
Solutions to exercises for the Part II course

Temporal Logic and Model Checking

Q1

This question concerns the software example DIV.

0: R:=X;
1: Q:=0;
2: WHILE Y≤R DO
3: (R:=R-Y;
4: Q:=Q+1)
5:

Write down a total relation R̂DIV that agrees with the relation RDIV given in the
slides where RDIV is defined. If RDIV specifies no successor to state s then what is
the successor to s specified by R̂DIV?

Solution

SDIV = [0..5] × Z× Z× Z× Z (where [m..n] = {m,m+1, . . . , n})

R̂DIV (pc, x, y, r, q) (pc′, x′, y′, r′, q′) =

(pc = 0) ⇒ ((pc′, x′, y′, r′, q′) = (1, x, y, x, q)) ∧
(pc = 1) ⇒ ((pc′, x′, y′, r′, q′) = (2, x, y, r, 0)) ∧
(pc = 2) ⇒ ((pc′, x′, y′, r′, q′) =

if y≤r then (3, x, y, r, q) else (5, x, y, r, q)) ∧
(pc = 3) ⇒ ((pc′, x′, y′, r′, q′) = (4, x, y, (r−y), q)) ∧
(pc = 4) ⇒ ((pc′, x′, y′, r′, q′) = (2, x, y, r, (q+1)) ∧
(pc /∈ [0..4]) ⇒ ((pc′, x′, y′, r′, q′) = (pc, x, y, r, q)

If RDIV specifies no successor to state s then s is the successor to s specified by R̂DIV.
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Q2

This question concerns the software example DIV.

(a) Write down an atomic property that expresses “when DIV has halted r < q”.

(b) Compute the set of states {(pc, x, y, r, q) | R∗
DIV (0, 7, 2, r0, q0) (pc, x, y, r, q)}.

Does the atomic property (a) hold of all states in the set computed for (b)?

Solution

(a)

DivHaltLess (pc, x, y, r, q) = (pc = 5) ⇒ r < q

(b)

{(pc, x, y, r, q) | R∗
DIV (0, 7, 2, r0, q0) (pc, x, y, r, q)}

= {(0, 7, 2, r0, q0), (1, 7, 2, 7, q0), (2, 7, 2, 7, 0), (3, 7, 2, 7, 0), (4, 7, 2, 5, 0),
(2, 7, 2, 5, 1), (3, 7, 2, 5, 1), (4, 7, 2, 3, 1), (2, 7, 2, 3, 2), (3, 7, 2, 3, 2),
(4, 7, 2, 1, 2), (2, 7, 2, 1, 3), (5, 7, 2, 1, 3)}

Q3

Modify the definition of Path R s π given in the slides to work when the transition
relation R is represented as a set of pairs of states, R ⊆ S × S, rather than as a
function R : S→S→B (as is done in the slides).

Solution

Path R s π = (π(0) = s) ∧ ∀i. (π(i), π(i+1)) ∈ R
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Q4

Define a model M and atomic property φ such that M |= GAφ represents the
property: if DIV is run in a state satisfying atomic property P and if it terminates,
then in the state in which it terminates atomic property Q holds (this is the partial
correctness {P}DIV{Q} in Hoare logic notation).

Can you represent the property that DIV always terminates when started in a state
satisfying P in the form M |= GAφ, for suitable φ? Justify your answer.

Solution

Note: this question is rather poorly worded in that it might be unclear exactly what
“atomic property P” and “atomic property Q” are properties of. In the solution
below, I take P and Q to be properties of the whole state (pc, x, y, r, c). However,
I think it makes more sense, given the analogy with Hoare triples {P}C{Q}, for
P and Q just to be predicates on the ‘data part’ of the state, namely properties
of (x, y, r, c), and to ignore the program counter pc. A solution based on such an
interpretation of P and Q would be fine.

