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Clustering: Definition

(Document) clustering is the process of grouping a set of
documents into clusters of similar documents.

Documents within a cluster should be similar.
Documents from different clusters should be dissimilar.

Clustering is the most common form of unsupervised learning.

Unsupervised = there are no labeled or annotated data.
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Difference clustering–classification

Classification Clustering
supervised learning unsupervised learning
classes are human-defined
and part of the input to the
learning algorithm

Clusters are inferred from
the data without human in-
put.

output = membership in
class only

Output = membership in
class + distance from cen-
troid (“degree of cluster
membership”)
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The cluster hypothesis

Cluster hypothesis.

Documents in the same cluster behave similarly with respect to
relevance to information needs.

All applications of clustering in IR are based (directly or indirectly)
on the cluster hypothesis.

Van Rijsbergen’s original wording (1979): “closely associated
documents tend to be relevant to the same requests”.
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Applications of Clustering

IR: presentation of results (clustering of documents)

Summarisation:

clustering of similar documents for multi-document
summarisation
clustering of similar sentences for re-generation of sentences

Topic Segmentation: clustering of similar paragraphs (adjacent
or non-adjacent) for detection of topic structure/importance

Lexical semantics: clustering of words by cooccurrence
patterns
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Clustering search results
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Clustering news articles

278



Clustering Words

2

2https://colah.github.io/posts/2015-01-Visualizing-Representations/
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Types of Clustering

Hard clustering v. soft clustering

Hard clustering: every object is member in only one cluster
Soft clustering: objects can be members in more than one
cluster

Hierarchical v. non-hierarchical clustering

Hierarchical clustering: pairs of most-similar clusters are
iteratively linked until all objects are in a clustering relationship
Non-hierarchical clustering results in flat clusters of “similar”
documents
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Desiderata for clustering

General goal: put related docs in the same cluster, put
unrelated docs in different clusters.

We’ll see different ways of formalizing this.

The number of clusters should be appropriate for the data set
we are clustering.

Initially, we will assume the number of clusters K is given.
There also exist semiautomatic methods for determining K

Secondary goals in clustering

Avoid very small and very large clusters
Define clusters that are easy to explain to the user
Many others . . .
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Non-hierarchical (partitioning) clustering

Partitional clustering algorithms produce a set of k non-nested
partitions corresponding to k clusters of n objects.

Advantage: not necessary to compare each object to each
other object, just comparisons of objects – cluster centroids
necessary

Optimal partitioning clustering algorithms are O(kn)

Main algorithm: K -means
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K -means: Basic idea

Each cluster j (with nj elements xi) is represented by its
centroid cj , the average vector of the cluster:

cj =
1

nj

nj∑

i=1

xi

Measure of cluster quality: minimise mean square distance
between elements xi and nearest centroid cj

RSS =
k∑

j=1

∑

xi∈j

d(−→xi ,
−→cj )

2

Distance: Euclidean; length-normalised vectors in VS

We iterate two steps:
reassignment: assign each vector to its closest centroid
recomputation: recompute each centroid as the average of the
vectors that were recently assigned to it
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K -means algorithm

Given: a set s0 = −→x1 , ...
−→xn ⊆ Rm

Given: a distance measure d : Rm ×Rm → R
Given: a function for computing the mean µ : P(R) → Rm

Select k initial centers −→c1 , ...
−→ck

while stopping criterion not true:
∑k

j=1

∑
xi∈sj

d(−→xi ,
−→cj )

2 < ǫ (stopping criterion)

do

for all clusters sj do (reassignment)
cj :={−→xi |∀

−→cl : d(−→xi ,
−→cj ) ≤ d(−→xi ,

−→cl )}
end

for all means −→cj do (centroid recomputation)
−→cj := µ(sj )

end

end
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Worked Example: Set of points to be clustered
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Worked Example
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Exercise: (i) Guess what the optimal clustering into two clusters is
in this case; (ii) compute the centroids of the clusters
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Random seeds + Assign points to closest center
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Worked Example: Recompute cluster centroids
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Worked Example: Assign points to closest centroid
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Worked Example: Recompute cluster centroids
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Worked Ex.: Centroids and assignments after convergence
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K -means is guaranteed to converge: Proof

RSS decreases during each reassignment step.

because each vector is moved to a closer centroid

RSS decreases during each recomputation step.

This follows from the definition of a centroid: the new centroid
is the vector for which RSSk reaches its minimum

There is only a finite number of clusterings.

Thus: We must reach a fixed point.

Finite set & monotonically decreasing evaluation function →

convergence

Assumption: Ties are broken consistently.
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Other properties of K -means

Fast convergence

K -means typically converges in around 10-20 iterations (if we
don’t care about a few documents switching back and forth)
However, complete convergence can take many more iterations.

Non-optimality

K -means is not guaranteed to find the optimal solution.
If we start with a bad set of seeds, the resulting clustering can
be horrible.

