of Clustering

Hard clustering v. soft clustering

Hard clustering: every object is member in only one cluster
Soft clustering: objects can be members in more than one
cluster

Hierarchical v. non-hierarchical clustering

Hierarchical clustering: pairs of most-similar clusters are
iteratively linked until all objects are in a clustering relationship
Non-hierarchical clustering results in flat clusters of “similar”
documents

280



Desiderata for clustering

281



Desiderata for clustering

General goal: put related docs in the same cluster, put
unrelated docs in different clusters.

281



Desiderata for clustering

General goal: put related docs in the same cluster, put
unrelated docs in different clusters.

We’ll see different ways of formalizing this.

281



Desiderata for clustering

General goal: put related docs in the same cluster, put
unrelated docs in different clusters.

We’ll see different ways of formalizing this.

The number of clusters should be appropriate for the data set
we are clustering.

281



Desiderata for clustering

General goal: put related docs in the same cluster, put
unrelated docs in different clusters.

We’ll see different ways of formalizing this.

The number of clusters should be appropriate for the data set
we are clustering.

Initially, we will assume the number of clusters K is given.

281



Desiderata for clustering

General goal: put related docs in the same cluster, put
unrelated docs in different clusters.

We’ll see different ways of formalizing this.

The number of clusters should be appropriate for the data set
we are clustering.

Initially, we will assume the number of clusters K is given.
There also exist semiautomatic methods for determining K

281



Desiderata for clustering

General goal: put related docs in the same cluster, put
unrelated docs in different clusters.

We’ll see different ways of formalizing this.

The number of clusters should be appropriate for the data set
we are clustering.

Initially, we will assume the number of clusters K is given.
There also exist semiautomatic methods for determining K

Secondary goals in clustering

281



Desiderata for clustering

General goal: put related docs in the same cluster, put
unrelated docs in different clusters.

We’ll see different ways of formalizing this.

The number of clusters should be appropriate for the data set
we are clustering.

Initially, we will assume the number of clusters K is given.
There also exist semiautomatic methods for determining K

Secondary goals in clustering

Avoid very small and very large clusters

281



Desiderata for clustering

General goal: put related docs in the same cluster, put
unrelated docs in different clusters.

We’ll see different ways of formalizing this.

The number of clusters should be appropriate for the data set
we are clustering.

Initially, we will assume the number of clusters K is given.
There also exist semiautomatic methods for determining K

Secondary goals in clustering

Avoid very small and very large clusters
Define clusters that are easy to explain to the user

281



Desiderata for clustering

General goal: put related docs in the same cluster, put
unrelated docs in different clusters.

We’ll see different ways of formalizing this.

The number of clusters should be appropriate for the data set
we are clustering.

Initially, we will assume the number of clusters K is given.
There also exist semiautomatic methods for determining K

Secondary goals in clustering

Avoid very small and very large clusters
Define clusters that are easy to explain to the user
Many others . . .

281



Overview

1 Clustering: Introduction

2 Non-hierarchical clustering

3 Hierarchical clustering



Non-hierarchical (partitioning) clustering

Partitional clustering algorithms produce a set of k non-nested
partitions corresponding to k clusters of n objects.

Advantage: not necessary to compare each object to each
other object, just comparisons of objects – cluster centroids
necessary

Optimal partitioning clustering algorithms are O(kn)

Main algorithm: K -means

282



K -means: Basic idea

283



K -means: Basic idea

Each cluster j (with nj elements xi) is represented by its
centroid cj , the average vector of the cluster:

cj =
1

nj

nj∑

i=1

xi

283



K -means: Basic idea

Each cluster j (with nj elements xi) is represented by its
centroid cj , the average vector of the cluster:

cj =
1

nj

nj∑

i=1

xi

Measure of cluster quality: minimise mean square distance
between elements xi and nearest centroid cj

RSS =
k∑

j=1

∑

xi∈j

d(−→xi ,
−→cj )

2

283



K -means: Basic idea

Each cluster j (with nj elements xi) is represented by its
centroid cj , the average vector of the cluster:

cj =
1

nj

nj∑

i=1

xi

Measure of cluster quality: minimise mean square distance
between elements xi and nearest centroid cj

RSS =
k∑

j=1

∑

xi∈j

d(−→xi ,
−→cj )