Reachable M = {s′ | ∃s ∈ S0. R
∗ s s′} and

M |= AGφ ⇔ Reachable M ⊆ {s′ | φ(s′)}
⇔ {s′ | ∃s ∈ S0. R

∗ s s′} ⊆ {s′ | φ(s′)}
⇔ ∀s′. s′ ∈ Reachable M ⇒ φ(s′)

Take M = (SDIV, R̂DIV, {s | AtStart(s) ∧ P (s)}, {AtEnd, Q}) (where R̂DIV as in Q1,
and AtStart, AtStart are as in the slides).

The desired property φ, expressing that if DIV is run in a state satisfying atomic
property P and if it terminates, then in the state in which it terminates atomic
property Q holds, is then λs. AtEnd(s) ⇒ Q(s).

One cannot represent the property that DIV terminates in the form M |= GAφ

because we need to express ∃s′. s′ ∈ Reachable M ∧ AtEnd(s′). If Reachable M were
empty then M |= GAφ is (vacuously) true for any φ, but the existential property
∃s′. s′ ∈ Reachable M ∧ AtEnd(s′) is false.
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Q5

Disjunctive partitioning can sometimes be used to avoid having to build the BDD
of a transition relation when symbolically computing the set of reachable states.

Explain how it might also be used to avoid building the BDD of the transition
relation when generating traces to counterexamples. Illustrate you answer using the
transition relation R defined by:

R (x, y, z) (x′, y′, z′) =
(x′ = δx(x, y, z) ∧ y′ = y ∧ z′ = z) ∨
(x′ = x ∧ y′ = δy(x, y, z) ∧ z′ = z) ∨
(x′ = x ∧ y′ = y ∧ z′ = δz(x, y, z))

Solution

When iterating backwards from a counterexample to generate a path to it, the
transition relation R is needed at step i to find an instantiation bi−1 for si−1 that
makes si−1 ∈ Si−1 ∧R si−1 bi true.

When working symbolically using BDDs one uses SAT on the BDD representing a
formula of the form: hi−1(~v) ∧ R ~v ~bi, where hi(~v) represents si ∈ Si. Taking ~v, ~bi
to be (x, y, z), (bi1, bi2, bi3):

hi−1(x, y, z) ∧ R (x, y, z) (bi1, bi2, bi3)
=
hi−1(x, y, z) ∧ (bi1 = δx(x, y, z) ∧ bi2 = y ∧ bi3 = z) ∨

(bi1 = x ∧ bi2 = δy(x, y, z) ∧ bi3 = z) ∨
(bi1 = x ∧ bi2 = y ∧ bi3 = δz(x, y, z))

=
(hi−1(x, y, z) ∧ bi1 = δx(x, y, z) ∧ bi2 = y ∧ bi3 = z) ∨
(hi−1(x, y, z) ∧ bi1 = x ∧ bi2 = δy(x, y, z) ∧ bi3 = z) ∨
(hi−1(x, y, z) ∧ bi1 = x ∧ bi2 = y ∧ bi3 = δz(x, y, z))
=
(hi−1(x, bi2, bi3) ∧ bi1 = δx(x, bi2, bi3) ∧ bi2 = y ∧ bi3 = z) ∨
(hi−1(bi1, y, bi3) ∧ bi1 = x ∧ bi2 = δy(bi1, y, bi3) ∧ bi3 = z) ∨
(hi−1(bi1, bi2, z) ∧ bi1 = x ∧ bi2 = y ∧ bi3 = δz(bi1, bi2, z))

Computing the BDD of the formula above does not require computing the full BDD
of R: one can separately compute the BDDs of δx(x, y, z), δy(x, y, z) and δz(x, y, z)
and then instantiate them for the occurrences in the formula.
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Q6

This questions concerns the nine switches puzzle in the slides:

1 2 3

4 5 6

7 8 9

By defining a state transition function δi for each switch (1 ≤ i ≤ 9) express the
transition relation Trans as the asynchronous interleaving semantics of nine state
machines in parallel.

