
Lecture 4: Term Weighting and the Vector Space
Model

Information Retrieval
Computer Science Tripos Part II

Ronan Cummins1

Natural Language and Information Processing (NLIP) Group

ronan.cummins@cl.cam.ac.uk

1Adapted from Simone Teufel’s original slides
137

IR System Components

IR System
Query

Document

Collection

Set of relevant

documents

Document Normalisation

Indexer

U
I

Ranking/Matching ModuleQ
u
e
ry

 N
o
rm

.

Indexes

Today: The ranker/matcher

138

IR System Components

IR System
Query

Document

Collection

Set of relevant

documents

Document Normalisation

Indexer

U
I

Ranking/Matching ModuleQ
u
e
ry

 N
o
rm

.

Indexes

Finished with indexing, query normalisation

139

IR System Components

IR System
Query

Document

Collection

Set of relevant

documents

Document Normalisation

Indexer

U
I

Ranking/Matching ModuleQ
u
e
ry

 N
o
rm

.

Indexes

Today: the matcher

140

Overview

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 Zipf’s Law and tf-idf weighting

5 The vector space model

141

Overview

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 Zipf’s Law and tf-idf weighting

5 The vector space model

Recap: Tolerant Retrieval

What to do when there is no exact match between query term
and document term?

Dictionary as hash, B-tree, trie

Wildcards via permuterm

and k-gram index

k-gram index and edit-distance for spelling correction

142

Upcoming

Ranking search results: why it is important (as opposed to
just presenting a set of unordered Boolean results)

Term frequency: This is a key ingredient for ranking.

Tf-idf ranking: best known traditional ranking scheme

And one explanation for why it works: Zipf’s Law

Vector space model: One of the most important formal
models for information retrieval (along with Boolean and
probabilistic models)

143

Overview

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 Zipf’s Law and tf-idf weighting

5 The vector space model

Ranked retrieval

Thus far, our queries have been Boolean.

Documents either match or don’t.

Good for expert users with precise understanding of their
needs and of the collection.

Also good for applications: Applications can easily consume
1000s of results.

Not good for the majority of users

Don’t want to write Boolean queries or wade through 1000s
of results.

This is particularly true of web search.

144

Problem with Boolean search: Feast or famine

Boolean queries often have either too few or too many results.

Query 1

standard AND user AND dlink AND 650
→ 200,000 hits Feast!

Query 2

standard AND user AND dlink AND 650
AND no AND card AND found
→ 0 hits Famine!

In Boolean retrieval, it takes a lot of skill to come up with a
query that produces a manageable number of hits.

In ranked retrieval, “feast or famine” is less of a problem.

Condition: Results that are more relevant are ranked higher
than results that are less relevant. (i.e., the ranking algorithm
works.)

145

Scoring as the basis of ranked retrieval

Rank documents in the collection according to how relevant
they are to a query

Assign a score to each query-document pair, say in [0, 1].

This score measures how well document and query “match”.

If the query consists of just one term . . .

lioness

Score should be 0 if the query term does not occur in the
document.
The more frequent the query term in the document, the higher
the score
We will look at a number of alternatives for doing this.

146

Take 1: Jaccard coefficient

A commonly used measure of overlap of two sets

Let A and B be two sets

Jaccard coefficient:

jaccard(A,B) =
|A ∩ B |
|A ∪ B |

(A 6= ∅ or B 6= ∅)
jaccard(A,A) = 1

jaccard(A,B) = 0 if A ∩ B = 0

A and B don’t have to be the same size.

Always assigns a number between 0 and 1.

147

Jaccard coefficient: Example

What is the query-document match score that the Jaccard
coefficient computes for:

Query

“ides of March”

Document

“Caesar died in March”

jaccard(q, d) = 1/6

148

What’s wrong with Jaccard?

It doesn’t consider term frequency (how many occurrences a
term has).

It also does not consider that that some terms are inherently
more informative than frequent terms.

We need a more sophisticated way of normalizing for the
length of a document.

Later in this lecture, we’ll use |A ∩ B|/
√
|A ∪ B| (cosine) . . .

. . . instead of |A ∩ B|/|A ∪ B| (Jaccard) for length
normalization.

149

Overview

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 Zipf’s Law and tf-idf weighting

5 The vector space model

Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented as a binary vector ∈ {0, 1}|V |.

150

Count matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Each document is now represented as a count vector ∈ N|V |.

151

Bag of words model

We do not consider the order of words in a document.

Represented the same way:

John is quicker than Mary
Mary is quicker than John

This is called a bag of words model.

