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What is clustering?
Applications of clustering in information retrieval
K-means algorithm

Introduction to hierarchical clustering

Single-link and complete-link clustering
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@ Clustering: Introduction
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Clustering: Definition

@ (Document) clustering is the process of grouping a set of
documents into clusters of similar documents.

o Documents within a cluster should be similar.
o Documents from different clusters should be dissimilar.

@ Clustering is the most common form of unsupervised learning.

@ Unsupervised = there are no labeled or annotated data.
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Classification

Clustering

supervised learning

unsupervised learning

classes are human-defined
and part of the input to the
learning algorithm

Clusters are inferred from
the data without human in-
put.

output = membership in
class only

Output = membership in
class + distance from cen-
troid (“degree of cluster
membership”)

Difference clustering—classification
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The cluster hypothesis

Cluster hypothesis.

Documents in the same cluster behave similarly with respect to
relevance to information needs.
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The cluster hypothesis

Cluster hypothesis.

Documents in the same cluster behave similarly with respect to
relevance to information needs.

All applications of clustering in IR are based (directly or indirectly)
on the cluster hypothesis.

Van Rijsbergen’s original wording (1979): “closely associated
documents tend to be relevant to the same requests”.

il
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Applications of Clustering

@ IR: presentation of results (clustering of documents)
@ Summarisation:

@ clustering of similar documents for multi-document
summarisation
o clustering of similar sentences for re-generation of sentences

@ Topic Segmentation: clustering of similar paragraphs (adjacent
or non-adjacent) for detection of topic structure/importance

@ Lexical semantics: clustering of words by cooccurrence
patterns
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+» [aguar (208)

» Cars (74)

©» Club (34)

®» cat(23)

®» Animal (13)

» Restoration (10)

© > Mac OS X (8)

> Jaguar Model ()

» Request (5)

> Mark Webber (5)
» Maya (5)

v

Find in clusters:

Enter Keywords [

Clustering search results

o Advanced
faguar [ the web K| Search
» Help

Top 208 results of at least 20,373,974 retrieved for the query jaguar (Details

1. Jag-lovers - THE source for all Jaguar information [new window] [tmme] [cache] [preview] [clusters]
... Intemet! Serving Enthusiasts since 1993 The Jag-lovers Web Currently with 40661 members The
Premier Jaguar Cars web resource for all enthusiasts Lists and Forums Jag-lovers originally evolved
around its ..

www.jag-lovers.org

n

Jaguar Cars [new window] (lame] [cache] [praview] [o
[...] redirected to www.jaguar.com
www.jaguarcars.com

]

http2//Www.jaguar.com/ fnew window] ffmme preview] [

www.jaguar.com

>

Apple - Mac OS X new window] (fmme] preview] [clusters]

Leam about the new OS X Server, designed for the Intemet, digital media and workgroup management.
Download a technical factsheet.

www. apple.com/macosx
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Clustering news articles

Al News

Google's Project Tango phone dances with Lenovo for its fi...

TechRadar - 3 hours ago

Google's first Project Tango phone for consumers is going to be made

by Lenovo, and we finally a few official details about when it1l launch ..

Project Tango hits smartphones, Lenovo and Google announce 3D ...

Pocket-lint.com - 2 hours

Googie teams up with Lenovo on smartphone with Project Tango's ...
Cited - VentureBeat - 9 hours

Two to Tango: Google, Lenwo partner to build location-aware phone

In-Depth - CNET - 81

Lenovo's Making a Consumer Phablet Using Google's Crazy Project ...

Opinion - Gizmodo -

Google Tangoes with Lenovo to Bnng 3-D Mapping to Smartphones

Blog - Wall Street Journal (blog) - 8 hc

Explore in depth

Google transiated Russia to 'Mordor’ in ‘automated' error
BBC News - 21 hours ago

Google has fixed a bug in an online tool after it began translating
"Russian Federation” to "Mordor". Mordor is the name of a fictional

region
Google has fixed a bug that translated Russia to ‘Mordor’
BT.com - 16 hours ago

Google translates Russia to 'Mordor’ and minister's name to ‘sad little ...
- The Guardian - 7 Jan 2016

Google Fixed a Bug Where "Russia” Automatically Translated to ...
Opinion - Gizmodo - 21 hour

ago
Google bug causes 'Russian Federation' to translate into "Mordor’
In-Depth - CBC.ca - 10