Comment on how this might help with solving the problem by symbolic model
checking.

Solution

Define:

δ1(v1,v2,v4) = (¬v1,¬v2,¬v4)

δ2(v1,v2,v3,v5) =(¬v1,¬v2,¬v3,¬v5)
...
then

Trans(v1,v2,v3,v4,v5,v6,v7,v8,v9)(v1’,v2’,v3’,v4’,v5’,v6’,v7’,v8’,v9’)

= (((v1’,v2’,v4’)=δ1(v1,v2,v4))

∧(v3’=v3)∧(v5’=v5)∧(v6’=v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 1)
∨ (((v1’,v2’,v3’,v5’)=δ2(v1,v2,v3,v5))

∧(v4’=v4)∧(v6’=v6)∧(v7’=v7)∧(v8’=v8)∧(v9’=v9)) (toggle switch 2)

...
and hence (with a bit of logical simplification)

∃v1 v2 v3 v4 v5 v6 v7 v8 v9.

f(v1,v2,v3,v4,v5,v6,v7,v8,v9) ∧ Trans(v1,v2,v3,v4,v5,v6,v7,v8,v9)(v1,v2,v3,v4,v5,v6,v7,v8,v9)

=

(∃v1 v2 v4. f(v1,v2,v3,v4,v5,v6,v7,v8,v9) ∧ ((v1,v2,v4)=δ1(v1,v2,v4)))

∨
(∃v1 v2 v3 v5. f(v1,v2,v3,v4,v5,v6,v7,v8,v9) ∧ ((v1,v2,v3,v5)=δ2(v1,v2,v3,v5)))

...

This shows that disjunctive partitioning might work. Actually, one doesn’t need to
define the δi to perform partitioning - one can perform it directly ... so defining the
δi transition functions doesn’t really help.
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Q7

Consider the following board which is meant to represent the initial state of the
puzzle Peg Solitaire.

-------------------------

| XXXXX | XXXXX | XXXXX |

-------------------------

| XXXXX | XXXXX | XXXXX |

---------------------------------------------------------

| XXXXX | XXXXX | XXXXX | XXXXX | XXXXX | XXXXX | XXXXX |

---------------------------------------------------------

| XXXXX | XXXXX | XXXXX | | XXXXX | XXXXX | XXXXX |

---------------------------------------------------------

| XXXXX | XXXXX | XXXXX | XXXXX | XXXXX | XXXXX | XXXXX |

---------------------------------------------------------

| XXXXX | XXXXX | XXXXX |

-------------------------

| XXXXX | XXXXX | XXXXX |

-------------------------

All the positions in the board, except the one in the middle, are occupied by pegs,
denoted by XXXXX. A move consists of ‘jumping’ a peg over an adjacent peg in the same
row or column into a hole, and removing the peg that was jumped over from the
board (thereby reducing the number of pegs on the board by one). The puzzle is to
find a sequence of moves, starting from the above configuration, to a configuration
consisting of just one peg in the middle, i.e.:

-------------------------

| | | |

-------------------------

| | | |

---------------------------------------------------------

| | | | | | | |

---------------------------------------------------------

| | | | XXXXX | | | |

---------------------------------------------------------

| | | | | | | |

---------------------------------------------------------

| | | |

-------------------------

| | | |

-------------------------

Describe how you could formulate Peg Solitaire as the problem of computing the set
of reachable states.

Would disjunctive partitioning be useful?