In a sense, this is a step back: The positional index was able
to distinguish these two documents.

152

Term frequency tf

The term frequency tft,d of term t in document d is defined
as the number of times that t occurs in d .

We could just use tf as is (“raw term frequency”).

A document with tf = 10 occurrences of the term is more
relevant than a document with tf = 1 occurrence of the term.

But not 10 times more relevant.

Relevance does not increase proportionally with term
frequency.

153

Instead of raw frequency: Log frequency weighting

The log frequency weight of term t in d is defined as follows

wt,d =

{
1 + log10 tft,d if tft,d > 0
0 otherwise

tft,d 0 1 2 10 1000
wt,d 0 1 1.3 2 4

Score for a document-query pair: sum over terms t in both q
and d :

tf-matching-score(q, d) =
∑

t∈q∩d (1 + log tft,d)

The score is 0 if none of the query terms is present in the
document.

154

Overview

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 Zipf’s Law and tf-idf weighting

5 The vector space model

Frequency in document vs. frequency in collection

In addition, to term frequency (the frequency of the term in
the document) . . .

. . . we also want to reward terms which are rare in the
document collection overall.

Now: excursion to an important statistical observation about
language.

155

Zipf’s law

How many frequent vs. infrequent terms should we expect in
a collection?

In natural language, there are a few very frequent terms and
very many very rare terms.

Zipf’s law

The i th most frequent term has
frequency cfi proportional to 1/i :

cfi ∝ 1
i

cfi is collection frequency: the number of occurrences of the
term ti in the collection.

156

Zipf’s law

Zipf’s law

The i th most frequent term has
frequency cfi proportional to 1/i :

cfi ∝ 1
i

So if the most frequent term (the) occurs cf1 times, then the
second most frequent term (of) has half as many occurrences
cf2 =

1
2cf1 . . .

. . . and the third most frequent term (and) has a third as
many occurrences cf3 =

1
3cf1 etc.

Equivalent: cfi = p · ik and log cfi = log p + k log i (for
k = −1)

Example of a power law

157

Zipf’s Law: Examples from 5 Languages

Top 10 most frequent words in some large language samples:

English German Spanish Italian Dutch

1 the 61,847 1 der 7,377,879 1 que 32,894 1 non 25,757 1 de 4,770
2 of 29,391 2 die 7,036,092 2 de 32,116 2 di 22,868 2 en 2,709
3 and 26,817 3 und 4,813,169 3 no 29,897 3 che 22,738 3 het/’t 2,469
4 a 21,626 4 in 3,768,565 4 a 22,313 4 è 18,624 4 van 2,259
5 in 18,214 5 den 2,717,150 5 la 21,127 5 e 17,600 5 ik 1,999
6 to 16,284 6 von 2,250,642 6 el 18,112 6 la 16,404 6 te 1,935
7 it 10,875 7 zu 1,992,268 7 es 16,620 7 il 14,765 7 dat 1,875
8 is 9,982 8 das 1,983,589 8 y 15,743 8 un 14,460 8 die 1,807
9 to 9,343 9 mit 1,878,243 9 en 15,303 9 a 13,915 9 in 1,639
10 was 9,236 10 sich 1,680,106 10 lo 14,010 10 per 10,501 10 een 1,637

BNC,
100Mw

“Deutscher
Wortschatz”,
500Mw

subtitles,
27.4Mw

subtitles,
5.6Mw

subtitles,
800Kw

158

Zipf’s law: Rank × Frequency ∼ Constant

English: Rank R Word Frequency f R × f

10 he 877 8770
20 but 410 8200
30 be 294 8820

800 friends 10 8000
1000 family 8 8000

German: Rank R Word Frequency f R × f

10 sich 1,680,106 16,801,060
100 immer 197,502 19,750,200
500 Mio 36,116 18,059,500

1,000 Medien 19,041 19,041,000
5,000 Miete 3,755 19,041,000

10,000 vorläufige 1.664 16,640,000

159

Other collections (allegedly) obeying power laws

Sizes of settlements

Frequency of access to web pages

Income distributions amongst top earning 3% individuals

Korean family names

Size of earth quakes

Word senses per word

Notes in musical performances

. . .

160

Zipf’s law for Reuters

Fit is not great.

161

Desired weight for rare terms

Rare terms are more informative than frequent terms.

Consider a term in the query that is rare in the collection
(e.g., arachnocentric).

A document containing this term is very likely to be relevant.

→ We want high weights for rare terms like
arachnocentric.

162

Desired weight for frequent terms

Frequent terms are less informative than rare terms.