2

Distance: Euclidean; length-normalised vectors in VS

283



K -means: Basic idea

Each cluster j (with nj elements xi) is represented by its
centroid cj , the average vector of the cluster:

cj =
1

nj

nj∑

i=1

xi

Measure of cluster quality: minimise mean square distance
between elements xi and nearest centroid cj

RSS =
k∑

j=1

∑

xi∈j

d(−→xi ,
−→cj )

2

Distance: Euclidean; length-normalised vectors in VS

We iterate two steps:

283



K -means: Basic idea

Each cluster j (with nj elements xi) is represented by its
centroid cj , the average vector of the cluster:

cj =
1

nj

nj∑

i=1

xi

Measure of cluster quality: minimise mean square distance
between elements xi and nearest centroid cj

RSS =
k∑

j=1

∑

xi∈j

d(−→xi ,
−→cj )

2

Distance: Euclidean; length-normalised vectors in VS

We iterate two steps:
reassignment: assign each vector to its closest centroid

283



K -means: Basic idea

Each cluster j (with nj elements xi) is represented by its
centroid cj , the average vector of the cluster:

cj =
1

nj

nj∑

i=1

xi

Measure of cluster quality: minimise mean square distance
between elements xi and nearest centroid cj

RSS =
k∑

j=1

∑

xi∈j

d(−→xi ,
−→cj )

2

Distance: Euclidean; length-normalised vectors in VS

We iterate two steps:
reassignment: assign each vector to its closest centroid
recomputation: recompute each centroid as the average of the
vectors that were recently assigned to it

283



K -means algorithm

Given: a set s0 = −→x1 , ...
−→xn ⊆ Rm

Given: a distance measure d : Rm ×Rm → R
Given: a function for computing the mean µ : P(R) → Rm

Select k initial centers −→c1 , ...
−→ck

while stopping criterion not true:
∑k

j=1

∑
xi∈sj

d(−→xi ,
−→cj )

2 < ǫ (stopping criterion)

do

for all clusters sj do (reassignment)
cj :={−→xi |∀

−→cl : d(−→xi ,
−→cj ) ≤ d(−→xi ,

−→cl )}
end

for all means −→cj do (centroid recomputation)
−→cj := µ(sj )

end

end

284



Worked Example: Set of points to be clustered

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

285



Worked Example

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

Exercise: (i) Guess what the optimal clustering into two clusters is
in this case; (ii) compute the centroids of the clusters

285



Random seeds + Assign points to closest center

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

×

×

Iteration One
Exercise: (i) Guess what the optimal

286



Worked Example: Recompute cluster centroids

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

×

×

×

×

Iteration One
Exercise: (i)

287



Worked Example: Assign points to closest centroid

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

×

×

Iteration One
Exercise:

288



Worked Example: Recompute cluster centroids

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

×

×

×

×

Iteration Two
Exercise

289



Worked Example: Assign points to closest centroid

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

×

×

Iteration Two
Exercise

290



Worked Example: Recompute cluster centroids

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

×

×

×

×

Iteration Three
Exercise

291



Worked Example: Assign points to closest centroid

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

×

×

Iteration Three
Exercise

292



Worked Example: Recompute cluster centroids

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

×

×

×

×

Iteration Four
Exercise

293



Worked Example: Assign points to closest centroid

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

×

×

Iteration Four
Exercise:

294



Worked Example: Recompute cluster centroids

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

×
×

×

×

Iteration Five
Exercise

295



Worked Example: Assign points to closest centroid

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

×
×

Iteration Five
Exercise:

296



Worked Example: Recompute cluster centroids

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

×
×

×

×

Iteration Six
Exercise:

297



Worked Example: Assign points to closest centroid

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

×
×

Iteration Six
Exercise:

298



Worked Example: Recompute cluster centroids

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

×
×

×

×

Iteration Seven
Exercise:

299



Worked Ex.: Centroids and assignments after convergence

b

b

b

b

b

b

b bb

b

b

b

b

b
b

b

b
b

b b

×
×

Convergence
Exercise:

300



K -means is guaranteed to converge: Proof

301



K -means is guaranteed to converge: Proof

RSS decreases during each reassignment step.

301



K -means is guaranteed to converge: Proof

RSS decreases during each reassignment step.

because each vector is moved to a closer centroid

301



K -means is guaranteed to converge: Proof

RSS decreases during each reassignment step.

because each vector is moved to a closer centroid

RSS decreases during each recomputation step.

