Exercises for which solution notes are available

Exercise 1
Write a specification which is true if and only if the following program terminates.

\[
\text{WHILE } X > 1 \text{ DO IF ODD}(X) \text{ THEN } X := (3 \times X) + 1 \text{ ELSE } X := X \div 2
\]

Exercise 2
Let \(C \) be the following command

\[
R := X; \\
Q := 0; \\
\text{WHILE } Y \leq R \text{ DO (} R := R - Y; \ Q := Q + 1 \text{)}
\]

Find a condition \(P \) such that \([P] \ C \ [R < Y \land X = R + (Y \times Q)]\) is true.

Exercise 3
When is \([T] \ C \ [T]\) true?

Exercise 4
Write a partial correctness specification which is true if and only if the command \(C \) has the effect of multiplying the values of \(X \) and \(Y \) and storing the result in \(X \).

Exercise 5
Write a specification which is true if the execution of \(C \) always halts when execution is started in a state satisfying \(P \).

Exercise 6
Find the flaw in the ‘proof’ of \(1 = -1 \) below:

1. \(\sqrt{-1 \times -1} = \sqrt{-1} \times \sqrt{-1} \) Reflexivity of \(= \).
2. \(\sqrt{-1 \times -1} = (\sqrt{-1}) \times (\sqrt{-1}) \) Distributive law of \(\sqrt{\cdot} \) over \(\times \).
3. \(\sqrt{-1 \times -1} = (\sqrt{-1})^2 \) Definition of \((\cdot)^2 \).
4. \(\sqrt{-1} \times \sqrt{-1} = -1 \) definition of \(\sqrt{-1} \).
5. \(\sqrt{1} = -1 \) As \(-1 \times -1 = 1\).
6. \(1 = -1 \) As \(\sqrt{1} = 1 \).

Exercise 7
Is the following specification true?

\(\vdash \{ X = x \land Y = y \} : X := X + Y; \ Y := X - Y; \ X := X - Y \ \{ Y = x \land X = y \} \)

If so, prove it. If not, give the circumstances in which it fails.
Exercise 8
Show in detail that \(\vdash \{ X = R + (Y \times Q) \} \quad R := R - Y; \quad Q := Q + 1 \quad \{ X = R + (Y \times Q) \} \)

Exercise 9
Give a detailed formal proof that
\(\vdash \{ T \} \quad \text{IF } X \geq Y \text{ THEN } \text{MAX} := X \text{ ELSE } \text{MAX} := Y \quad \{ \text{MAX} = \max(X, Y) \} \)
follows from \(\vdash X \geq Y \Rightarrow \max(X, Y) = X \) and \(\vdash Y \geq X \Rightarrow \max(X, Y) = Y. \)

Exercise 10
Suppose we add to our little programming language commands of the form:

\[
\text{CASE } E \text{ OF BEGIN } C_1; \ldots ; C_n \text{ END}
\]

These are evaluated as follows:

(i) First \(E \) is evaluated to get a value \(x \).

(ii) If \(x \) is not a number between 1 and \(n \), then the \text{CASE}-command has no effect.

(iii) If \(x = i \) where \(1 \leq i \leq n \), then command \(C_i \) is executed.

Why is the following rule for \text{CASE}-commands wrong?

\[
\begin{align*}
\vdash & \{ P \land E = 1 \} \quad C_1 \quad \{ Q \}, \ldots , \vdash \{ P \land E = n \} \quad C_n \quad \{ Q \} \\
\vdash \ & P \quad \text{CASE } E \text{ OF BEGIN } C_1; \ldots ; C_n \text{ END } \{ Q \}
\end{align*}
\]

Hint: Consider the case when \(P \) is ‘\(X = 0 \)’, \(E \) is ‘\(X \)’, \(C_1 \) is ‘\(Y := 0 \)’ and \(Q \) is ‘\(Y = 0 \)’.

Exercise 11
Devise a proof rule for the \text{CASE}-commands in the previous exercise and use it to show:

\[
\vdash \{ 1 \leq X \land X \leq 3 \} \quad \text{CASE } X \text{ OF BEGIN } Y := X-1; Y := X-2; Y := X-3 \text{ END } \{ Y = 0 \}
\]

Exercise 12
Devise a proof rule for a command

\[
\text{REPEAT } \text{command} \text{ UNTIL } \text{statement}
\]
The meaning of \texttt{REPEAT C UNTIL S} is that \(C \) is executed and then \(S \) is tested; if the result is true, then nothing more is done, otherwise the whole \texttt{REPEAT} command is repeated. Thus \texttt{REPEAT C UNTIL S} is equivalent to \(C; \texttt{WHILE} \neg S \texttt{ DO C} \).