Clustering Words
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Types of Clustering

@ Hard clustering v. soft clustering
o Hard clustering: every object is member in only one cluster
@ Soft clustering: objects can be members in more than one
cluster
@ Hierarchical v. non-hierarchical clustering
o Hierarchical clustering: pairs of most-similar clusters are
iteratively linked until all objects are in a clustering relationship
¢ Non-hierarchical clustering results in flat clusters of “similar”
documents
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Desiderata for clustering

@ General goal: put related docs in the same cluster, put
unrelated docs in different clusters.

o We'll see different ways of formalizing this.
@ The number of clusters should be appropriate for the data set
we are clustering.
o Initially, we will assume the number of clusters K is given.
@ There also exist semiautomatic methods for determining K
@ Secondary goals in clustering
@ Avoid very small and very large clusters
@ Define clusters that are easy to explain to the user
@ Many others . ..
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© Non-hierarchical clustering



Non-hierarchical (partitioning) clustering

@ Partitional clustering algorithms produce a set of k non-nested
partitions corresponding to k clusters of n objects.

@ Advantage: not necessary to compare each object to each
other object, just comparisons of objects — cluster centroids
necessary

@ Optimal partitioning clustering algorithms are O(kn)

@ Main algorithm: K-means



K-means: Basic idea
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1<
C':—E X
J nj.
i=1

@ Measure of cluster quality: minimise mean square distance
between elements x; and nearest centroid ¢;

k
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RSS=>"> d(X, )
j=1 x;€j
@ Distance: Euclidean; length-normalised vectors in VS
@ We iterate two steps:

283



K-means: Basic idea

@ Each cluster j (with n; elements x;) is represented by its
centroid ¢;, the average vector of the cluster:
1 &
G=—>) X
J ) i
gt
@ Measure of cluster quality: minimise mean square distance
between elements x; and nearest centroid ¢;

k
_ < )2
RSS =) > d(X.q)
j=1 x;€j
@ Distance: Euclidean; length-normalised vectors in VS
@ We iterate two steps:
@ reassignment: assign each vector to its closest centroid
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K-means: Basic idea

@ Each cluster j (with n; elements x;) is represented by its
centroid ¢;, the average vector of the cluster:
1 &
G=—>) X
J ) i
gt
@ Measure of cluster quality: minimise mean square distance
between elements x; and nearest centroid ¢;

k
— =2
RSS=>"> d(X, )
j=1 x;€j
@ Distance: Euclidean; length-normalised vectors in VS
@ We iterate two steps:

@ reassignment: assign each vector to its closest centroid
e recomputation: recompute each centroid as the average of the
vectors that were recently assigned to it
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K-means algorithm

Given: a set s) = x1,...x5 C R™
Given: a distance measure d : R™ X R™ - R
Given: a function for computing the mean p : P(R) — R™

Select k initial centers ?f, ?Z

while stopping criterion not true:

jl_<71 > es; d(x{, ¢ /)% < € (stopping criterion)
- =

do

for all clusters s; do (reass:gnment)
g ={XIVe 1 d(x, ) < d(x, )}

end

for all means ?j do (centroid recomputation)
=
G = uls))

end

end




Worked Example: Set of points to be clustered



Worked Example

Exercise: (i) Guess what the optimal clustering into two clusters is
in this case; (ii) compute the centroids of the clusters



Random seeds + Assign points to closest center

Iteration One



Worked Example: Recompute cluster centroids

Iteration One
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Worked Example: Assign points to closest centroid

—

Iteration One
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Worked Example: Recompute cluster centroids

.x( ®ee

Iteration Two



Worked Example: Assign points to closest centroid

Iteration Two



Worked Example: Recompute cluster centroids

Iteration Three
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Worked Example: Assign points to closest centroid

Iteration Three



Worked Example: Recompute cluster centroids

Iteration Four
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Worked Example: Assign points to closest centroid
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Worked Example: Recompute cluster centroids
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Worked Example: Assign points to closest centroid

Iteration Five




Worked Example: Recompute cluster centroids

Iteration Six
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Worked Example: Assign points to closest centroid

Iteration Six




Worked Example: Recompute cluster centroids

Iteration Seven



Worked Ex.: Centroids and assignments after convergence

Convergence
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K-means is guaranteed to converge: Proof

RSS decreases during each reassignment step.
o because each vector is moved to a closer centroid

RSS decreases during each recomputation step.

