IR System Components

¹Adapted from Simone Teufel's original slides

Finished with indexing, query normalisation

Today: the matcher

Overview	Overview
1 Recap	1 Recap
2 Why ranked retrieval?	2 Why ranked retrieval?
3 Term frequency	3 Term frequency
4 Zipf's Law and tf-idf weighting	4 Zipf's Law and tf-idf weighting
5 The vector space model	5 The vector space model

	141	
Recap: Tolerant Retrieval		Upcoming

- What to do when there is no exact match between query term and document term?
- Dictionary as hash, B-tree, trie
- Wildcards via permuterm
- ${\ensuremath{\bullet}}$ and k-gram index
- k-gram index and edit-distance for spelling correction

- Ranking search results: why it is important (as opposed to just presenting a set of unordered Boolean results)
- Term frequency: This is a key ingredient for ranking.
- Tf-idf ranking: best known traditional ranking scheme
- And one explanation for why it works: Zipf's Law
- Vector space model: One of the most important formal models for information retrieval (along with Boolean and probabilistic models)

1 Recap	 Thus far, our queries have been Boolean. Documents either match or don't.
2 Why ranked retrieval?	 Good for expert users with precise understanding of their needs and of the collection.
3 Term frequency	 Also good for applications: Applications can easily consume 1000s of results.
	 Not good for the majority of users
4 Zipf's Law and tf-idf weighting	 Don't want to write Boolean queries or wade through 1000s of results.
	 This is particularly true of web search.

Problem with Boolean search: Feast or famine

• Boolean queries often have either too few or too many results.

- In Boolean retrieval, it takes a lot of skill to come up with a query that produces a manageable number of hits.
- In ranked retrieval, "feast or famine" is less of a problem.
- Condition: Results that are more relevant are ranked higher than results that are less relevant. (i.e., the ranking algorithm works.)

Scoring as the basis of ranked retrieval

- Rank documents in the collection according to how relevant they are to a query
- Assign a score to each query-document pair, say in [0,1].
- This score measures how well document and query "match".
- If the query consists of just one term ...

lioness

- Score should be 0 if the query term does not occur in the document.
- The more frequent the query term in the document, the higher the score
- We will look at a number of alternatives for doing this.

- A commonly used measure of overlap of two sets
- Let A and B be two sets
- Jaccard coefficient:

$$\operatorname{JACCARD}(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

 $(A \neq \emptyset \text{ or } B \neq \emptyset)$

- JACCARD(A, A) = 1
- JACCARD(A, B) = 0 if $A \cap B = 0$
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

• What is the query-document match score that the Jaccard coefficient computes for:

	Query					
	"ides of March"					
Document						
	"Caesar died in March"					
• JACCARD $(q, d) = 1/6$						

What's wrong with Jaccard?	Overview 148
 It doesn't consider term frequency (how many occurrences a term here) 	Recap
 It also does not consider that that some terms are inherently more informative than frequent terms. 	Why ranked retrieval?
 We need a more sophisticated way of normalizing for the length of a document. 	3 Term frequency
 Later in this lecture, we'll use A ∩ B /√ A ∪ B (cosine) instead of A ∩ B / A ∪ B (Jaccard) for length normalization. 	4 Zipf's Law and tf-idf weighting
	5 The vector space model

Count matrix

	Anthony	Julius	The	Hamlet	Othello	Macbeth		Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest					and	Caesar	Tempest				
	Cleopatra							Cleopatra						
ANTHONY	1	1	0	0	0	1	Anthony	157	73	0	0	0	1	
Brutus	1	1	0	1	0	0	Brutus	4	157	0	2	0	0	
CAESAR	1	1	0	1	1	1	CAESAR	232	227	0	2	1	0	
Calpurnia	0	1	0	0	0	0	Calpurnia	0	10	0	0	0	0	
Cleopatra	1	0	0	0	0	0	Cleopatra	57	0	0	0	0	0	
MERCY	1	0	1	1	1	1	MERCY	2	0	3	8	5	8	
WORSER	1	0	1	1	1	0	WORSER	2	0	1	1	1	5	
Each docume	nt is represer	nted as a	binary vect	or $\in \{0,1\}$	$\left V\right $.		Each documer	nt is now re	presented	as a count	vector ∈]	NV.		

Each document is represented as a binary vector $\in \{0,1\}^{|V|}$.