Dependence on initial centroids

Solution 1: Use i clusterings, choose one with lowest RSS
Solution 2: Use prior hierarchical clustering step to find seeds
with good coverage of document space
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Time complexity of K -means

Reassignment step: O(KNM) (we need to compute KN

document-centroid distances, each of which costs O(M)

Recomputation step: O(NM) (we need to add each of the
document’s < M values to one of the centroids)

Assume number of iterations bounded by I

Overall complexity: O(IKNM) – linear in all important
dimensions
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Hierarchical clustering

Imagine we now want to create a hierachy in the form of a
binary tree.
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Hierarchical clustering

Imagine we now want to create a hierachy in the form of a
binary tree.

Assumes a similarity measure for determining the similarity of
two clusters.

Up to now, our similarity measures were for documents.

We will look at different cluster similarity measures.

Main algorithm: HAC (hierarchical agglomerative clustering)
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HAC: Basic algorithm

Start with each document in a separate cluster

Then repeatedly merge the two clusters that are most similar

Until there is only one cluster.

The history of merging is a hierarchy in the form of a binary
tree.

The standard way of depicting this history is a dendrogram.
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A dendrogram
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Term–document matrix to document–document matrix
Log frequency weighting
and cosine normalisation
SaS PaP WH
0.789 0.832 0.524
0.515 0.555 0.465
0.335 0.000 0.405
0.000 0.000 0.588

SaS P(SaS,SaS) P(PaP,SaS)
PaP P(SaS,PaP) P(PaP,PaP)
WH P(SaS,WH) P(PaP,WH)

SaS PaP

SaS 1 .94 .79
PaP .94 1 .69
WH .79 .69 1

SaS PaP WH

Applying the proximity metric to all pairs of documents. . .

creates the document-document matrix, which reports
similarities/distances between objects (documents)
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Term–document matrix to document–document matrix
Log frequency weighting
and cosine normalisation
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SaS PaP

SaS 1 .94 .79
PaP .94 1 .69
WH .79 .69 1

SaS PaP WH

Applying the proximity metric to all pairs of documents. . .

creates the document-document matrix, which reports
similarities/distances between objects (documents)

As proximity measures are symmetric, the matrix is a triangle
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Hierarchical clustering: agglomerative (BottomUp, greedy)

Given: a set X = x1, ...xn of objects;
Given: a function sim : P(X) ×P(X) → R

for i:= 1 to n do

ci := xi
C :=c1, ... cn
j := n+1
while C > 1 do

(cn1 , cn2 ) := max(cu,cv )∈C×C sim(cu , cv )
cj := cn1 ∪ cn2
C := C { cn1 , cn2} ∪ cj
j:=j+1

end

Similarity function sim : P(X)× P(X) → R measures similarity
between clusters, not objects

308



Computational complexity of the basic algorithm

First, we compute the similarity of all N × N pairs of
documents.

309



Computational complexity of the basic algorithm

First, we compute the similarity of all N × N pairs of
documents.

Then, in each of N iterations:

309



Computational complexity of the basic algorithm

First, we compute the similarity of all N × N pairs of
documents.

Then, in each of N iterations:

We scan the O(N × N) similarities to find the maximum
similarity.

309



Computational complexity of the basic algorithm

First, we compute the similarity of all N × N pairs of
documents.

Then, in each of N iterations:

We scan the O(N × N) similarities to find the maximum
similarity.
We merge the two clusters with maximum similarity.

309



Computational complexity of the basic algorithm

First, we compute the similarity of all N × N pairs of
documents.

Then, in each of N iterations:

We scan the O(N × N) similarities to find the maximum
similarity.
We merge the two clusters with maximum similarity.
We compute the similarity of the new cluster with all other
(surviving) clusters.

309



Computational complexity of the basic algorithm

First, we compute the similarity of all N × N pairs of
documents.
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Computational complexity of the basic algorithm

First, we compute the similarity of all N × N pairs of
documents.

Then, in each of N iterations:

We scan the O(N × N) similarities to find the maximum
similarity.
We merge the two clusters with maximum similarity.
We compute the similarity of the new cluster with all other
(surviving) clusters.

There are O(N) iterations, each performing a O(N × N)
“scan” operation.

Overall complexity is O(N3).