301



K -means is guaranteed to converge: Proof

RSS decreases during each reassignment step.

because each vector is moved to a closer centroid

RSS decreases during each recomputation step.

This follows from the definition of a centroid: the new centroid
is the vector for which RSSk reaches its minimum

301



K -means is guaranteed to converge: Proof

RSS decreases during each reassignment step.

because each vector is moved to a closer centroid

RSS decreases during each recomputation step.

This follows from the definition of a centroid: the new centroid
is the vector for which RSSk reaches its minimum

There is only a finite number of clusterings.

301



K -means is guaranteed to converge: Proof

RSS decreases during each reassignment step.

because each vector is moved to a closer centroid

RSS decreases during each recomputation step.

This follows from the definition of a centroid: the new centroid
is the vector for which RSSk reaches its minimum

There is only a finite number of clusterings.

Thus: We must reach a fixed point.

301



K -means is guaranteed to converge: Proof

RSS decreases during each reassignment step.

because each vector is moved to a closer centroid

RSS decreases during each recomputation step.

This follows from the definition of a centroid: the new centroid
is the vector for which RSSk reaches its minimum

There is only a finite number of clusterings.

Thus: We must reach a fixed point.

Finite set & monotonically decreasing evaluation function →

convergence

301



K -means is guaranteed to converge: Proof

RSS decreases during each reassignment step.

because each vector is moved to a closer centroid

RSS decreases during each recomputation step.

This follows from the definition of a centroid: the new centroid
is the vector for which RSSk reaches its minimum

There is only a finite number of clusterings.

Thus: We must reach a fixed point.

Finite set & monotonically decreasing evaluation function →

convergence

Assumption: Ties are broken consistently.

301



Other properties of K -means

Fast convergence

K -means typically converges in around 10-20 iterations (if we
don’t care about a few documents switching back and forth)
However, complete convergence can take many more iterations.

Non-optimality

K -means is not guaranteed to find the optimal solution.
If we start with a bad set of seeds, the resulting clustering can
be horrible.

Dependence on initial centroids

Solution 1: Use i clusterings, choose one with lowest RSS
Solution 2: Use prior hierarchical clustering step to find seeds
with good coverage of document space

302



Time complexity of K -means

303



Time complexity of K -means

Reassignment step: O(KNM) (we need to compute KN

document-centroid distances, each of which costs O(M)

303



Time complexity of K -means

Reassignment step: O(KNM) (we need to compute KN

document-centroid distances, each of which costs O(M)

Recomputation step: O(NM) (we need to add each of the
document’s < M values to one of the centroids)

303



Time complexity of K -means

Reassignment step: O(KNM) (we need to compute KN

document-centroid distances, each of which costs O(M)

Recomputation step: O(NM) (we need to add each of the
document’s < M values to one of the centroids)

Assume number of iterations bounded by I

303



Time complexity of K -means

Reassignment step: O(KNM) (we need to compute KN

document-centroid distances, each of which costs O(M)

Recomputation step: O(NM) (we need to add each of the
document’s < M values to one of the centroids)

Assume number of iterations bounded by I

Overall complexity: O(IKNM) – linear in all important
dimensions

303



Overview

1 Clustering: Introduction

2 Non-hierarchical clustering

3 Hierarchical clustering



Hierarchical clustering

Imagine we now want to create a hierachy in the form of a
binary tree.

304



Hierarchical clustering

Imagine we now want to create a hierachy in the form of a
binary tree.

Assumes a similarity measure for determining the similarity of
two clusters.

304



Hierarchical clustering

Imagine we now want to create a hierachy in the form of a
binary tree.

Assumes a similarity measure for determining the similarity of
two clusters.

Up to now, our similarity measures were for documents.

304



Hierarchical clustering

Imagine we now want to create a hierachy in the form of a
binary tree.

Assumes a similarity measure for determining the similarity of
two clusters.

Up to now, our similarity measures were for documents.

We will look at different cluster similarity measures.

304



Hierarchical clustering

Imagine we now want to create a hierachy in the form of a
binary tree.

Assumes a similarity measure for determining the similarity of
two clusters.

Up to now, our similarity measures were for documents.

We will look at different cluster similarity measures.