	150		151
Bag of words model		Term frequency tf	

- We do not consider the order of words in a document.
- Represented the same way:

John is quicker than Mary Mary is quicker than John

- This is called a bag of words model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents.

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We could just use *tf* as is ("raw term frequency").
- A document with tf = 10 occurrences of the term is more relevant than a document with tf = 1 occurrence of the term.
- But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

• The log frequency weight of term t in d is defined as follows

$W_{t,d} =$	$\left\{\begin{array}{c}1\\0\end{array}\right.$	$\begin{array}{c} 1 + \log_{10} \operatorname{tf}_{t,d} \\ 0 \end{array}$			if t oth	f _{t,d} > 0 erwise	
	$tf_{t,d}$	0	1	2	10	1000	
	$W_{t,d}$	0	1	1.3	2	4	

• Score for a document-query pair: sum over terms *t* in both *q* and *d*:

<code>tf-matching-score(q, d) = $\sum_{t \in q \cap d} (1 + \log \operatorname{tf}_{t,d})$ |</code>

• The score is 0 if none of the query terms is present in the document.

Recap Why ranked retrieval? Term frequency Zipf's Law and tf-idf weighting

Overview

Frequency in document vs. frequency in collection Zipf's law

- In addition, to term frequency (the frequency of the term in the document) . . .
- ... we also want to reward terms which are rare in the document collection overall.
- Now: excursion to an important statistical observation about language.

- How many frequent vs. infrequent terms should we expect in a collection?
- In natural language, there are a few very frequent terms and very many very rare terms.

• *cf_i* is collection frequency: the number of occurrences of the term *t_i* in the collection.

- So if the most frequent term (*the*) occurs *cf*₁ times, then the second most frequent term (*of*) has half as many occurrences *cf*₂ = ¹/₂*cf*₁...
- ... and the third most frequent term (and) has a third as many occurrences $cf_3 = \frac{1}{3}cf_1$ etc.
- Equivalent: cf_i = p ⋅ i^k and log cf_i = log p + k log i (for k = −1)
- Example of a power law

Zipf's law: Rank imes Frequency \sim Constant

English:	Rank <i>R</i>	Word	Frequency f	R imes f	
	10	he	877	8770	
	20	but	410	8200	
	30	be	294	8820	
	800	friends	10	8000	
	1000	family	8	8000	

German:	Rank <i>R</i>	Word	Frequency f	R imes f
	10	sich	1,680,106	16,801,060
100 im		immer	197,502	19,750,200
500		Mio	36,116	18,059,500
1,000 Medien		Medien	19,041	19,041,000
5,000 M		Miete	3,755	19,041,000
	10,000	vorläufige	1.664	16,640,000

Top 10 most frequent words in some large language samples:

Eng	lish	G	erman	Spa	anish	lta	lian	Dute	ch
1 the	61,847	1 der	7,377,879	1 que	32,894	1 non	25,757	1 de	4,770
2 of	29,391	2 die	7,036,092	2 de	32,116	2 di	22,868	2 en	2,709
3 and	26,817	3 und	4,813,169	3 no	29,897	3 che	22,738	3 het∕'t	2,469
4 a	21,626	4 in	3,768,565	4 a	22,313	4 è	18,624	4 van	2,259
5 in	18,214	5 den	2,717,150	5 la	21,127	5 e	17,600	5 ik	1,999
6 to	16,284	6 von	2,250,642	6 el	18,112	6 a	16,404	6 te	1,935
7 it	10,875	7 zu	1,992,268	7 es	16,620	7	14,765	7 dat	1,875
8 is	9,982	8 das	1,983,589	8 y	15,743	8 <mark>un</mark>	14,460	8 die	1,807
9 to	9,343	9 mit	1,878,243	9 en	15,303	9 <mark>a</mark>	13,915	9 in	1,639
10 was	9,236	10 sich	1,680,106	10 lo	14,010	10 per	10,501	10 een	1,637
BNC,		"Deuts	cher	subtitle	es,	subtitle	es,	subtitles,	
100Mw		Wortsc 500Mw	hatz",	27.4M	N	5.6Mw		800Kw	

Other collections (allegedly) obeying power laws

158

- Sizes of settlements
- Frequency of access to web pages
- Income distributions amongst top earning 3% individuals
- Korean family names
- Size of earth quakes
- Word senses per word
- Notes in musical performances
- . . .

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., ARACHNOCENTRIC).
- A document containing this term is very likely to be relevant.
- → We want high weights for rare terms like ARACHNOCENTRIC.