Hint: Your answers to the previous two questions might be useful.
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Solution

Peg Solitaire can easily formulated as a state exploration problem by assigning a
boolean variable to each board position, for example:

-------------------------

| v00 | v02 | v03 |

-------------------------

| v04 | v05 | v06 |

---------------------------------------------------------

| v07 | v08 | v09 | v10 | v11 | v12 | v13 |

---------------------------------------------------------

| v14 | v15 | v16 | v17 | v18 | v19 | v20 |

---------------------------------------------------------

| v21 | v22 | v23 | v24 | v25 | v26 | v27 |

---------------------------------------------------------

| v28 | v29 | v30 |

-------------------------

| v31 | v32 | v33 |

-------------------------

The initial state is represented by

v01 ∧ v02 ∧ ... ∧ v16 ∧ ¬v17 ∧ v18 ∧ ... ∧ v33

and the final(goal) state by

¬v01 ∧ ¬v02 ∧ ... ∧ ¬v16 ∧ v17 ∧ ¬v18 ∧ ... ∧ ¬v33

The transition relation, say R, is then defined to be a disjunctions of terms, with one
disjunct per possible move, so that R((v01,...,v33),(v01’,...,v33’)) is true if and
only if there exists a move in state (v01,...,v33) that results in state (v01’,...,v33’).
Inspection of the board shows that there are 76 moves. The term for a move specifies
a change to three variable and that the remaining 30 variables are unchanged. For
example, the term

v05 ∧ v10 ∧ ¬v17 ∧ ¬v05’ ∧ ¬v10’ ∧ v17’ ∧
(v01’ = v01) ∧ (v02’ = v02) ∧ (v03’ = v03) ∧ (v04’ = v04) ∧
(v06’ = v06) ∧ (v07’ = v07) ∧ (v08’ = v08) ∧ (v09’ = v09) ∧
(v11’ = v11) ∧ (v12’ = v12) ∧ (v13’ = v13) ∧ (v14’ = v14) ∧
(v15’ = v15) ∧ (v16’ = v16) ∧ (v18’ = v18) ∧ (v19’ = v19) ∧
(v20’ = v20) ∧ (v21’ = v21) ∧ (v22’ = v22) ∧ (v23’ = v23) ∧
(v24’ = v24) ∧ (v25’ = v25) ∧ (v26’ = v26) ∧ (v27’ = v27) ∧
(v28’ = v28) ∧ (v29’ = v29) ∧ (v30’ = v30) ∧ (v31’ = v31) ∧
(v32’ = v32) ∧ (v33’ = v33)

specifies that the peg at position 05 jump over the peg at position 10 into the centre
hole (i.e. the one at position 17), and all other positions remain unchanged.

Standard BDD methods can be used to compute a sequence of states starting with
the initial state, ending with the final state, and such that adjacent elements in the
sequance satisfy the transition relation R.

Since the transition relation is a disjunction of conjunctions, with many conjuncts
specifying that a state variable is unchanged (primed = unprimed), it is likely that
disjunctive partitioning would greatly reduce the size of the BDDs needed to sym-
bolically compute the set of reachable states.
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Q8

This question concerns the 2-thread program JM1 described in the slides.

Thread 1 Thread 2
0: IF LOCK=0 THEN LOCK:=1; 0: IF LOCK=0 THEN LOCK:=1;

1: X:=1; 1: X:=2;

2: IF LOCK=1 THEN LOCK:=0; 2: IF LOCK=1 THEN LOCK:=0;

3: 3:

Draw the computation tree of states (pc1, pc2, lock, x) of JM1 starting at state (0, 0, 0, 0)
(i.e. pc1 = 0 ∧ pc2 = 0 ∧ lock = 0 ∧ x = 0).

Let MJM1 = (SJM1, {(0, 0, 0, 0)}, RJM1,AP), where RJM1 is a total1 transition relation
corresponding to your computation tree and AP contains all atomic properties of
the form 〈x=v〉 which mean state component x has value v (e.g. 〈lock=0〉 means
(λ(pc1, pc2, lock, x). lock = 0)).

Explain the meaning of each of the following LTL properties and say whether it is
true.