\textbf{Exercise 13}

Show that
\[\vdash \{ M \geq 1 \}
\begin{align*}
X &:= 0; \\
\text{FOR } N := 1 \text{ UNTIL } M \text{ DO } X := X + N \\
\{ X = (M \times (M+1)) \text{ DIV } 2 \}
\end{align*} \]

\textbf{Exercise 14}

Show
\[\vdash \{ A(X) = x \land A(Y) = y \land X \neq Y \}
\begin{align*}
A(X) &:= A(X) + A(Y); \\
A(Y) &:= A(X) - A(Y); \\
A(X) &:= A(X) - A(Y) \\
\{ A(X) = y \land A(Y) = x \}
\end{align*} \]

Why is the precondition \(X \neq Y \) necessary?

\textbf{Exercise 15}

Prove
\[\vdash \{ 1 \leq N \}
\begin{align*}
\text{FOR } I := 1 \text{ UNTIL } N \text{ DO } A(I) := 0 \\
\{ \text{SORTED}(A,N) \}
\end{align*} \]

\textbf{Exercise 16}

Prove
\[\vdash \{ 1 \leq N \land A = a \}
\begin{align*}
N &:= 1 \\
\{ \text{SORTED}(A,N) \land \text{PERM}(A,a,N) \}
\end{align*} \]
Additional exercises without solution notes

Exercise 17
Use your REPEAT rule to deduce:

\[\begin{align*}
\vdash \{ S = C+R \land R < Y \} \\
& \text{REPEAT } (S:=S+1; \ R:=R+1) \text{ UNTIL } R = Y \\
& \{ S = C+Y \}
\end{align*} \]

Exercise 18
Use your REPEAT rule to deduce:

\[\begin{align*}
\vdash \{ X=x \land Y=y \} \\
& S:=0; \\
& \text{REPEAT} \\
& \quad R:=0; \\
& \quad \text{REPEAT } (S:=S+1; \ R:=R+1) \text{ UNTIL } R = Y; \\
& \quad X:=X-1 \\
& \quad \text{UNTIL } X = 0 \\
& \{ S = x \times y \}
\end{align*} \]

Exercise 19
The exponentiation function \(\text{exp} \) satisfies:

\[\begin{align*}
\text{exp}(m, 0) & = 1 \\
\text{exp}(m, n+1) & = m \times \text{exp}(m, n)
\end{align*} \]

Devise a command \(C \) that uses repeated multiplication to achieve the following partial correctness specification:

\[\begin{align*}
\{ X=x \land Y=y \land Y \geq 0 \} \ C \ { \{ Z=\text{exp}(x, y) \land X=x \land Y=y \} }
\end{align*} \]

Prove that your command \(C \) meets this specification.

Exercise 20
Assume \(\text{gcd}(X,Y) \) satisfies:

\[\begin{align*}
\vdash (X > Y) & \Rightarrow \text{gcd}(X,Y) = \text{gcd}(X-Y,Y) \\
\vdash \text{gcd}(X,Y) & = \text{gcd}(Y,X) \\
\vdash \text{gcd}(X,X) & = X
\end{align*} \]

Prove:

\[\begin{align*}
\vdash \{ (A > 0) \land (B > 0) \land (\text{gcd}(A,B) = \text{gcd}(X,Y)) \} \\
& \text{WHILE } A > B \text{ DO } A := A - B; \\
& \text{WHILE } B > A \text{ DO } B := B - A \\
& \{ (0 < B) \land (B \leq A) \land (\text{gcd}(A,B) = \text{gcd}(X,Y)) \}
\end{align*} \]
Hence, or otherwise, use your rule for REPEAT commands to prove:

\[\{ A=a \land B=b \} \]

\[\text{REPEAT} \]
\[\text{WHILE} A>B \text{ DO } A:=A-B; \]
\[\text{WHILE} B>A \text{ DO } B:=B-A \]
\[\text{UNTIL} A=B \]
\[\{ A=B \land A=gcd(a,b) \} \]

Exercise 21
Deduce:

\[\{ S = (x\times y)-(X\times Y) \} \]

\[\text{WHILE } \neg \text{ODD}(X) \text{ DO } (Y:=2\times Y; X:=X \div 2) \]
\[\{ S = (x\times y)-(X\times Y) \land \text{ODD}(X) \} \]

