
Solutions to exercises for the Hoare logic
(based on material written by Mark Staples)

Exercise 1

We are interested in termination, so that means we need to use the ter-
minology of total correctness, i.e. we need to use the square brackets.
Assuming that the question means that the program should terminate on
every input, then we to have a precondition which is true of every input.
The condition T will do for that. We can make the postcondition any true
thing, so we could just use T again. However, note that to escape the loop
the guard must be false, so we can equally well say

[T ] C [X ≤ 1]

Exercise 2

The only possibility of non-termination is the while loop. The guard
involves variables R and Y, and the body of the loop only affects the value
of R. First note that if Y = 0, then if we get into the body of the loop, the
value of R never changes, so we need initially, at least

(Y ≤ X)⇒ (Y 6= 0)

If Y is negative, then in the body of the loop, R will always increase. If we
enter the loop, we will never leave it. So, we need that initially

Y < 0⇒ X < Y

There are no problems with the last case — If Y is positive, then R will
always decrease, until it is less than Y. Certainly the loop will terminate,
and the postcondition will even be satisfied if X is negative.

So, a condition P which would work is Y > 0. This is stronger than we
need, but nonetheless satisfies the two conditions noted above.

Exercise 3

[T ] C [T ] is true when C terminates for every possible value of its state
variables. This specification says nothing about the behaviour of C — it
could have done anything to its program variables after some finite time.

1



Exercise 4

The intention of the question here is perhaps unclear. The specifier may
mean:

{X = x} C {X = x×Y}
or, may have intended that Y doesn’t change. That would be represented
by the stronger specification:

{X = x ∧ Y = y} C {X = x×Y ∧ Y = y}

Exercise 5

[P ] C [T ] is true when C is guaranteed to halt when starting in a state
satisfying P .

Exercise 6

The flaw is in the step from line 5 to 6.
√

is a relation rather than a

function:
√
−1 is equal to two values:, 1 and −1, so the last line could

correctly read −1 = 1 ∨ 1 = 1.

Exercise 7

It is true. Working backwards through the command sequence, using the
Sequential Composition rule and Assignment Axiom, we get a proof tree:

{X = x ∧ Y = y} X:=X+Y {(X− Y) = x ∧ (X− (X− Y)) = y},
{(X− Y) = x ∧ (X− (X − Y)) = y} Y:=X-Y {Y = x ∧ (X − Y) = y},

{Y = x ∧ (X − Y) = y} X:=X-Y {Y = x ∧ X = y}
{X = x ∧ Y = y} X:=X+Y; Y:=X-Y; X:=X-Y {Y = x ∧ X = y} Derived Seq Comp

The second two antecedents are instances of the assignment axiom. (In
fact, to get them, you can start from the postcondition, and work back-
wards through the assignment statements, deriving the mid conditions.)
The first antecedent provable from the assignment axiom and the Precon-
dition Strengthening rule:

(X = x ∧ Y = y)⇒ (((X + Y)− Y) = x ∧ ((X + Y)− ((X + Y)− Y)) = y),
{X = x ∧ Y = y} X:=X+Y {(X− Y) = x ∧ (X − (X− Y)) = y}
{X = x ∧ Y = y} X:=X+Y {(X− Y) = x ∧ (X − (X− Y)) = y} Precondition Str.

The logical condition follows from arithmetic.

Note that here the derived precondition is equal to the given precondi-
tion. The Precondition Strengthening rule certainly applies, as equivalent
propositions imply each other. However, here we could have instead just
replace ‘equals-for-equals’ directly and avoided the use of the Precondition
Strengthening rule.