@ This follows from the definition of a centroid: the new centroid
is the vector for which RSSy reaches its minimum

There is only a finite number of clusterings.

Thus: We must reach a fixed point.

Finite set & monotonically decreasing evaluation function —
convergence

Assumption: Ties are broken consistently.
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Other properties of K-means

@ Fast convergence
@ K-means typically converges in around 10-20 iterations (if we
don’t care about a few documents switching back and forth)
o However, complete convergence can take many more iterations.

@ Non-optimality
¢ K-means is not guaranteed to find the optimal solution.
o If we start with a bad set of seeds, the resulting clustering can
be horrible.
@ Dependence on initial centroids
@ Solution 1: Use i clusterings, choose one with lowest RSS
@ Solution 2: Use prior hierarchical clustering step to find seeds
with good coverage of document space
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Time complexity of K-means

@ Reassignment step: O(KNM) (we need to compute KN
document-centroid distances, each of which costs O(M)

@ Recomputation step: O(NM) (we need to add each of the
document’s < M values to one of the centroids)

@ Assume number of iterations bounded by /

@ Overall complexity: O(IKNM) — linear in all important
dimensions
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Hierarchical clustering

@ Imagine we now want to create a hierachy in the form of a
binary tree.
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Hierarchical clustering

@ Imagine we now want to create a hierachy in the form of a
binary tree.
@ Assumes a similarity measure for determining the similarity of

two clusters.
@ Up to now, our similarity measures were for documents.

We will look at different cluster similarity measures.

Main algorithm: HAC (hierarchical agglomerative clustering)
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HAC: Basic algorithm

@ Start with each document in a separate cluster
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HAC: Basic algorithm

Start with each document in a separate cluster
Then repeatedly merge the two clusters that are most similar

Until there is only one cluster.

The history of merging is a hierarchy in the form of a binary
tree.

The standard way of depicting this history is a dendrogram.
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A dendrogram
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Term—document matrix to document—document matrix

Log frequency weighting
and cosine normalisation

SaS P(SaS,SaSs P(PaP,SaS
5a5  PaP  WH PaP PESaS,PaP)) PEPaP,PaP))
0789 0832 0.524 WH | P(SaS,WH)  P(PaP,WH)
0.515 0.555  0.465 Sas BaP
0335  0.000 0.405
0.000  0.000 0.588

SaS |1 .94 79
PaP | 04 1 69
WH | .79 69 1

[5a5  PaP WH |

@ Applying the proximity metric to all pairs of documents. ..

@ creates the document-document matrix, which reports
similarities/distances between objects (documents)
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Term—document matrix to document—document matrix

Log frequency weighting

and cosine normalisation $aS P(Sa$,SaS) P(PaP,SaS)
5a5  PaP  WH PaP | P(SaS,PaP)  P(PaP,PaP)
0789 0832 0.524 WH | P(SaS,WH)  P(PaP,WH)
0515 0.555 0.465 525 2P

0335 0.000 0.405

0.000 0.000 0.588

SaS 1 .94 .79
PaP | .94 1 .69
WH | .79 .69 1

[5a5  PaP WH |

@ Applying the proximity metric to all pairs of documents. ..

@ creates the document-document matrix, which reports
similarities/distances between objects (documents)

@ The diagonal is trivial (identity)
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Term—document matrix to document—document matrix

Log frequency weighting
and cosine normalisation

SaS P(SaS,SaSs P(PaP,SaS
5a5  PaP  WH PaP PESaS,PaP)) PEPaP,PaP))
0789 0832 0.524 WH | P(SaS,WH)  P(PaP,WH)
0.515 0.555  0.465 Sas BaP
0335  0.000 0.405
0.000  0.000 0.588

SaS |1 .94 79
PaP | 04 1 69
WH | .79 69 1

[5a5  PaP WH |

@ Applying the proximity metric to all pairs of documents. ..

@ creates the document-document matrix, which reports
similarities/distances between objects (documents)

@ As proximity measures are symmetric, the matrix is a triangle
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Term—document matrix to document—document matrix

Log frequency weighting
and cosine normalisation
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@ Applying the proximity metric to all pairs of documents. ..