MJM1 |= F〈pc1=3〉
MJM1 |= G(〈lock=1〉⇒F〈lock=0〉)
MJM1 |= G(〈pc1=2〉⇒X〈pc1=3〉)
MJM1 |= F(〈pc1=1〉∧〈pc2=1〉)
MJM1 |= G(〈pc1=3〉⇒G〈pc1=3〉)

Explain the meaning of each of the following CTL properties and say whether it is
true.

MJM1 |= EF〈pc1=3〉
MJM1 |= EFAF〈x=1〉
MJM1 |= EF(〈lock=0〉∧〈x=1〉)
MJM1 |= E[〈lock=0〉U〈x=2〉]

Explain the meaning of each of the following CTL* properties and say whether it is
true.

MJM1 |= A(FG〈lock=0〉 ∨ F〈x=2〉)
MJM1 |= E(X〈pc1=1〉 ∧ F〈pc1=3〉)
MJM1 |= A(X〈pc1=1〉 ⇒ F〈pc1=3〉)
MJM1 |= A(G(〈pc1=1〉 ⇒ X(G〈x=1〉)))

1Hint: see Q1.
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Solution
[Thanks to Jakub Kaplan for spotting errors in my original solution in
which the computation tree was wrong.

There may still be errors - please email Mike if you spot one!]

Here is the computation tree.

(0,0,0,0)
(1,0,1,0)

(0,1,1,0)

(2,0,1,1) (3,0,0,1)

(0,2,1,2) (0,3,0,2)

(3,1,1,1) (3,2,1,2) (3,3,0,2)

(1,3,1,2) (2,3,1,1) (3,3,0,1)

MJM1 |= F〈pc1=3〉

Thread 1 eventually gets to line 3. True.

MJM1 |= G(〈lock=1〉⇒F〈lock=0〉)

If lock is 1 sometime later it will be 0. True.

MJM1 |= G(〈pc1=2〉⇒X〈pc1=3〉)

If Thread 1 reaches line 2 then after the next step it will be at line 3. True.

MJM1 |= F(〈pc1=1〉∧〈pc2=1〉)

Both threads can simultaneously be at line 1. False.

MJM1 |= G(〈pc1=3〉⇒G〈pc1=3〉)

If Thread 1 reaches line 3, it will stay there. True (if relation appropriately totalised).

MJM1 |= EF〈pc1=3〉

Can reach line 3 of Thread 1. True.

MJM1 |= EFAF〈x=1〉

There’s an execution with x eventually stuck at 1. True if Thread 1 executed second.

MJM1 |= EF(〈lock=0〉∧〈x=1〉)

Can get to a state with lock = 0 and x = 1. True: happens in execution of Thread 1.

MJM1 |= E[〈lock=0〉U〈x=2〉]

There’s an execution with lock = 0 until x = 2. False.

MJM1 |= A(FG〈lock=0〉 ∨ F〈x=2〉)

On all executions either lock eventually stuck at 0 or x = 2. True (lock stuck at 0).

MJM1 |= E(X〈pc1=1〉 ∧ F〈pc1=3〉)

On some execution Thread 1 is next at line 1 and eventually at line 3. True.

MJM1 |= A(X〈pc1=1〉 ⇒ F〈pc1=3〉)

On all executions if Thread 1 is next at line 1 then eventually it is at line 3. True.

MJM1 |= A(G(〈pc1=1〉 ⇒ X(G〈x=1〉)))

On all executions if Thread 1 is at line 1 then after one step x = 1. False.
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Q9

This question uses the 2-thread program JM1 described in the slides (and also used
in the preceding question).

In the slide on model checking E[ψ1 U ψ2] the set of marked states {[E[ψ1 U ψ2]]} is
defined by:

{[E[ψ1 U ψ2]]} =
⋃∞

n=0{[E[ψ1 U ψ2]]}n

For the model MJM1, calculate {[E[〈lock=0〉U〈x=2〉]]} and {[E[〈pc1=0〉U〈x=2〉]]} and
explain how this is used to check:

MJM1 |= E[〈lock=0〉U〈x=2〉]
MJM1 |= E[〈pc1=0〉U〈x=2〉]

Are either of these true? Explain your answer.