Main algorithm: HAC (hierarchical agglomerative clustering)

304



HAC: Basic algorithm

Start with each document in a separate cluster

305



HAC: Basic algorithm

Start with each document in a separate cluster

Then repeatedly merge the two clusters that are most similar

305



HAC: Basic algorithm

Start with each document in a separate cluster

Then repeatedly merge the two clusters that are most similar

Until there is only one cluster.

305



HAC: Basic algorithm

Start with each document in a separate cluster

Then repeatedly merge the two clusters that are most similar

Until there is only one cluster.

The history of merging is a hierarchy in the form of a binary
tree.

305



HAC: Basic algorithm

Start with each document in a separate cluster

Then repeatedly merge the two clusters that are most similar

Until there is only one cluster.

The history of merging is a hierarchy in the form of a binary
tree.

The standard way of depicting this history is a dendrogram.

305



A dendrogram

306



Term–document matrix to document–document matrix
Log frequency weighting
and cosine normalisation
SaS PaP WH
0.789 0.832 0.524
0.515 0.555 0.465
0.335 0.000 0.405
0.000 0.000 0.588

SaS P(SaS,SaS) P(PaP,SaS)
PaP P(SaS,PaP) P(PaP,PaP)
WH P(SaS,WH) P(PaP,WH)

SaS PaP

SaS 1 .94 .79
PaP .94 1 .69
WH .79 .69 1

SaS PaP WH

Applying the proximity metric to all pairs of documents. . .

creates the document-document matrix, which reports
similarities/distances between objects (documents)

307



Term–document matrix to document–document matrix
Log frequency weighting
and cosine normalisation
SaS PaP WH
0.789 0.832 0.524
0.515 0.555 0.465
0.335 0.000 0.405
0.000 0.000 0.588

SaS P(SaS,SaS) P(PaP,SaS)
PaP P(SaS,PaP) P(PaP,PaP)
WH P(SaS,WH) P(PaP,WH)

SaS PaP

SaS 1 .94 .79
PaP .94 1 .69
WH .79 .69 1

SaS PaP WH

Applying the proximity metric to all pairs of documents. . .

creates the document-document matrix, which reports
similarities/distances between objects (documents)

307



Term–document matrix to document–document matrix
Log frequency weighting
and cosine normalisation
SaS PaP WH
0.789 0.832 0.524
0.515 0.555 0.465
0.335 0.000 0.405
0.000 0.000 0.588

SaS P(SaS,SaS) P(PaP,SaS)
PaP P(SaS,PaP) P(PaP,PaP)
WH P(SaS,WH) P(PaP,WH)

SaS PaP

SaS 1 .94 .79
PaP .94 1 .69
WH .79 .69 1

SaS PaP WH

Applying the proximity metric to all pairs of documents. . .

creates the document-document matrix, which reports
similarities/distances between objects (documents)

The diagonal is trivial (identity)

307



Term–document matrix to document–document matrix
Log frequency weighting
and cosine normalisation
SaS PaP WH
0.789 0.832 0.524
0.515 0.555 0.465
0.335 0.000 0.405
0.000 0.000 0.588

SaS P(SaS,SaS) P(PaP,SaS)
PaP P(SaS,PaP) P(PaP,PaP)
WH P(SaS,WH) P(PaP,WH)

SaS PaP

SaS 1 .94 .79
PaP .94 1 .69
WH .79 .69 1

SaS PaP WH

Applying the proximity metric to all pairs of documents. . .

creates the document-document matrix, which reports
similarities/distances between objects (documents)

As proximity measures are symmetric, the matrix is a triangle

307



Term–document matrix to document–document matrix
Log frequency weighting
and cosine normalisation
SaS PaP WH
0.789 0.832 0.524
0.515 0.555 0.465
0.335 0.000 0.405
0.000 0.000 0.588

SaS P(SaS,SaS) P(PaP,SaS)
PaP P(SaS,PaP) P(PaP,PaP)
WH P(SaS,WH) P(PaP,WH)

SaS PaP

SaS 1 .94 .79
PaP .94 1 .69
WH .79 .69 1

SaS PaP WH

Applying the proximity metric to all pairs of documents. . .

creates the document-document matrix, which reports
similarities/distances between objects (documents)

307



Term–document matrix to document–document matrix
Log frequency weighting
and cosine normalisation
SaS PaP WH
0.789 0.832 0.524
0.515 0.555 0.465
0.335 0.000 0.405
0.000 0.000 0.588