@ creates the document-document matrix, which reports
similarities/distances between objects (documents)

307



Hierarchical clustering: agglomerative (BottomUp, greedy)

Given: a set X = x1,...x, of objects;
Given: a function sim : P(X) x P(X) = R

for i:=1 to n do
Ci = X;
C:=cy, ... cn
ji=n+1
while C > 1 do
(C"1=C"2) = max(cu,cv)ECXCSim(Cuv CV)
Cj = Cnm U cn,
C=C {a,mtUg
ji=j+1

end

Similarity function sim : P(X) x P(X) — R measures similarity
between clusters, not objects
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Computational complexity of the basic algorithm

@ First, we compute the similarity of all N x N pairs of
documents.
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Computational complexity of the basic algorithm
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Computational complexity of the basic algorithm

@ First, we compute the similarity of all N x N pairs of
documents.
@ Then, in each of N iterations:
o We scan the O(N x N) similarities to find the maximum
similarity.
o We merge the two clusters with maximum similarity.
o We compute the similarity of the new cluster with all other
(surviving) clusters.
@ There are O(N) iterations, each performing a O(N x N)
“scan” operation.

@ Overall complexity is O(N®).

@ Depending on the similarity function, a more efficient
algorithm is possible.
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Hierarchical clustering: similarity functions

Similarity between two clusters ¢, and ¢; (with similarity
measure s) can be interpreted in different ways:
@ Single Link Function: Similarity of two most similar members
Sim(cm Cv) = maXXeCLI7_y€CkS(X7.y)
@ Complete Link Function: Similarity of two least similar
members
Sim(cm Cv) = minXECu,yeCks(XLy)
@ Group Average Function: Avg. similarity of each pair of group
members

Sim(cm Cv) = anXECu,yECks(Xay)
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Example: hierarchical clustering; similarity functions

Cluster 8 objects a-h; Euclidean distances (2D) shown in diagram

a b c d
[ L] L] °
N l 15
2
e h
L] ‘ % °
b T
c 25 15
d 35 25 T
e 2 5 10.25 16.25
f 5 2 6.25 1025 | 1
g 10.25 6.25 2 5 2.5 15 |
h 16.25 10.25 5 2 35 2.5 [ 1 |
[T [ b [ < [ d [ e [ f [ |
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Single Link is O(n?)

b |[1
c |25 15

d ] 35 25 1

e || 2 V5 v/10.25 | 1/16.25

f |l V5 2 v6.25 | /1025 | 1

g || V1025 | v6.25 | 2 V5 25 15

h ][ V1625 | V10.25 | V5 2 3.5 25 1 |
IE [ b [ c [ d [ e K g |

After Step 4 (a—b, c—d, e—f, g—h merged):
c—d 1.5
e—f 2 v6.25
gh || V625 | 2 15 |
| [ab [cd |ef |
“min-min” at each step

312



Clustering Result under Single Link
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Complete Link

b T
c 25 15
d 35 25 1
e 2 5 10.25 16.25
f 5 2 6.25 10.25 | 1
g 10.25 6.25 2 5 25 15 |
h 16.25 10.25 5 2 35 2.5 [1 |
[ MTa [ b [ ¢ [ d [ e [ f [ & |
After step 4 (a—b, c—d, e—f, g—h merged):
o 25 15
ef 2 V5 V/10.25 V16.25
2 V6.25 V/10.25
g-h 1/10.25 V6.25 2 V5 25 1.5
Vi625| V1025 | VB 2 25
| || a-b | c—d | e—f

“max-min” at each step
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Complete Link

b T
c 25 15
d 35 25 T
e 2 5 10.25 16.25
f 5 2 6.25 10.25 | 1
g 10.25 6.25 2 5 25 15 |
h 16.25 10.25 5 2 35 2.5 [1 |
[ MTa [ b [ ¢ [ d [ e [ f [ & |
After step 4 (a—b, c—d, e—f, g—h merged):
o 25 15
ef 2 V5 V/10.25 V16.25
V5 2 V6.25 V10.25
g-h 1/10.25 V6.25 2 NG 25 1.5
Vi625| V1025 | VB 2 25
| || a-b | c—d | e—f |

“max-min” at each step — ab/ef and cd/gh merges next
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Clustering result under complete link

Complete Link is O(n3)
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Example: gene expression data

@ An example from biology: cluster genes by function

@ Survey 112 rat genes which are suspected to participate in
development of CNS

@ Take 9 data points: 5 embryonic (E11, E13, E15, E18, E21), 3
postnatal (PO, P7, P14) and one adult

@ Measure expression of gene (how much mRNA in cell?)