Exercise 8

We start with the following portion of the derivation (working backwards
from the last line, ending up with the top two conditions):

{X = R+ Y ∗ Q} R := R-Y {Mid} {Mid} Q := Q+1 {X = R+ Y ∗ Q}
{X = R+ Y ∗ Q} R := R-Y; Q := Q+1 {X = R+ Y ∗ Q} Seq Comp

Now we have to find a condition Mid which satisfies both of the assign-
ment Hoare-triples. Find Mid using the Assignment Rule on the second
assignment, as {Post[E/V ]} V:=E {Post}, here

Post = X = R+ Y ∗ Q

so here
Mid = Post[Q+ 1/Q]

i.e.
Mid = X = R+ Y ∗ Q+ 1

We use this condition as the postcondition to the first assignment, so we
need to prove

{X = R+ Y ∗ Q} R := R-Y {X = R+ Y ∗ Q+ 1}

We can do this by appealing to the Assignment Rule, and the Precondition
Strengthening Rule. The Assignment Axiom shows us that we need a
precondition

(X = R+ Y ∗ Q+ 1)[R− Y/R]

i.e.
X = R− Y + Y ∗ Q+ 1

In fact, this is by arithmetic equal to our given precondition, so we don’t
need to use the Precondition Strengthening rule — we can just substitute
equals for equals to finish the proof.

Exercise 9

The Conditional rule gives use two proof obligations:

{X ≥ Y} MAX := X {MAX = max(X, Y)} {X < Y} MAX := Y {MAX = max(X, Y)}
{T } IF X ≥ Y THEN MAX := X ELSE MAX := Y {MAX = max(X, Y)} Conditional

They are each proven in the same way. Let’s start with the first:

X ≥ Y⇒ (X = max(X, Y)) {X = max(X, Y)} MAX := X {MAX = max(X, Y)} Assignment Axiom

{X ≥ Y} MAX := X {MAX = max(X, Y)} Precondition Str.



The condition above is just our given fact (i) about max. Note that I
didn’t just randomly guess the right-hand side of the implication — it is
the same as the precondition of the assignment condition, and that can be
derived by performing the assignment substitution on the postcondition.

The other branch of the conditional is similar, but instead eventually
depending upon our given fact (ii) about max:

X < Y⇒ (Y = max(X, Y)) {Y = max(X, Y)} MAX := X {MAX = max(X, Y)} Assignment Axiom

{X ≥ Y} MAX := X {MAX = max(X, Y)} Precondition Str.

Exercise 10

The given rule covers case (iii) of the informal evaluation description,
but not case (ii). This can be seen by looking at the hint case, which is
(wrongly) accepted by the given rule. In the hint case, we get the condition

{X = 0 ∧ X = 1} Y := 0 {Y = 0}

The precondition is F , which can be transformed, using the Precondition
Strengthening rule, into anything. (As F ⇒ Q for any Q.) In particular,
it can be transformed into 0 = 0, which make the condition an instance
of the Assignment Axiom.

Exercise 11

We need to strengthen the Case Rule. We can do this by adding an extra
antecedent:

..,⊢ P ⇒ ((0 < E ≤ n) ∨Q)

{P} CASE ... END {Q} Case Rule

This is logically equivalent to

⊢ (P ∧ (0 ≥ E ∨ E > n))⇒ Q)

Using this corrected rule, we can show, where

PRE =̂ 1 ≤ X ≤ 3

POST =̂ Y = 0

C =̂ CASE X OF BEGIN Y:= X-1; Y := X-2; Y := X-3 END

that:
{PRE ∧ X = 1} Y := X-1 {POST }
{PRE ∧ X = 2} Y := X-2 {POST }
{PRE ∧ X = 3} Y := X-3 {POST }
(0 ≤ X ≤ 3)⇒ ((0 ≤ X ≤ 3) ∨ POST )

{PRE} C {POST } Case Rule

The first condition follows as below:



X = 1⇒ X− 1 = 0

(PRE ∧ X = 1)⇒ (POST [X− 1/Y]) {POST [X− 1/Y } Y := X-1 {POST } Assign Axiom

{PRE ∧ X = 1} Y := X-1 {POST } Precondition Str.

The other assignment conditions follow similarly. The last condition fol-
lows trivially by logic.