Solution
[Warning: there may be errors - email Mike if you spot one!]

Here is the computation tree.

(0,0,0,0)
(1,0,1,0)

(0,1,1,0)

(2,0,1,1) (3,0,0,1)

(0,2,1,2) (0,3,0,2)

(3,1,1,1) (3,2,1,2) (3,3,0,2)

(1,3,1,2) (2,3,1,1) (3,3,0,1)

From this tree

{[E[〈lock=0〉U〈x=2〉]]}0 = {[〈x=2〉]} = {(3, 2, 1, 2), (3, 3, 0, 2), (0, 2, 1, 2), (0, 3, 0, 2), (1, 3, 1, 2)}

Also from the tree it can be seen that there are additional states satisfying 〈lock=0〉

with an RJM1-successor in {[E[〈lock=0〉U〈x=2〉]]}0. Thus:

{[E[〈lock=0〉U〈x=2〉]]} = {(3, 2, 1, 2), (3, 3, 0, 2), (0, 2, 1, 2), (0, 3, 0, 2), (1, 3, 1, 2)}

Also from the tree:
{[E[〈pc1=0〉U〈x=2〉]]}0 = {(3, 2, 1, 2), (3, 3, 0, 2), (0, 2, 1, 2), (0, 3, 0, 2), (1, 3, 1, 2)}
{[E[〈pc1=0〉U〈x=2〉]]}1 = {(3, 2, 1, 2), (3, 3, 0, 2), (0, 2, 1, 2), (0, 3, 0, 2), (1, 3, 1, 2), (0, 1, 1, 0)}
{[E[〈pc1=0〉U〈x=2〉]]}2 = {(3, 2, 1, 2), (3, 3, 0, 2), (0, 2, 1, 2), (0, 3, 0, 2), (1, 3, 1, 2), (0, 1, 1, 0), (0, 0, 0, 0)}
{[E[〈pc1=0〉U〈x=2〉]]}n= {(3, 2, 1, 2), (3, 3, 0, 2), (0, 2, 1, 2), (0, 3, 0, 2), (1, 3, 1, 2), (0, 1, 1, 0), (0, 0, 0, 0)}(n>2)
{[E[〈pc1=0〉U〈x=2〉]]} = {(3, 2, 1, 2), (3, 3, 0, 2), (0, 2, 1, 2), (0, 3, 0, 2), (1, 3, 1, 2), (0, 1, 1, 0), (0, 0, 0, 0)}

If MJM1 = (SJM1, {(0, 0, 0, 0)}, RJM1,AP}) then MJM1 |= φ ⇔ {(0, 0, 0, 0)} ⊆ {[φ]}.
Thus MJM1 |= E[〈lock=0〉U〈x=2〉] is false and MJM1 |= E[〈pc1=0〉U〈x=2〉] is true.
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Q10

Consider the program DIV used in the slides:

0: R:=X;
1: Q:=0;
2: WHILE Y≤R DO
3: (R:=R-Y;
4: Q:=Q+1)
5:

Suppose the program variables X, Y, Q, R are restricted to natural numbers less than
256.

Explain how you might represent sets of states and the transition relation as BDDs
suitable for use in symbolic model checking. You need not give full details, but
should describe how such details would be generated.

