The Pumping Lemma

For every regular language L, there is a number £ > 1
satisfying the pumping lemma property:
All w € L with |w| > £ can be expressed as a
concatenation of three strings, w = uyvu,, where uq, v
and u, satisfy:
» ol > 1 (e v#e)
> |uo| < £
» forallm > 0, uy0"u, € L
(i.e. uquy € L, ugouy € L [but we knew that anyway],
ujoovuy € L, ugvovouy € L, etc.)

Note similarity to construction in Kleene ()

Suppose L = L(M) for a DFA M = (Q, L, J,s, F).
Taking £ to be the number of elements in Q, if n > £,
then in

5:g0£>412>42"'ﬂ>4£"'ﬂ>qn€1:

NV
£+1 states

qo,---,qe¢ can't all be distinct states. So g; = g;j for some
0 <i < j< £ Sothe above transition sequence looks like

where

How to use the Pumping Lemma
to prove that a language L
is not regular

For each £ > 1, find some w € L of length > £ so that

no matter how w is split into three, w = uyou,,
with |uyo| < £ and |v| > 1, there is some n > 0 3 (1)
for which uq9"u, is not in L

Examples

None of the following three languages are regular:

(i) L2 {a"b" | n > 0}

Ly = {a"b" | n > 0}

For each £ > 1,take w = a’b® € 1,

I w = wou, with |uo| < €< |v| > 1, then for
some r and s:

» Uy =a’

Ly = {a"b" | n > 0}

For each £ > 1,take w = a’b® € 1,
I w = wou, with |uo| < €< |v| > 1, then for
some r and s:

Pulzar
»v=a° withr+s<~fands>1

Ly = {a"b" | n > 0}

For each £ > 1,take w = a’b® € 1,

I w = wou, with |uo| < €< |v| > 1, then for
some r and s:

| 2 ul = ai’

»v=a° withr+s<~fands>1

> Uy = al—r—sbﬂ

Ly = {a"b" | n > 0}

For each £ > 1,take w = a’b® € 1,
I w = wou, with |uo| < €< |v| > 1, then for
some r and s:

| 2 ulzar
»v=a° withr+s<~fands>1
> Uy = al—r—sbﬂ

sO u10u, =

Ly = {a"b" | n > 0}

For each £ > 1,take w = a’b® € 1,
I w = wou, with |uo| < €< |v| > 1, then for
some r and s:

| 2 ulzar
»v=a° withr+s<~fands>1
> Uy = al—r—sbﬂ

so u?'u, = a'e at~"pt =

Ly = {a"b" | n > 0}

For each £ > 1,take w = a’b® € 1,
I w = wou, with |uo| < €< |v| > 1, then for
some r and s:

| 2 ulzar
»v=a° withr+s<~fands>1
> Uy = al—r—sbﬂ

sO u?'u, = a"e at7"Sbt = at—spt

Ly = {a"b" | n > 0}

For each £ > 1,take w = a’b® € 1,
I w = wou, with |uo| < €< |v| > 1, then for
some r and s:

»ugp=a’

»v=a°, withr+s<~fands>1

T al—r—sbﬂ

sO u?'u, = a"e at7"Sbt = at—spt

But af—sbf &Z L,

Ly = {a"b" | n > 0}

For each £ > 1,take w = a’b® € 1,
I w = wou, with |uo| < €< |v| > 1, then for
some r and s:
»ugp=a’
»v=a°, withr+s<~fands>1
T al—r—sbﬂ
sO u1?'u, = a’'e at7"sbt = at—spt

But a’~bf¢ L, , sO, By the Pumpina Lemma, L, is
NOt a8 regular lanGguace

Examples

None of the following three languages are regular:

(i) Ly = {a"b" | n > 0}

[For each £ > 1, a’b® € Ly is of length > £ and has property (}).]

Examples

None of the following three languages are regular:

(i) Ly = {a"b" | n > 0}

[For each £ > 1, a’b® € Ly is of length > £ and has property (}).]

(i) Ly = {w € {a,b}* | w a palindrome}

Examples

None of the following three languages are regular:

(i) Ly = {a"b" | n > 0}

[For each £ > 1, a’b® € Ly is of length > £ and has property (}).]

(i) Ly = {w € {a,b}* | w a palindrome}

[For each £ > 1, atba® € Ly is of length > £ and has property (1).]