Depending on the similarity function, a more efficient
algorithm is possible.
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Hierarchical clustering: similarity functions

Similarity between two clusters ck and cj (with similarity
measure s) can be interpreted in different ways:

Single Link Function: Similarity of two most similar members
sim(cu, cv ) = maxx∈cu ,y∈ck s(x , y)

Complete Link Function: Similarity of two least similar
members

sim(cu, cv ) = minx∈cu ,y∈ck s(x , y)

Group Average Function: Avg. similarity of each pair of group
members

sim(cu, cv ) = avgx∈cu ,y∈ck s(x , y)
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Example: hierarchical clustering; similarity functions

Cluster 8 objects a-h; Euclidean distances (2D) shown in diagram
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Single Link is O(n2)
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Clustering Result under Single Link

a b c d

e f g h

a b c e f g hd
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Complete Link
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Complete Link
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Clustering result under complete link

a b c d

e f g h

a b c e f g hd

Complete Link is O(n3)
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Example: gene expression data

An example from biology: cluster genes by function

Survey 112 rat genes which are suspected to participate in
development of CNS

Take 9 data points: 5 embryonic (E11, E13, E15, E18, E21), 3
postnatal (P0, P7, P14) and one adult

Measure expression of gene (how much mRNA in cell?)

These measures are normalised logs; for our purposes, we can
consider them as weights

Cluster analysis determines which genes operate at the same
time
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Rat CNS gene expression data (excerpt)

gene genbank locus E11 E13 E15 E18 E21 P0 P7 P14 A
keratin RNKER19 1.703 0.349 0.523 0.408 0.683 0.461 0.32 0.081 0
cellubrevin s63830 5.759 4.41 1.195 2.134 2.306 2.539 3.892 3.953 2.72
nestin RATNESTIN 2.537 3.279 5.202 2.807 1.5 1.12 0.532 0.514 0.443
MAP2 RATMAP2 0.04 0.514 1.553 1.654 1.66 1.491 1.436 1.585 1.894
GAP43 RATGAP43 0.874 1.494 1.677 1.937 2.322 2.296 1.86 1.873 2.396
L1 S55536 0.062 0.162 0.51 0.929 0.966 0.867 0.493 0.401 0.384
NFL RATNFL 0.485 5.598 6.717 9.843 9.78 13.466 14.921 7.862 4.484
NFM RATNFM 0.571 3.373 5.155 4.092 4.542 7.03 6.682 13.591 27.692
NFH RATNFHPEP 0.166 0.141 0.545 1.141 1.553 1.667 1.929 4.058 3.859
synaptophysin RNSYN 0.205 0.636 1.571 1.476 1.948 2.005 2.381 2.191 1.757
neno RATENONS 0.27 0.704 1.419 1.469 1.861 1.556 1.639 1.586 1.512
S100 beta RATS100B 0.052 0.011 0.491 1.303 1.487 1.357 1.438 2.275 2.169
GFAP RNU03700 0 0 0 0.292 2.705 3.731 8.705 7.453 6.547
MOG RATMOG 0 0 0 0 0.012 0.385 1.462 2.08 1.816
GAD65 RATGAD65 0.353 1.117 2.539 3.808 3.212 2.792 2.671 2.327 2.351
pre-GAD67 RATGAD67 0.073 0.18 1.171 1.436 1.443 1.383 1.164 1.003 0.985
GAD67 RATGAD67 0.297 0.307 1.066 2.796 3.572 3.182 2.604 2.307 2.079
G67I80/86 RATGAD67 0.767 1.38 2.35 1.88 1.332 1.002 0.668 0.567 0.304
G67I86 RATGAD67 0.071 0.204 0.641 0.764 0.406 0.202 0.052 0.022 0
GAT1 RATGABAT 0.839 1.071 5.687 3.864 4.786 4.701 4.879 4.601 4.679
ChAT (*) 0 0.022 0.369 0.322 0.663 0.597 0.795 1.015 1.424
ACHE S50879 0.174 0.425 1.63 2.724 3.279 3.519 4.21 3.885 3.95
ODC RATODC 1.843 2.003 1.803 1.618 1.569 1.565 1.394 1.314 1.11
TH RATTOHA 0.633 1.225 1.007 0.801 0.654 0.691 0.23 0.287 0
NOS RRBNOS 0.051 0.141 0.675 0.63 0.86 0.926 0.792 0.646 0.448
GRa1 (#) 0.454 0.626 0.802 0.972 1.021 1.182 1.297 1.469 1.511

. . .
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Rat CNS gene clustering – single link
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Rat CNS gene clustering – complete link
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Rat CNS gene clustering – group average link
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Flat or hierarchical clustering?

When a hierarchical structure is desired: hierarchical algorithm
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Flat or hierarchical clustering?

When a hierarchical structure is desired: hierarchical algorithm

Humans are bad at interpreting hiearchical clusterings (unless
cleverly visualised)

For high efficiency, use flat clustering

For deterministic results, use HAC

HAC also can be applied if K cannot be predetermined (can
start without knowing K )
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Take-away

Partitional clustering

Provides less information but is more efficient (best: O(kn))
K -means

Hierarchical clustering

Best algorithms O(n2) complexity
Single-link vs. complete-link (vs. group-average)

Hierarchical and non-hierarchical clustering fulfills different
needs
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Reading

MRS Chapters 16.1-16.4

MRS Chapters 17.1-17.2
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