@ These measures are normalised logs; for our purposes, we can
consider them as weights

@ Cluster analysis determines which genes operate at the same
time
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Rat CNS gene expression data (excerpt)

gene genbank locus Ell E13 E15 E18 E21 PO P7 P14 A
keratin RNKER19 1.703 0.349 0.523 0.408 0.683 0.461 0.32 0.081 0
cellubrevin $63830 5.759 4.41 1.195 2.134 2.306 2.539 3.892 3.953 2.72
nestin RATNESTIN 2.537 3.279 5.202 2.807 1.5 1.12 0.532 0.514 0.443
MAP2 RATMAP2 0.04 0.514 1.553 1.654 1.66 1.491 1.436 1.585 1.894
GAP43 RATGAP43 0.874 1.494 1.677 1.937 2.322 2.296 1.86 1.873 2.396
L1 S55536 0.062 0.162 0.51 0.929 0.966 0.867 0.493 0.401 0.384
NFL RATNFL 0.485 5.598 6.717 9.843 9.78 13.466 14.921 7.862 4.484
NFM RATNFM 0.571 3.373 5.155 4.092 4.542 7.03 6.682 13.591 27.692
NFH RATNFHPEP 0.166 0.141 0.545 1.141 1.553 1.667 1.929 4.058 3.859
synaptophysin RNSYN 0.205 0.636 1.571 1.476 1.948 2.005 2.381 2.191 1.757
neno RATENONS 0.27 0.704 1.419 1.469 1.861 1.556 1.639 1.586 1.512
S100 beta RATS100B 0.052 0.011 0.491 1.303 1.487 1.357 1.438 2.275 2.169
GFAP RNU03700 0 0 0 0.292 2.705 3.731 8.705 7.453 6.547
MOG RATMOG 0 0 0 0 0.012 0.385 1.462 2.08 1.816
GAD65 RATGADG65 0.353 1.117 2.539 3.808 3.212 2.792 2.671 2.327 2.351
pre-GAD67 RATGADG67 0.073 0.18 1.171 1.436 1.443 1.383 1.164 1.003 0.985
GAD67 RATGADG67 0.297 0.307 1.066 2.796 3.572 3.182 2.604 2.307 2.079
G67180/86 RATGADG67 0.767 1.38 2.35 1.88 1.332 1.002 0.668 0.567 0.304
G67186 RATGADG67 0.071 0.204 0.641 0.764 0.406 0.202 0.052 0.022 0
GAT1 RATGABAT 0.839 1.071 5.687 3.864 4.786 4.701 4.879 4.601 4.679
ChAT *) 0 0.022 0.369 0.322 0.663 0.597 0.795 1.015 1.424
ACHE S50879 0.174 0.425 1.63 2.724 3.279 3.519 4.21 3.885 3.95
oDC RATODC 1.843 2.003 1.803 1.618 1.569 1.565 1.394 1.314 1.11
TH RATTOHA 0.633 1.225 1.007 0.801 0.654 0.691 0.23 0.287 0
NOS RRBNOS 0.051 0.141 0.675 0.63 0.86 0.926 0.792 0.646 0.448
GRal (#) 0.454 0.626 0.802 0.972 1.021 1.182 1.297 1.469 1.511
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Rat CNS gene clustering — single link
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Rat CNS gene clustering — complete link
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Flat or hierarchical clustering?

@ When a hierarchical structure is desired: hierarchical algorithm
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Flat or hierarchical clustering?

When a hierarchical structure is desired: hierarchical algorithm

Humans are bad at interpreting hiearchical clusterings (unless
cleverly visualised)

For high efficiency, use flat clustering

For deterministic results, use HAC

HAC also can be applied if K cannot be predetermined (can
start without knowing K)
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@ Partitional clustering

@ Provides less information but is more efficient (best: O(kn))
¢ K-means

@ Hierarchical clustering
@ Best algorithms O(n?) complexity
@ Single-link vs. complete-link (vs. group-average)
@ Hierarchical and non-hierarchical clustering fulfills different
needs
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@ MRS Chapters 16.1-16.4
@ MRS Chapters 17.1-17.2
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