SaS P(SaS,SaS) P(PaP,SaS)
PaP P(SaS,PaP) P(PaP,PaP)
WH P(SaS,WH) P(PaP,WH)

SaS PaP

SaS .94 .79
PaP .94 .69
WH .79 .69

SaS PaP WH

Applying the proximity metric to all pairs of documents. . .

creates the document-document matrix, which reports
similarities/distances between objects (documents)

307



Term–document matrix to document–document matrix
Log frequency weighting
and cosine normalisation
SaS PaP WH
0.789 0.832 0.524
0.515 0.555 0.465
0.335 0.000 0.405
0.000 0.000 0.588

SaS P(SaS,SaS) P(PaP,SaS)
PaP P(SaS,PaP) P(PaP,PaP)
WH P(SaS,WH) P(PaP,WH)

SaS PaP

SaS .94 .79
PaP .94 .69
WH .79 .69

SaS PaP WH

Applying the proximity metric to all pairs of documents. . .

creates the document-document matrix, which reports
similarities/distances between objects (documents)

307



Hierarchical clustering: agglomerative (BottomUp, greedy)

Given: a set X = x1, ...xn of objects;
Given: a function sim : P(X) ×P(X) → R

for i:= 1 to n do

ci := xi
C :=c1, ... cn
j := n+1
while C > 1 do

(cn1 , cn2 ) := max(cu,cv )∈C×C sim(cu , cv )
cj := cn1 ∪ cn2
C := C { cn1 , cn2} ∪ cj
j:=j+1

end

Similarity function sim : P(X)× P(X) → R measures similarity
between clusters, not objects

308



Computational complexity of the basic algorithm

First, we compute the similarity of all N × N pairs of
documents.

309



Computational complexity of the basic algorithm

First, we compute the similarity of all N × N pairs of
documents.

Then, in each of N iterations:

309



Computational complexity of the basic algorithm

First, we compute the similarity of all N × N pairs of
documents.

Then, in each of N iterations:

We scan the O(N × N) similarities to find the maximum
similarity.

309



Computational complexity of the basic algorithm

First, we compute the similarity of all N × N pairs of
documents.

Then, in each of N iterations:

We scan the O(N × N) similarities to find the maximum
similarity.
We merge the two clusters with maximum similarity.

309



Computational complexity of the basic algorithm

First, we compute the similarity of all N × N pairs of
documents.

Then, in each of N iterations:

We scan the O(N × N) similarities to find the maximum
similarity.
We merge the two clusters with maximum similarity.
We compute the similarity of the new cluster with all other
(surviving) clusters.

309



Computational complexity of the basic algorithm

First, we compute the similarity of all N × N pairs of
documents.

Then, in each of N iterations:

We scan the O(N × N) similarities to find the maximum
similarity.
We merge the two clusters with maximum similarity.
We compute the similarity of the new cluster with all other
(surviving) clusters.

There are O(N) iterations, each performing a O(N × N)
“scan” operation.

309



Computational complexity of the basic algorithm

First, we compute the similarity of all N × N pairs of
documents.

Then, in each of N iterations:

We scan the O(N × N) similarities to find the maximum
similarity.
We merge the two clusters with maximum similarity.
We compute the similarity of the new cluster with all other
(surviving) clusters.

There are O(N) iterations, each performing a O(N × N)
“scan” operation.

Overall complexity is O(N3).

309



Computational complexity of the basic algorithm

First, we compute the similarity of all N × N pairs of
documents.

Then, in each of N iterations:

We scan the O(N × N) similarities to find the maximum
similarity.
We merge the two clusters with maximum similarity.
We compute the similarity of the new cluster with all other
(surviving) clusters.

There are O(N) iterations, each performing a O(N × N)
“scan” operation.

Overall complexity is O(N3).

Depending on the similarity function, a more efficient
algorithm is possible.