Examples

None of the following three languages are regular:

(i) Ly = {a"b" | n > 0}

[For each £ > 1, a’b® € Ly is of length > £ and has property (}).]

(i) Ly = {w € {a,b}* | w a palindrome}

[For each £ > 1, atba® € Ly is of length > £ and has property (1).]

(i) Lz = {a? | p prime}

L; = {a” | peprive}

Foreach £ >1let w=a? € L3, pprive = p > 2¢

£ w = uyou, wWith the usual ...

L; = {a” | peprive}

Foreach £ >1let w=a? € L3, pprive = p > 2¢

£ w = uyou, wWith the usual ...

then gy =a" v=a° u,=a?P "%

Withs>1sr+s</¥

L; = {a” | peprive}

Foreach £ >1let w=a? € L3, pprive = p > 2¢

£ w = uyou, wWith the usual ...

then gy =a" v=a° u,=a?P "%
Withs>1sr+s</¥

SO w07 *u, =

L; = {a” | peprive}

Foreach £ >1let w=a? € L3, pprive = p > 2¢

£ w = uyou, wWith the usual ...

then gy =a" v=a° u,=a?P "%
Withs>1sr+s</¥

SO wqo” " u, = a’ as(pP=s) gp—r—s —

L; = {a” | peprive}

Foreach £ >1let w=a? € L3, pprive = p > 2¢

£ w = uyou, wWith the usual ...
then gy =a" v=a° u,=a?P "%
Withs>1sr+s</¥

SO o’ *uy = a’ as(P=s) gr—r—s — 4(p—s)(s+1)

L; = {a” | peprive}

Foreach £ >1let w=a? € L3, pprive = p > 2¢

£ w = uyou, wWith the usual ...
then gy =a" v=a° u,=a?P "%
Withs>1sr+s</¥

SO o’ *uy = a’ as(P=s) gr—r—s — 4(p—s)(s+1)

BUt s >1=s+4+12>2
and (p—s)>(2—0)>1=(p—s) >2

L; = {a’ | pprime}

Foreach £ >1let w=a” € L3, p Prime = p > 24
£ w = uyou, wWith the usual ...

then gy =a" v=a° u,=a?P "%
Withs>1sr+s</¥

SO o’ *uy = a’ as(P=s) gr—r—s — 4(p—s)(s+1)

BUt s >1=s+4+12>2
and (p—s)>(2—0)>1=(p—s) >2

<o g(P—s)(s+1) Z Lj

Examples

None of the following three languages are regular:

(i) Ly = {a"b" | n > 0}

[For each £ > 1, a’b® € Ly is of length > £ and has property (}).]

(i) Ly = {w € {a,b}* | w a palindrome}

[For each £ > 1, atba® € Ly is of length > £ and has property (1).]

(iii) Ly = {a” | p prime}
[For each £ > 1, we can find a prime p with p > 2£ and then a?” € L3 has length > € and
has property (7).]

Pumping Lemma property is necessary
£Or a languace to re regular

H is not sufficient

Example of a non-regular language
with the pumping lemma property

L= {c"a"b" |m>1&n>0}U{a™b" | m,n> 0}

satisfies the pumping lemma property with £ = 1.

[For any w € L of length > 1, can take uy = ¢, v = first letter of w,
up = rest of w.]

But L is not regular — see Exercise 5.1.

L is nOt regular: (sketch)

L is nOt regular: (sketch)

I# L is reaular there is a DFA M with L = L(M).
Let’s ruild 8 new machine, M’ $rom it.

L is nOt regular: (sketch)

I# L is reaular there is a DFA M with L = L(M).
Let’s Build 38 new machine, M’ from it.

Take a ¢ transition from the start state of M.
Make the state you reach the start state of
M’

L is nOt regular: (sketch)

I# L is reaular there is a DFA M with L = L(M).
Let’s Build 38 new machine, M’ from it.

Take a ¢ transition from the start state of M.
Make the state you reach the start state of
M’

Delete all transitions involving ¢ (and remove ¢
from the alpharet). But dont remove any
states and keep the same accept states.

L is nOt regular: (sketch)

I# L is reaular there is a DFA M with L = L(M).
Let’s Build 38 new machine, M’ from it.

Take a ¢ transition from the start state of M.
Make the state you reach the start state of
M’

Delete all transitions involving ¢ (and remove ¢
from the alpharet). But dont remove any
states and keep the same accept states.

What lanauaae does M’ recoanise?