Exercise 22
Deduce:

\[\{ S = (x\times y)-(X\times Y) \} \]

\[\text{WHILE } \neg (X=0) \text{ DO } \]
\[\text{WHILE } \neg \text{ODD}(X) \text{ DO } (Y:=2\times Y; X:=X \div 2); \]
\[S:=S+Y; \]
\[X:=X-1 \]
\[\{ S = x\times y \} \]

Exercise 23
Deduce:

\[\{ X=x \land Y=y \} \]

\[S:=0; \]
\[\text{WHILE } \neg (X=0) \text{ DO } \]
\[(\text{WHILE } \neg \text{ODD}(X) \text{ DO } (Y:=2\times Y; X:=X \div 2); \]
\[S:=S+Y; \]
\[X:=X-1) \]
\[\{ S = x\times y \} \]

Exercise 24
Using \(P \times X^N = x^n \) as an invariant, deduce:

\[\{ X=x \land N=n \} \]

\[P:=1; \]
\[\text{WHILE } \neg (N=0) \text{ DO } \]
\[(\text{IF ODD}(N) \text{ THEN } P:=P \times X \text{ else } P:=P; \]
\[N:=N \div 2; \]
\[X:=X \times X) \]
\[\{ P = x^n \} \]
Exercise 25
Prove that the command

\[
Z := 0; \\
\text{WHILE } \neg (X = 0) \text{ DO} \\
\text{IF } \text{ODD}(X) \text{ THEN } Z := Z + Y \text{ ELSE } Z := Z; \\
Y := Y \times 2; \\
X := X \div 2)
\]
computes the product of the initial values of \(X\) and \(Y\) and leaves the result in \(Z\).

Exercise 26
Prove that the command

\[
Z := 1; \\
\text{WHILE } N > 0 \text{ DO} \\
\text{IF } \text{ODD}(N) \text{ THEN } Z := Z \times X \text{ else } Z := Z; \\
N := N \div 2; \\
X := X \times X)
\]
assigns \(x^n\) to \(Z\), where \(x\) and \(n\) are the initial values of \(X\) and \(N\) respectively and we assume \(n \geq 0\).

Exercise 27
What are the verification conditions for the following specification?

\[
\{T\} \text{ IF } X \geq Y \text{ THEN } \text{MAX} := X \text{ ELSE } \text{MAX} := Y \{\text{MAX} = \text{max}(X,Y)\}
\]
Are they true?

Exercise 28
What are the verification conditions for the following specification?

\[
\{X = R + (Y \times Q)\} \ R := R - Y; \ Q := Q + 1 \{X = R + (Y \times Q)\}
\]
Are they true?

Exercise 29
What are the verification conditions generated by the following annotated specification. Are they true?

\[
\{X=n\} \\
Y := 1; \ \{Y = 1 \land X = n\} \\
\text{WHILE } X \neq 0 \text{ DO} \{Y \times X! = n!\} \\
\text{(Y := Y \times X; X := X - 1)} \\
\{X = 0 \land Y = n!\}
\]
Exercise 30
Why are the verification conditions for the annotated specification

{\top} \text{WHILE } F \text{ DO } \{F\} \text{ } X:=0 \text{ } \{\top\}

not provable, even though $\vdash \{\top\} \text{WHILE } F \text{ DO } X:=0 \text{ } \{\top\}$.

Exercise 31
Prove by induction on the structure of C that if no variable occurring in P is assigned to in C, then $\vdash \{P\} C \{P\}$.

Exercise 32
Devise verification conditions for commands of the form $\text{REPEAT } C \text{ UNTIL } S$ (see Exercise 12).

Exercise 33
Consider the following alternative scheme for generating VCs from annotated \textsc{WHILE}-commands (due to Silas Brown).

\begin{center}
\begin{tabular}{|c|}
\hline
\textbf{\textsc{WHILE}-commands} \\
\hline
Alternative verification conditions generated from \\
$\{P\} \text{WHILE } S \text{ DO } \{R\} C \{Q\}$ \\
\hline
are \\
(i) $P \land S \Rightarrow R$ \\
(ii) $P \land \neg S \Rightarrow Q$ \\
(iii) the verification conditions generated by \\
$\{R\} C\{(Q \land \neg S) \lor (R \land S)\}$ \\
\hline
\end{tabular}
\end{center}

Either justify these VCs, or find a counterexample.