Desired weight for frequent terms

Document frequency

- Frequent terms are less informative than rare terms.
- Consider a term in the query that is frequent in the collection (e.g., GOOD, INCREASE, LINE).
- A document containing this term is more likely to be relevant than a document that doesn't ...
- ... but words like GOOD, INCREASE and LINE are not sure indicators of relevance.
- $\bullet \to \mathsf{For}\ \mathsf{frequent}\ \mathsf{terms}\ \mathsf{like}\ \mathsf{GOOD},\ \mathsf{INCREASE},\ \mathsf{and}\ \mathsf{LINE},\ \mathsf{we}\ \mathsf{want}\ \mathsf{positive}\ \mathsf{weights}\ \ldots$
- ... but lower weights than for rare terms.

- We want high weights for rare terms like ARACHNOCENTRIC.
- We want low (positive) weights for frequent words like GOOD, INCREASE, and LINE.
- We will use document frequency to factor this into computing the matching score.
- The document frequency is the number of documents in the collection that the term occurs in.

161

idf weight

Examples for idf

- df_t is the document frequency, the number of documents that t occurs in.
- df_t is an inverse measure of the informativeness of term t.
- We define the idf weight of term t as follows:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{N}{\mathsf{df}_t}$$

(N is the number of documents in the collection.)

- idf_t is a measure of the informativeness of the term.
- log $\frac{N}{df_t}$ instead of $\frac{N}{df_t}$ to "dampen" the effect of idf
- Note that we use the log transformation for both term frequency and document frequency.

Compute idf_t using the formula: $idf_t = \log_{10} \frac{1,000,000}{df_t}$

term	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

Collection frequency vs. Document frequency

	Collection	Document
Term	frequency	frequency
INSURANCE	10440	3997
TRY	10422	8760

- Collection frequency of *t*: number of tokens of *t* in the collection
 - Document frequency of *t*: number of documents *t* occurs in
 - Clearly, INSURANCE is a more discriminating search term and should get a higher weight.
 - This example suggests that df (and idf) is better for weighting than cf (and "icf").

Effect of idf on ranking

- idf affects the ranking of documents for queries with at least two terms.
- For example, in the query "arachnocentric line", idf weighting increases the relative weight of ARACHNOCENTRIC and decreases the relative weight of LINE.
- idf has little effect on ranking for one-term queries.

• The tf-idf weight of a term is the product of its tf weight and its idf weight.

 $\begin{array}{l} \text{tf-idf weight} \\ w_{t,d} = \left(1 + \log \mathsf{tf}_{t,d}\right) \cdot \ \log \frac{N}{\mathsf{df}_t} \end{array}$

- tf-weight
- idf-weight
- Best known weighting scheme in information retrieval
- Alternative names: tf.idf, tf x idf

Overview

- 2 Why ranked retrieval?
- **3** Term frequency
- 4 Zipf's Law and tf-idf weighting
- 5 The vector space model

Binary incidence matrix

Count matrix

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
CAESAR	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
Cleopatra	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

Each document is represented as a binary vector $\in \{0,1\}^{|V|}$.

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
Anthony	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
CAESAR	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
Cleopatra	57	0	0	0	0	0	
MERCY	2	0	3	8	5	8	
WORSER	2	0	1	1	1	5	

Each document is now represented as a count vector $\in \mathbb{N}^{|V|}$.

	locun	nents	25	Vectors
_	Cull		as	VCCLOIS

	Anthony	Julius	The	Hamlet	Othello	Macbeth	
	and	Caesar	Tempest				
	Cleopatra						
Anthony	5.25	3.18	0.0	0.0	0.0	0.35	
Brutus	1.21	6.10	0.0	1.0	0.0	0.0	
CAESAR	8.59	2.54	0.0	1.51	0.25	0.0	
Calpurnia	0.0	1.54	0.0	0.0	0.0	0.0	
Cleopatra	2.85	0.0	0.0	0.0	0.0	0.0	
MERCY	1.51	0.0	1.90	0.12	5.25	0.88	
WORSER	1.37	0.0	0.11	4.15	0.25	1.95	

Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.

- Each document is now represented as a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- So we have a |V|-dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.
- Very high-dimensional: tens of millions of dimensions when you apply this to web search engines
- Each vector is very sparse most entries are zero.