The way shead, in THEOR.Y

» What does is mean for a function
+0 rRe computarle?
[Iz Computation Theory]

The way shead, in THEOR.Y

» What does i1s mean £or a function
t0 Re computarle?
[Iz Computation Theory]

» Are some computational tasks
intrinsiclaly unfeasigle?
[Iz ComplexityTheory 1

The way ahead, in THEOR. Y

» What does i1s mean £or a function
t0 Re computarle?
[Iz Computation Theory]

» Are some computational tasks
intrinsiclaly unfeasirle?
[Iz ComplexityTheory 1

» How do we specify and reason
aBout proaram rehaviour?
[I Loaic and Proo#,
B Semanttics of Pls]

The way ahead, iIn FORMAL LANGUAGE.

» Are there other useful lancuace
classes”?

The way ahead, iIn FORMAL LANGUAGE.

» Are there other useful languace
classes?

» Are there other useful automata
classes that have a correspondence
to them?

The way ahead, iIn FORMAL LANGUAGE.

» Are there other useful languace
classes?

» Are there other useful automata
classes that have a correspondence
to them?

» What 1£ we ask the same Questions
arout them that we asked arout
reaular languages?

Chomsky Hierarchy of Languaaes

R eqular Languaces

C Context Free Languaces

C Context Sensitive Languaces

C Recursively Enumerarle Languaaes

Grammars

Grammars are a shorthand way Of expressing
the inductive definition of surset iNclusion for
strinas in a8 Languace.

Grammars

Grammars are a shorthand way Of expressing
the inductive definition of surset iNclusion for
strinas in a8 Languace.

Often By convention we use capitals for
NnoN—terminal symrols (which are disjoint £rom
syWROIs iN the alpharet used By the lancuaae).

Grammars

Grammars are a shorthand way Of expressing
the inductive definition of surset iNclusion for
strinas in a8 Languace.

Often By convention we use capitals for
NnoN—terminal symrols (which are disjoint £rom
syWROIs iN the alpharet used By the lancuaae).

We also have productions (or production rules)
of the form ea. A — a which says that the
NnoNn—terminal syyrol A can Re replaced Ry the
(terminal) symrol a. More complex productions
are allowed.

Grammars

Grammars are a shorthand way Of expressing
the inductive definition of surset iNclusion for
strinas in a8 Languace.

Often By convention we use capitals for
NnoN—terminal symrols (which are disjoint £rom
syWROIs iN the alpharet used By the lancuaae).

We also have productions (or production rules)
of the form ea. A — a which says that the
NnoNn—terminal syyrol A can Re replaced Ry the
(terminal) symrol a. More complex productions
are allowed.

There is also a distinauished non—terminal called
the aoal syymeol (we'll use G)

Everygody's favourite arammar
G — E A

E—-E+T M

E—T A,

T —TxP A;

T —P A

P — (E) As

P— x Ag

Everygody's favourite arammar
G — E A

E—-E+T M

E—T A,

T —TxP A;

T —P A

P — (E) As

P— x Ag

so,ea G A# E

Everygody's favourite arammar
G — E A

E—-E+T M

E—T A,

T —TxP A;

T —P A

P — (E) As

P— x Ag

soea GRENELT

Everygody's favourite arammar
G — E A

E—-E+T M

E—T A,

T —TxP A;

T —P A

P — (E) As

P— x Ag

soeac GRENELTYNELP

Everygody's favourite arammar
G — E A

E—-E+T M

E—T A,

T —TxP A;

T —P A

P — (E) As

P— x Ag

soeac GRENELTHNELP S E4x

Everygody's favourite arammar
G — E A

E—-E+T M

E—T A,

T —TxP A;

T —P A

P — (E) As

P— x Ag

soea GRENELTHELPBELx S
T+ x

Everygody's favourite arammar
G — E A

E—-E+T M

E—T A,

T —TxP A;

T —P A

P — (E) As

P— x Ag

soea GRENELTHELPBELx S
T+x2% Py

Everygody's favourite arammar
G — E A

E—-E+T M

E—T A,

T —TxP A;

T —P A

P — (E) As

P— x Ag

soea GRENELTHELPBELx S
T—|—xA4P—|—xii(E)—|—x

Everygody's favourite arammar
G — E A

E—-E+T M

E—T A,

T —TxP A;