Consider a term in the query that is frequent in the collection
(e.g., good, increase, line).

A document containing this term is more likely to be relevant
than a document that doesn’t . . .

. . . but words like good, increase and line are not sure
indicators of relevance.

→ For frequent terms like good, increase, and line, we
want positive weights . . .

. . . but lower weights than for rare terms.

163

Document frequency

We want high weights for rare terms like arachnocentric.

We want low (positive) weights for frequent words like good,
increase, and line.

We will use document frequency to factor this into computing
the matching score.

The document frequency is the number of documents in the
collection that the term occurs in.

164

idf weight

dft is the document frequency, the number of documents that
t occurs in.

dft is an inverse measure of the informativeness of term t.

We define the idf weight of term t as follows:

idft = log10
N

dft

(N is the number of documents in the collection.)

idft is a measure of the informativeness of the term.

log N
dft

instead of N
dft

to “dampen” the effect of idf

Note that we use the log transformation for both term
frequency and document frequency.

165

Examples for idf

Compute idft using the formula: idft = log10
1,000,000

dft

term dft idft
calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0

166

Effect of idf on ranking

idf affects the ranking of documents for queries with at least
two terms.

For example, in the query “arachnocentric line”, idf weighting
increases the relative weight of arachnocentric and
decreases the relative weight of line.

idf has little effect on ranking for one-term queries.

167

Collection frequency vs. Document frequency

Collection Document
Term frequency frequency
insurance 10440 3997
try 10422 8760

Collection frequency of t: number of tokens of t in the
collection

Document frequency of t: number of documents t occurs in

Clearly, insurance is a more discriminating search term and
should get a higher weight.

This example suggests that df (and idf) is better for weighting
than cf (and “icf”).

168

tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and
its idf weight.

tf-idf weight

wt,d = (1 + log tft,d) · log
N

dft

tf-weight

idf-weight

Best known weighting scheme in information retrieval

Alternative names: tf.idf, tf x idf

169

Overview

1 Recap

2 Why ranked retrieval?

3 Term frequency

4 Zipf’s Law and tf-idf weighting

5 The vector space model

Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented as a binary vector ∈ {0, 1}|V |.

170

Count matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Each document is now represented as a count vector ∈ N|V |.

171

Binary → count → weight matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 5.25 3.18 0.0 0.0 0.0 0.35
Brutus 1.21 6.10 0.0 1.0 0.0 0.0
Caesar 8.59 2.54 0.0 1.51 0.25 0.0
Calpurnia 0.0 1.54 0.0 0.0 0.0 0.0
Cleopatra 2.85 0.0 0.0 0.0 0.0 0.0
mercy 1.51 0.0 1.90 0.12 5.25 0.88
worser 1.37 0.0 0.11 4.15 0.25 1.95
. . .

Each document is now represented as a real-valued vector of tf-idf weights
∈ R|V |.

172

Documents as vectors

Each document is now represented as a real-valued vector of
tf-idf weights ∈ R|V |.

So we have a |V |-dimensional real-valued vector space.

Terms are axes of the space.

Documents are points or vectors in this space.

Very high-dimensional: tens of millions of dimensions when
you apply this to web search engines

Each vector is very sparse - most entries are zero.

173

Queries as vectors

Key idea 1: do the same for queries: represent them as vectors
in the high-dimensional space

Key idea 2: Rank documents according to their proximity to
the query

proximity ≈ negative distance

This allows us to rank relevant documents higher than
nonrelevant documents

174

How do we formalize vector space similarity?

First cut: (negative) distance between two points

(= distance between the end points of the two vectors)

Euclidean distance?

Euclidean distance is a bad idea . . .

. . . because Euclidean distance is large for vectors of different
lengths.

175

Why distance is a bad idea

0 1
0

1

rich

poor

q: [rich poor]

d1:Ranks of starving poets swell
d2:Rich poor gap grows

d3:Record baseball salaries in 2010

The Euclidean distance of ~q and ~d2 is large although the
distribution of terms in the query q and the distribution of terms in
the document d2 are very similar.

176

Use angle instead of distance

Rank documents according to angle with query

Thought experiment: take a document d and append it to
itself. Call this document d ′. d ′ is twice as long as d .

“Semantically” d and d ′ have the same content.

The angle between the two documents is 0, corresponding to
maximal similarity . . .

. . . even though the Euclidean distance between the two
documents can be quite large.

177

From angles to cosines

The following two notions are equivalent.

Rank documents according to the angle between query and
document in decreasing order
Rank documents according to cosine(query,document) in
increasing order

Cosine is a monotonically decreasing function of the angle for
the interval [0◦, 180◦]

178

Length normalization

How do we compute the cosine?