Solution

In the slides model (SDIV, RDIV) is specified by:
SDIV = [0..5] × Z× Z× Z× Z (where [m..n] = {m,m+1, . . . , n})

RDIV (pc, x, y, r, q) (pc′, x′, y′, r′, q′) =

(pc = 0) ⇒ ((pc′, x′, y′, r′, q′) = (1, x, y, x, q)) ∧
(pc = 1) ⇒ ((pc′, x′, y′, r′, q′) = (2, x, y, r, 0)) ∧
(pc = 2) ⇒ ((pc′, x′, y′, r′, q′) = ((if y≤r then 3 else 5), x, y, r, q)) ∧
(pc = 3) ⇒ ((pc′, x′, y′, r′, q′) = (4, x, y, (r−y), q)) ∧
(pc = 4) ⇒ ((pc′, x′, y′, r′, q′) = (2, x, y, r, (q+1))

Any number in [0..5] can be represented in binary by a 3-bit word. If program
variables are natural numbers less than 256, then they can be represented in binary
by 8-bit words, so the state space could instead be:
SDIV = B

3 × B
8 × B

8 × B
8 × B

8 ∼= B
35

Thus a state can be represented symbolically by a Boolean formula with 35 variables.
To define the transition relation one needs to define binary versions of addition (+)
and subtraction (−). This can be done naively by using adder and subtractor
hardware circuits as the basis of Boolean functions:
BinaryAdd((m0,m1,m2,m3,m4,m5,m6,m7), (n0, n1, n2, n3, n4, n5, n6, n7))
BinarySub((m0,m1,m2,m3,m4,m5,m6,m7), (n0, n1, n2, n3, n4, n5, n6, n7))

that return appropriate 8-bit words as results. One also needs to define a Boolean
function to compute 8-bit less-then-or-equal (≤).
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Q11

The timing diagram below is mentioned in the slides.

dreq

dack

The following two handshake properties were given:

• following a rising edge on dreq, the value of dreq remains 1 (i.e. true) until it
is acknowledged by a rising edge on dack

• following a falling edge on dreq, the value on dreq remains 0 (i.e. false) until
the value of dack is 0

Formalise these two properties as formulae in a suitable temporal logic. You should
state what logic you are using and briefly describe why you chose it.

Solution

I will use PSL because it is more readable, though LTL would do. If we interpret
the informal text as requiring that a dack must always occur, the properties are:

always (dreq -> (dreq until! dack))

always (!dreq -> (!dreq until! !dack))

This is a strong until ([dreg U dack] in LTL). If we don’t require an acknowlegement
to actually happen, then a weak until ([dreg W dack] in LTL) would be used:

always (dreq -> (dreq until dack))

always (!dreq -> (!dreq until !dack))

The timing diagram, but not the informal textual descriptions, could be understood
as implying that dack should be required to be low during the rising edge and high
during the falling edge. This could be expressed, for the strong interpretation, by:

always {!dreq;dreq} |-> {!dack:dreq[*]:dack}

always {dreq;!dreq} |-> {dack:!dreq[*]:!dack}

[Thanks to Cindy Eisner for comments on and corrections to an earlier solution.]
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Q12

The DIV example is discussed in the slides:

0: R:=X;
1: Q:=0;
2: WHILE Y≤R DO
3: (R:=R-Y;
4: Q:=Q+1)
5:

AtStart (pc, x, y, r, q) = (pc = 0)
AtEnd (pc, x, y, r, q) = (pc = 5)
InLoop (pc, x, y, r, q) = (pc ∈ {3, 4})
YleqR (pc, x, y, r, q) = (y ≤ r)
Invariant (pc, x, y, r, q) = (x = r + (y × q))

The following three properties were given:

• on every execution if AtEnd is true then Invariant is true and YleqR is not
true

• on every execution there is a state where AtEnd it true

• on any execution if there exists a state where YleqR is true then there is also
a state where InLoop is true

Formalise these three properties as formulae in a suitable temporal logic. You should
state what logic you are using and briefly describe why you chose it.