309



Hierarchical clustering: similarity functions

Similarity between two clusters ck and cj (with similarity
measure s) can be interpreted in different ways:

Single Link Function: Similarity of two most similar members
sim(cu, cv ) = maxx∈cu ,y∈ck s(x , y)

Complete Link Function: Similarity of two least similar
members

sim(cu, cv ) = minx∈cu ,y∈ck s(x , y)

Group Average Function: Avg. similarity of each pair of group
members

sim(cu, cv ) = avgx∈cu ,y∈ck s(x , y)

310



Example: hierarchical clustering; similarity functions

Cluster 8 objects a-h; Euclidean distances (2D) shown in diagram

a b c d

e f g h

1
1.5

2

b 1
c 2.5 1.5
d 3.5 2.5 1

e 2
√

5
√
10.25

√
16.25

f
√
5 2

√
6.25

√
10.25 1

g
√
10.25

√
6.25 2

√
5 2.5 1.5

h
√
16.25

√
10.25

√
5 2 3.5 2.5 1

a b c d e f g

311



Single Link is O(n2)

b 1
c 2.5 1.5
d 3.5 2.5 1

e 2
√

5
√

10.25
√

16.25

f
√

5 2
√

6.25
√

10.25 1

g
√

10.25
√

6.25 2
√

5 2.5 1.5

h
√

16.25
√

10.25
√

5 2 3.5 2.5 1

a b c d e f g

After Step 4 (a–b, c–d, e–f, g–h merged):
c–d 1.5

e–f 2
√

6.25

g–h
√

6.25 2 1.5

a–b c–d e–f

“min-min” at each step

312



Clustering Result under Single Link

a b c d

e f g h

a b c e f g hd

313



Complete Link

b 1
c 2.5 1.5
d 3.5 2.5 1

e 2
√

5
√

10.25
√

16.25

f
√

5 2
√

6.25
√

10.25 1

g
√

10.25
√

6.25 2
√

5 2.5 1.5

h
√

16.25
√

10.25
√

5 2 3.5 2.5 1

a b c d e f g

After step 4 (a–b, c–d, e–f, g–h merged):
c–d 2.5 1.5

3.5 2.5

e–f 2
√

5
√
10.25

√
16.25

√
5 2

√
6.25

√
10.25

g–h
√

10.25
√

6.25 2
√

5 2.5 1.5

√
16.25

√
10.25

√
5 2 3.5 2.5

a–b c–d e–f

“max-min” at each step

314



Complete Link

b 1
c 2.5 1.5
d 3.5 2.5 1

e 2
√

5
√

10.25
√

16.25

f
√

5 2
√

6.25
√

10.25 1

g
√

10.25
√

6.25 2
√

5 2.5 1.5

h
√

16.25
√

10.25
√

5 2 3.5 2.5 1

a b c d e f g

After step 4 (a–b, c–d, e–f, g–h merged):
c–d 2.5 1.5

3.5 2.5

e–f 2
√

5
√
10.25

√
16.25

√
5 2

√
6.25

√
10.25

g–h
√

10.25
√

6.25 2
√

5 2.5 1.5

√
16.25

√
10.25

√
5 2 3.5 2.5

a–b c–d e–f

“max-min” at each step → ab/ef and cd/gh merges next

315



Clustering result under complete link

a b c d

e f g h

a b c e f g hd

Complete Link is O(n3)

316



Example: gene expression data

An example from biology: cluster genes by function

Survey 112 rat genes which are suspected to participate in
development of CNS

Take 9 data points: 5 embryonic (E11, E13, E15, E18, E21), 3
postnatal (P0, P7, P14) and one adult

Measure expression of gene (how much mRNA in cell?)

These measures are normalised logs; for our purposes, we can
consider them as weights

Cluster analysis determines which genes operate at the same
time

317



Rat CNS gene expression data (excerpt)