Exercise 12

We are given that

REPEAT C UNTIL S ≡ C; WHILE ¬S DO C

So, we can derive a rule for the Repeat command:

{P} C {Q}
{Q ∧ ¬S} C {Q}

{Q} WHILE ¬S DO C {Q ∧ S} While Rule

{P} C; WHILE ¬S DO C {Q ∧ S} Sequential Comp. Rule

So, we have derived:

{P} C {Q} {Q ∧ ¬S} C {Q}
{P} REPEAT C UNTIL S {Q ∧ S} Repeat Rule

Exercise 13

Let PRE, C and POST be defined as:

{PRE} C {POST } = {M ≥ 1}
X := 0; FOR N:=1 UNTIL M DO X := X+N

{X = (M ∗ (M+ 1))DIV2}

By the rule for sequencing it is sufficient to prove:

{PRE} X := 0 {PRE ∧ X = 0}

and
{PRE ∧ X = 0} C’ {POST }

where C = X:=0; C′.

The first condition holds trivially by the Assignment Axiom.

To satisfy the second condition, we first need to about a condition invariant
over the for-loop. The loop establishes

X =
M∑

i=0

i =
(M ∗ (M+ 1))

2



by letting N range over the values 0..M in the sum. So, take as our invariant:

INV =̂M ≥ 1 ∧ X =

N−1∑

i=0

i

(We have N− 1, as at the end of the for loop, N will M+1.) Now, to apply
the For Rule, we need to first massage the pre- and post-conditions above
into a form suitable for the rule. We use Precondition Strengthing and
Postcondition Weakening to justify:

(PRE ∧ X = 0)⇒ (INV [1/N] ∧ 1 ≤M)
INV [M+ 1/N]⇒ POST

{INV [1/N] ∧ 1 ≤M} C′ {INV [M + 1/I]}
{PRE ∧ X = 0} C′ {POST }

The first condition follows as

(M ≥ 1 ∧ X = 0)⇒ (M ≥ 1 ∧ X =

1−1∑

i=0

i ∧ 1 ≤M)

holds by arithmetic. The second condition follows as

((M + 1) ≥ 1 ∧ X =

(M+1)−1∑

i=0

i)⇒ X = (M ∗ (M+ 1))DIV 2

is true as (M + 1)− 1 = M and (
∑

M

i=0 i) = ((M ∗ (M+ 1))DIV 2) are both
true by arithmetic.

Now we are in a position to directly apply the For Rule to the last condi-
tion, giving us the proof obligation:

{INV ∧ 1 ≤ N ∧ N ≤ M} X := X+N {INV [N+ 1/N]}

which is justified by the Precondition Strengthening rule, the Assignment
Axiom, and the truth of the following condition by arithmetic:

(
∑

N−1
i=0 i) + N =

∑
N

i=0 i

((M ≥ 1 ∧ X =
∑

N−1
i=0 i) ∧ 1 ≤ N ∧ N ≤ M)⇒ (M ≥ 1 ∧ (X + N) =

∑(N+1)−1
i=0 i)

(INV ∧ 1 ≤ N ∧ N ≤ M)⇒ (INV [N + 1/N])[X+ N/X]

Exercise 14

Let PRE, POST and C be defined as follows

{PRE} C {POST }=̂ {A(X) = x ∧ A(Y) = y ∧ X 6= Y}
A(X) := A(X) + A(Y);

A(Y) := A(X) - A(Y);

A(X) := A(X) - A(Y)

{A(X) = y ∧ A(Y) = x}



First, let’s use the Postcondition Weakening rule to add the condition
X 6= Y from the given precondition to our postcondition — we can see
that the assignment sequence doesn’t update X or Y, so we will be able
to maintain that condition. The detailed justification of adding the new
condition is:

{PRE} C {POST ∧ X 6= Y} (POST ∧ X 6= Y)⇒ POST

{PRE} C {POST } Precondition Strengthening

which is trivially true.

Now, we can work backwards through the assignment sequence, using the
Sequential Composition rule. The condition immediately before the last
assignment be derived by the Assignment Axiom:

{A{X ← A(X)−A(Y )}(X) = y ∧ A{X ← A(X)−A(Y )}(Y) = x ∧ X 6= Y}
A(X) := A(X) - A(Y)

{A(X) = y ∧ A(Y) = x ∧ X 6= Y}

We can simplify this mid-condition using the Array Axioms. Note that
we need X 6= Y in order to simplify the second array override. That’s why
we added it to the postcondition earlier. The simpler condition is:

A(X)− A(Y) = y ∧ A(Y) = x ∧ X 6= Y

We appeal to the Sequential Composition rule to use this condition as
the postcondition to the remaining two assignment statements. We then
continue in a similar way, needing to prove:

{A′(X)−A′(Y) = y ∧ A′(Y) = x ∧ X 6= Y}
A(Y) := A(X) - A(Y)

{A(X)− A(Y) = y ∧ A(Y) = x ∧ X 6= Y}

where A′ = A[Y← A(X)− A(Y)]

This precondition can be simplified to (again, using the fact that X 6= Y):

A(X)− (A(X)− A(Y)) = y ∧ A(X)− A(Y) = x ∧ X 6= Y

i.e.
A(Y) = y ∧ A(X)− A(Y) = x ∧ X 6= Y

Similarly for the remaining first assignment.

Exercise 15

We need to show:

{1 ≤ N} FOR I := 1 UNTIL N DO A(I):= 0 {SORTED(A, N)}



The important part of this problem is to invent and establish the for-loop
invariant. Looking at the loop, we can see that the loop starts at the first
index of the array, and goes up through the array setting each the value
of the array at each index to 0. So, at each stage in the loop, we know
that all indexes less than the current index have been set to 0. So, let’s
take that as the basic idea for our invariant:

∀j. 1 ≤ j ≤ I⇒ A(j) = 0

However, the For Rule tells us that the index will be I+ 1 at the end of
the loop, and initially we will not have set any index to zero, so we need to
change out I to I− 1 in the above formula to give us our invariant INV .
Now, we can massage the pre and post conditions in our given correctness
triple so that they match the form required by the For Rule.

The condition arising from the Precondition Strengthening rule is:

1 ≤ N⇒ (INV [1/I] ∧ (1 ≤ N))

expanding with INV and simplifying, we have:

1 ≤ N⇒ (∀j. 1 ≤ j ≤ 0⇒ A(j) = 0)

which is vaccuously true, as there is no j s.t. 1 ≤ j ≤ 0.

The condition arising from the Postcondition Weakening rule is:

INV [N+ 1/I]⇒ SORTED(A, N)

expanding INV and simplifying, we get:

(∀j. 1 ≤ j ≤ N⇒ A(j) = 0)⇒ SORTED(A, N)

which is true by the definition of SORTED, and as 0 ≤ 0... ≤ 0.

So, after massaging our pre and post conditions, we are left with:

{INV [1/I] ∧ (1 ≤ N)} FOR I := 1 UNTIL N DO A(I):= 0 {INV [N+1/I]}

We apply the For Rule, leaving us with the condition

{INV ∧ (1 ≤ I) ∧ (I ≤ N)} A(I):= 0 {INV [I+ 1/I]}

By the Assignment Axiom and the Precondition Weakening rule, we need
to prove:

INV ∧ (1 ≤ I) ∧ (I ≤ N)⇒ INV [I+ 1/I][A{I← 0}/A]

which, simplifying, leaves us with:

(∀j. 1 ≤ j ≤ I−1⇒ A(j) = 0) ∧ (1 ≤ I) ∧ (I ≤ N)⇒ (∀j. 1 ≤ j ≤ I⇒ A′(j) = 0)



where A′ = A{I← 0}/A. We can split the consequent into two halves:

(∀j. 1 ≤ j ≤ I− 1⇒ A(j) = 0) ∧ (1 ≤ I) ∧ (I ≤ N)⇒
((∀j. 1 ≤ j ≤ I− 1⇒ A′(j) = 0) ∧ A′(I) = 0)

where A′ = A{I ← 0}. By the Array Axioms, A{I ← 0}(I) = 0, and for
j < I, A{I← 0}(j) = A(j). Hence, the condition is true as required.

Exercise 16

1 ≤ N⇒ (SORTED(A, 1) ∧ PERM(A, a, 1))

{SORTED(A, 1) ∧ PERM(A, a, 1)}
N := 1

{SORTED(A, N) ∧ PERM(A, a, N)}

Assign. Axiom

{1 ≤ N}
N := 1

{SORTED(A, N) ∧ PERM(A, a, N)}

Precondition Str.

The logical condition follows trivially from the definition of SORTED and
PERM.