	172		
Queries as vectors		How do we formalize vector	space similarity?

- Key idea 1: do the same for queries: represent them as vectors in the high-dimensional space
- Key idea 2: Rank documents according to their proximity to the query
- proximity \approx negative distance
- This allows us to rank relevant documents higher than nonrelevant documents

- First cut: (negative) distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea
- ... because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

Use angle instead of distance

The Euclidean distance of \vec{q} and \vec{d}_2 is large although the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.

- Rank documents according to angle with query
- Thought experiment: take a document *d* and append it to itself. Call this document *d'*. *d'* is twice as long as *d*.
- "Semantically" d and d' have the same content.
- The angle between the two documents is 0, corresponding to maximal similarity ...
- ... even though the Euclidean distance between the two documents can be quite large.

From angles to cosines

- The following two notions are equivalent.
 - Rank documents according to the angle between query and document in decreasing order
 - Rank documents according to cosine(query,document) in increasing order
- $\bullet\,$ Cosine is a monotonically decreasing function of the angle for the interval $[0^\circ, 180^\circ]$

Length normalization

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length here we use the L₂ norm:
 ||x||₂ = √∑_i x_i²
- This maps vectors onto the unit sphere ...
- ... since after normalization: $||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$
- As a result, longer documents and shorter documents have weights of the same order of magnitude.
- Effect on the two documents *d* and *d'* (*d* appended to itself) from earlier slide: they have identical vectors after length-normalization.

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i is the tf-idf weight of term i in the query.
- d_i is the tf-idf weight of term *i* in the document.
- $|\vec{q}|$ and $|\vec{d}|$ are the lengths of \vec{q} and \vec{d} .
- This is the cosine similarity of \vec{q} and \vec{d} or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

• For normalized vectors, the cosine is equivalent to the dot product or scalar product.

181

183

- $\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_i q_i \cdot d_i$
 - (if \vec{q} and \vec{d} are length-normalized).

Cosine similarity illustrated

Cosine: Example

How similar are the following novels?	Term frequencies (raw counts)					
SaS: Sense and Sensibility	term	SaS	PaP	WH		
	AFFECTION	115	58	20		
PaP: Pride and	JEALOUS	10	7	11		
Prejudice	GOSSIP	2	0	6		
WH: Wuthering Heights	WUTHERING	0	0	38		

Components of tf-idf weighting

	Term frequencies (raw counts)			Log frequency weighting			Log frequency weighting and cosine normalisation			
term	SaS	PaP	WH	SaS	PaP	WH	SaS	PaP	WH	
AFFECTION	115	58	20	3.06	2.76	2.30	0.789	0.832	0.524	
JEALOUS	10	7	11	2.0	1.85	2.04	0.515	0.555	0.465	
GOSSIP	2	0	6	1.30	0.00	1.78	0.335	0.000	0.405	
WUTHERING	0	0	38	0.00	0.00	2.58	0.000	0.000	0.588	

- (To simplify this example, we don't do idf weighting.)
- $cos(SaS,PaP) \approx$ 0.789 * 0.832 + 0.515 * 0.555 + 0.335 * 0.0 + 0.0 * 0.0 \approx 0.94.
- $\cos(SaS,WH) \approx 0.79$
- $cos(PaP,WH) \approx 0.69$

Term	frequency	Docum	ent frequency	Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
l (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0, \log \frac{N - df_t}{df_t}\}$	u (pivoted unique)	1/ <i>u</i>	
b (boolean)	$egin{cases} 1 & ext{if } tf_{t,d} > 0 \ 0 & ext{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$	
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(ave_{t \in d}(tf_{t,d}))}$					

Best known combination of weighting options

Default: no weighting

tf-idf example

- We often use different weightings for queries and documents.
- ٩
- Notation: ddd.qqq

tf-idf example: Inc.ltn

Query: "best car insurance". Document: "car insurance auto insurance".

word	query				document				product	
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n'lized: document weights after cosine normalization, product: the product of final query weight and final document weight

 $\begin{array}{l} \sqrt{1^2+0^2+1^2+1.3^2}\approx 1.92\\ 1/1.92\approx 0.52\\ 1.3/1.92\approx 0.68 \end{array}$

Final similarity score between query and document: $\sum_{i} w_{qi} \cdot w_{di} = 0 + 0 + 1.04 + 2.04 = 3.08$

184

Reading

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity between the query vector and each document vector
- Rank documents with respect to the query
- Return the top K (e.g., K = 10) to the user

- MRS, Chapter 5.1.2 (Zipf's Law)
- MRS, Chapter 6 (Term Weighting)