A vector can be (length-) normalized by dividing each of its
components by its length – here we use the L2 norm:

||x ||2 =
√∑

i x
2
i

This maps vectors onto the unit sphere . . .

. . . since after normalization: ||x ||2 =
√∑

i x
2
i = 1.0

As a result, longer documents and shorter documents have
weights of the same order of magnitude.

Effect on the two documents d and d ′ (d appended to itself)
from earlier slide: they have identical vectors after
length-normalization.

179

Cosine similarity between query and document

cos(~q, ~d) = sim(~q, ~d) =
~q · ~d
|~q||~d |

=

∑|V |
i=1 qidi√∑|V |

i=1 q
2
i

√∑|V |
i=1 d

2
i

qi is the tf-idf weight of term i in the query.

di is the tf-idf weight of term i in the document.

|~q| and |~d | are the lengths of ~q and ~d .

This is the cosine similarity of ~q and ~d or, equivalently,
the cosine of the angle between ~q and ~d .

180

Cosine for normalized vectors

For normalized vectors, the cosine is equivalent to the dot
product or scalar product.

cos(~q, ~d) = ~q · ~d =
∑

i qi · di
(if ~q and ~d are length-normalized).

181

Cosine similarity illustrated

0 1
0

1

rich

poor

~v(q)

~v(d1)

~v(d2)

~v(d3)

θ

182

Cosine: Example

How similar are the
following novels?

SaS: Sense and
Sensibility

PaP: Pride and
Prejudice

WH: Wuthering Heights

Term frequencies (raw counts)

term SaS PaP WH

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

183

Cosine: Example

a Term frequencies
a (raw counts)

term SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

Log frequency
weighting

SaS PaP WH
3.06 2.76 2.30
2.0 1.85 2.04

1.30 0.00 1.78
0.00 0.00 2.58

Log frequency weighting
and cosine normalisation
SaS PaP WH
0.789 0.832 0.524
0.515 0.555 0.465
0.335 0.000 0.405
0.000 0.000 0.588

(To simplify this example, we don’t do idf weighting.)

cos(SaS,PaP) ≈
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0 ≈ 0.94.

cos(SaS,WH) ≈ 0.79

cos(PaP,WH) ≈ 0.69

184

Components of tf-idf weighting

Term frequency Document frequency Normalization

n (natural) tft,d n (no) 1 n (none)
1

l (logarithm) 1 + log(tft,d) t (idf) log N
dft

c (cosine)
1√

w2
1+w2

2+...+w2
M

a (augmented) 0.5 +
0.5×tft,d
maxt(tft,d)

p (prob idf) max{0, log N−dft
dft

} u (pivoted
unique)

1/u

b (boolean)

{
1 if tft,d > 0
0 otherwise

b (byte size) 1/CharLengthα,
α < 1

L (log ave)
1+log(tft,d)

1+log(avet∈d(tft,d))

Best known combination of weighting options

Default: no weighting

185

tf-idf example

We often use different weightings for queries and documents.

Notation: ddd.qqq

Example: lnc.ltn

Document:
l ogarithmic tf
n o df weighting
c osine normalization

Query:
l ogarithmic tf
t – means idf
n o normalization

186

tf-idf example: lnc.ltn

Query: “best car insurance”. Document: “car insurance auto insurance”.

word query document product
tf-raw tf-wght df idf weight tf-raw tf-wght weight n’lized

auto 0 0 5000 2.3 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0 0 0 0 0
car 1 1 10000 2.0 2.0 1 1 1 0.52 1.04
insurance 1 1 1000 3.0 3.0 2 1.3 1.3 0.68 2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted
term frequency, df: document frequency, idf: inverse document frequency, weight: the final
weight of the term in the query or document, n’lized: document weights after cosine
normalization, product: the product of final query weight and final document weight
√
12 + 02 + 12 + 1.32 ≈ 1.92

1/1.92 ≈ 0.52
1.3/1.92 ≈ 0.68

Final similarity score between query and document:
∑

i wqi · wdi = 0 + 0 + 1.04 + 2.04 = 3.08

187

Summary: Ranked retrieval in the vector space model

Represent the query as a weighted tf-idf vector

Represent each document as a weighted tf-idf vector

Compute the cosine similarity between the query vector and
each document vector

Rank documents with respect to the query

Return the top K (e.g., K = 10) to the user

188

Reading

MRS, Chapter 5.1.2 (Zipf’s Law)

MRS, Chapter 6 (Term Weighting)

189