Solution

Since the properties specify all program executions, and executions can be repre-
sented as paths starting from an initial state (0, x, y, r, q), it is natural to represent
the properties by CTL formulae evaluated at initial states (0, x, y, r, q), where the
ψs for the three properties are:

AG(AtEnd ⇒ (Invariant ∧ ¬YleqR))

AF AtEnd

(AF YleqR) ⇒ (AF InLoop)

However, the corresponding LTL would also be fine:

G(AtEnd ⇒ (Invariant ∧ ¬YleqR))

F AtEnd

(F YleqR) ⇒ (F InLoop)
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The following circuit consisting of two Dtype in series is mentioned in the slides.

in

clk

l
out

The behaviour of this was described informally the giving the trace:

in aaaaaaaaaaabbbbbbccccccddddddddd......

clk 00000111110000011111000001111100......

l eeeeeaaaaaaaaaabbbbbbbbbbddddddd......

out fffffeeeeeeeeeeaaaaaaaaaabbbbbbb......

Call this example D2. Devise a model to represent D2 suitable for use in model
checking.

Hint: include in the state components for both the current value of clk and
for its value at the previous time instant, say prevclk (e.g. take the state to be
(prevclk, clk, in, l, out)).

Solution
[Thanks to Jakub Kaplan for spotting errors in my original solution.]

As in the hint, take the set of states to be 5-tuples (prevclk, clk, in, l, out) ∈ B
5.

Define the transition relation RD2 by:

RD2 (prevclk, clk, in, l, out) (prevclk′, clk′, in′, l′, out′) =
(prevclk′ = clk) ∧
(l′ = if (!prevclk ∧ clk) then in else l) ∧
(out′ = if (!prevclk ∧ clk) then l else out)

The conjunction !prevclk ∧ clk in the conditionals giving the values of l′ and out′

is true just after a rising edge of clk. Only at such rising edges does the input to
the Dtype get latched. At other times - i.e. when there is no rising edge of clk - the
stored value, which drives the Dtype outputs (i.e. l and out), remains unchanged.
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Let models M1 and M2 correspond to the state transition diagrams below. Assume
AP = {Wait, Coin1, Coin2, Coin, Coke, Pepsi}. Initial states are indicated by a
dotted line, and state names are also used to name atomic predicates that only hold
at the state with the same name. Coin holds of two states: Coin ∈ LM1

(Coin1)
and Coin ∈ LM1

(Coin2).

Wait

Coin2Coin1

PepsiCoke

Wait

Coin

Coke Pepsi

M1 M2

Are M1 and M2 bisimilar, i.e. M1 ≡ M2? Justify your answer.

Hint: consider AG(Coin ⇒ EXCoke).

Solution

The CTL formulaAG(Coin⇒ EXCoke) is false forM1 (since the state Coke is not
a possible immediate successor state to the state Coin2, but Coin ∈ LM1

(Coin2)).
However, this formula is true for M2, hence M1 and M2 cannot be bisimilar, since
bisimilar models satisfy the same CTL formulae.
Acknowledgement. The example in this exercise is from online slides for a course
by Orna Grumberg.
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Define models M1 and M2 that correspond to the state transition diagrams below.
The initial states are indicated by a dotted line, and the atomic predicates are shown
inside the states where they hold.

a

b

d cd

a

b b

c d

M1 M2

Does M1 � M2 or M2 � M1? Justify your answer. Does it shed light on whether
M1 �M2 and M2 �M1 entails M1 ≡M2?

Solution

Both M1 �M2 and M2 � M1, as shown in the following diagrams.

38 

M1 M2 

a 

b 

c d d d c 

a 

b b 

M1 £ M2 

39 

M1 M2 

a 

b 

c d d d c 

a 

b b 

M1 £ M2 and M1 ³ M2 but not M1 ºM2 

The CTL formula AG(b⇒EXd) is true forM1 but false forM2 (consider the right-
most state satisfying b), so M1 and M2 can’t be bisimilar. Thus M1 � M2 and
M2 �M1 does not entail M1 ≡M2?

Acknowledgement. The example in this exercise (including the diagrams in the
solution) is from online slides for a course by Orna Grumberg.
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