gene genbank locus E11 E13 E15 E18 E21 P0 P7 P14 A
keratin RNKER19 1.703 0.349 0.523 0.408 0.683 0.461 0.32 0.081 0
cellubrevin s63830 5.759 4.41 1.195 2.134 2.306 2.539 3.892 3.953 2.72
nestin RATNESTIN 2.537 3.279 5.202 2.807 1.5 1.12 0.532 0.514 0.443
MAP2 RATMAP2 0.04 0.514 1.553 1.654 1.66 1.491 1.436 1.585 1.894
GAP43 RATGAP43 0.874 1.494 1.677 1.937 2.322 2.296 1.86 1.873 2.396
L1 S55536 0.062 0.162 0.51 0.929 0.966 0.867 0.493 0.401 0.384
NFL RATNFL 0.485 5.598 6.717 9.843 9.78 13.466 14.921 7.862 4.484
NFM RATNFM 0.571 3.373 5.155 4.092 4.542 7.03 6.682 13.591 27.692
NFH RATNFHPEP 0.166 0.141 0.545 1.141 1.553 1.667 1.929 4.058 3.859
synaptophysin RNSYN 0.205 0.636 1.571 1.476 1.948 2.005 2.381 2.191 1.757
neno RATENONS 0.27 0.704 1.419 1.469 1.861 1.556 1.639 1.586 1.512
S100 beta RATS100B 0.052 0.011 0.491 1.303 1.487 1.357 1.438 2.275 2.169
GFAP RNU03700 0 0 0 0.292 2.705 3.731 8.705 7.453 6.547
MOG RATMOG 0 0 0 0 0.012 0.385 1.462 2.08 1.816
GAD65 RATGAD65 0.353 1.117 2.539 3.808 3.212 2.792 2.671 2.327 2.351
pre-GAD67 RATGAD67 0.073 0.18 1.171 1.436 1.443 1.383 1.164 1.003 0.985
GAD67 RATGAD67 0.297 0.307 1.066 2.796 3.572 3.182 2.604 2.307 2.079
G67I80/86 RATGAD67 0.767 1.38 2.35 1.88 1.332 1.002 0.668 0.567 0.304
G67I86 RATGAD67 0.071 0.204 0.641 0.764 0.406 0.202 0.052 0.022 0
GAT1 RATGABAT 0.839 1.071 5.687 3.864 4.786 4.701 4.879 4.601 4.679
ChAT (*) 0 0.022 0.369 0.322 0.663 0.597 0.795 1.015 1.424
ACHE S50879 0.174 0.425 1.63 2.724 3.279 3.519 4.21 3.885 3.95
ODC RATODC 1.843 2.003 1.803 1.618 1.569 1.565 1.394 1.314 1.11
TH RATTOHA 0.633 1.225 1.007 0.801 0.654 0.691 0.23 0.287 0
NOS RRBNOS 0.051 0.141 0.675 0.63 0.86 0.926 0.792 0.646 0.448
GRa1 (#) 0.454 0.626 0.802 0.972 1.021 1.182 1.297 1.469 1.511

. . .

318



Rat CNS gene clustering – single link

keratin

cellubrevin
nestin

MAP2
GAP43

L1

NFL
NFM

NFH

synaptophysin

neno

S100 beta

GFAP

MOG

GAD6
5

pre-GAD67

GAD67

G67I80/86

G67I86

GAT1

ChAT

ACHE

ODC
TH

NOS

GRa1

GRa2

GRa3

GRa4

GRa5

GRb1

GRb2

GRb3

GRg1

GRg2

GRg3

mGluR1

mGluR2

mGluR3

mGluR4

mGluR5

mGluR6

mGluR7

mGluR8

NMDA1

NMDA2A

NMDA2
B

NMDA2C

NMDA2D

nAChRa2

nAChRa3

nAChRa4
nAChRa5

nAChRa6

nAChRa7

nAChRd

nAChRe

mAChR2

mAChR3

mAChR4

5HT1b

5HT1c

5HT2

5HT3

NGF

NT3

BDNF

CNTF

trk

trkB

trkC

CNTFR

MK2

PTN

GDNF

EGF

bFGF

aFGF

PDG
Fa

PDGFb

EGFR

FGFR

PDGFR
TGFR

Ins1

Ins2

IGF I

IGF II

InsR

IGFR1

IGFR2

CRAF

IP3R1

IP3R2

IP3R3

cyclin A

cyclin B

H2AZ

statin

cjun

cfos

Brm

TCP

actin

SOD
CCO1

CCO2
SC1

SC2

SC6

SC7

DD63.2

0 20 40 60 80 100

C
lustering of R

at E
xpression D

ata (S
ingle Link/E

uclidean)

319



Rat CNS gene clustering – complete link

keratin

cellubrevin
nestin

MAP2

GAP43

L1

NFL

NFM

NFH

synaptophysin

neno

S100 beta

GFAP

MOG

GAD6
5

pre-GAD67

GAD67

G67I80/86
G67I86

GAT1

ChAT

ACHE

ODC
TH

NOS

GRa1

GRa2

GRa3

GRa4

GRa5

GRb1

GRb2

GRb3

GRg1

GRg2

GRg3

mGluR1

mGluR2

mGluR3

mGluR4

mGluR5

mGluR6

mGluR7

mGluR8

NMDA1

NMDA2A

NMDA2
B

NMDA2C

NMDA2D

nAChRa2

nAChRa3

nAChRa4
nAChRa5

nAChRa6

nAChRa7

nAChRd

nAChRe

mAChR2

mAChR3

mAChR4

5HT1b

5HT1c

5HT2

5HT3

NGF

NT3

BDNF

CNTF

trk

trkB

trkC

CNTFR

MK2

PTN

GDNF

EGF

bFGF

aFGF

PDG
Fa

PDGFb

EGFR

FGFR

PDGFR
TGFR

Ins1

Ins2

IGF I

IGF II

InsR

IGFR1

IGFR2

CRAF

IP3R1

IP3R2

IP3R3

cyclin A

cyclin B

H2AZ

statin

cjun

cfos

Brm

TCP

actin

SOD

CCO1

CCO2

SC1

SC2

SC6

SC7

DD63.2

0 20 40 60 80 100

C
lustering of R

at E
xpression D

ata (C
om

plete Link/E
uclidean)

320



Rat CNS gene clustering – group average link

keratin

cellubrevin
nestin

MAP2

GAP43

L1

NFL
NFM

NFH

synaptophysin

neno

S100 beta

GFAP

MOG

GAD6
5

pre-GAD67

GAD67

G67I80/86

G67I86

GAT1

ChAT

ACHE

ODC
TH

NOS

GRa1

GRa2

GRa3

GRa4

GRa5

GRb1

GRb2
GRb3

GRg1

GRg2

GRg3

mGluR1

mGluR2

mGluR3

mGluR4

mGluR5

mGluR6

mGluR7

mGluR8

NMDA1

NMDA2A

NMDA2
B

NMDA2C

NMDA2D

nAChRa2

nAChRa3

nAChRa4
nAChRa5

nAChRa6

nAChRa7

nAChRd

nAChRe

mAChR2

mAChR3

mAChR4

5HT1b

5HT1c

5HT2

5HT3

NGF

NT3

BDNF

CNTF

trk

trkB

trkC

CNTFR

MK2

PTN

GDNF

EGF
bFGF

aFGF

PDG
Fa

PDGFb

EGFR

FGFR

PDGFR
TGFR

Ins1

Ins2

IGF I

IGF II

InsR

IGFR1

IGFR2

CRAF

IP3R1

IP3R2

IP3R3

cyclin A

cyclin B

H2AZ

statin

cjun
cfos

Brm

TCP

actin

SOD
CCO1

CCO2

SC1
SC2

SC6

SC7

DD63.2

0 20 40 60 80 100

C
lustering of R

at E
xpression D

ata (A
v Link/E

uclidean)

321



Flat or hierarchical clustering?

When a hierarchical structure is desired: hierarchical algorithm

322



Flat or hierarchical clustering?

When a hierarchical structure is desired: hierarchical algorithm

Humans are bad at interpreting hiearchical clusterings (unless
cleverly visualised)

322



Flat or hierarchical clustering?

When a hierarchical structure is desired: hierarchical algorithm

Humans are bad at interpreting hiearchical clusterings (unless
cleverly visualised)

For high efficiency, use flat clustering

322



Flat or hierarchical clustering?

When a hierarchical structure is desired: hierarchical algorithm

Humans are bad at interpreting hiearchical clusterings (unless
cleverly visualised)

For high efficiency, use flat clustering

For deterministic results, use HAC

322



Flat or hierarchical clustering?

When a hierarchical structure is desired: hierarchical algorithm

Humans are bad at interpreting hiearchical clusterings (unless
cleverly visualised)

For high efficiency, use flat clustering

For deterministic results, use HAC

HAC also can be applied if K cannot be predetermined (can
start without knowing K )

322



Take-away

Partitional clustering

Provides less information but is more efficient (best: O(kn))
K -means

Hierarchical clustering

Best algorithms O(n2) complexity
Single-link vs. complete-link (vs. group-average)

Hierarchical and non-hierarchical clustering fulfills different
needs

323



Reading

MRS Chapters 16.1-16.4

MRS Chapters 17.1-17.2

324


	Clustering: Introduction
	Non-hierarchical clustering
	Hierarchical clustering