T —P A

P — (E) As

P— x Ag

soea GRENELTHELPBELx S
T—I—xﬂP—l—xi& (E)+x—... > (x+x) +x

Everygody's favourite arammar
G — E A

E—-E+T M

E—T A,

T —TxP A;

T —P A

P — (E) As

P— x Ag

soea GRENELTHELPBELx S

T—I—xﬂP—l—xi& (E)+x—... > (x+x) +x
is a derivation of (x+x) +x

Lancuace classes By fOrms of production

«, B, v any strinags of terminals and
NnoN—terminals

Lancuace classes By fOrms of production

«, B, v any strinags of terminals and
NnoN—terminals

Context Free Languaces: L Type 21
productions of form N — B

Lancuace classes By fOrms of production

«, B, v any strinags of terminals and
NnoN—terminals

Context Free Languaces: L Type 21
productions of form N — 8

Context Sensitive Lancuaces: L Type |']
productions of the form aNf — ayf

Lancuace classes By fOrms of production

«, B, v any strinags of terminals and
NnoN—terminals

Context Free Languaces: L Type 21
productions of form N — 8

Context Sensitive Lancuaces: L Type |']
productions of the form aNf — ayf

Recursively Enumerarle Lancguages: [Type O 1
productions of the form a — B

Lancuace classes By fOrms of production

Lancuace classes By fOrms of production

How arout Regular Lanauaaes? [Type 31

Lancuace classes By fOrms of production

How arout Regular Lanauaaes? [Type 31

A, B any non—terminals, a any terminal syymeol, S
any NoN—terminal that doesnt appear on right
side

Lancuace classes By fOrms of production

How arout Regular Lanauaaes? [Type 31

A, B any non—terminals, a any terminal syymeol, S
any NoN—terminal that doesnt appear on right
side

production of the form A —a or S — ¢ or
A — aB (right recular)

Lancuace classes By fOrms of production

How arout Regular Lanauaaes? [Type 31

A, B any non—terminals, a any terminal syymeol, S
any NoN—terminal that doesnt appear on right
side

production of the form A —a or S — ¢ or
A — aB (right recular)

or of the form A —>aor S —+eor A — Ba
(left reaular)

Lancuace classes By fOrms of production

How arout Regular Lanauaaes? [Type 31

A, B any non—terminals, a any terminal syymeol, S
any NoN—terminal that doesnt appear on right
side

production of the form A —a or S — ¢ or
A — aB (right recular)

or of the form A —>aor S —+eor A — Ba
(left reaular)

But NnoOt BOth left and right recular In the same
GraMmmMar

» Reaular Lanauaaes: Deterministic Finite
Automeata

» Reqular Languages: Deterministic Finite
Automata

» Context Free Languages: Nondeterministic
Push-Down Automata

» Reqular Languages: Deterministic Finite
Automata

» Context Free Languages: Nondeterministic
Push-Down Automata

» Context Sensitive Languaces: Linear
Bounded Nondeterministic Turinag Machine

» Reqular Languages: Deterministic Finite
Automata

» Context Free Languages: Nondeterministic
Push-Down Automata

» Context Sensitive Languaces: Linear
Bounded Nondeterministic Turinag Machine

» Recursively Enumerarle Languages: Turing
Machine

» Reqular Languages: Deterministic Finite
Automata

» Context Free Languages: Nondeterministic
Push-Down Automata

» Context Sensitive Languaces: Linear
Bounded Nondeterministic Turinag Machine

» Recursively Enumerarle Languages: Turing
Machine

Context Free Lanauaaes (and particularly the
sukset that can Re recoanised Ry deterministic
push—-down automata) are important since
MOsSt Proaramming lanauaaes are deterministic
context free languaces.

Deterministic Push-Down Automata (Sketch)

l[dea: need some way tO rememper araitrary
NnuWeer of things that we have seen, eg a"b"

Deterministic Push-Down Automata (Sketch)

l[dea: need some way tO rememper araitrary
NnuWeer of things that we have seen, eg a"b"

Sliaghtly modified DFA alona with a stack which
stores pairs Oof states and symrOls.

Deterministic Push-Down Automata (Sketch)

l[dea: need some way tO rememper araitrary
NnuWeer of things that we have seen, eg a"b"

Sliaghtly modified DFA alona with a stack which
stores pairs Oof states and symrOls.

DPDA |looks at top of stack as well as input to
decide what to do

Deterministic Push-Down Automata (Sketch)

l[dea: need some way tO rememper araitrary
NnuWeer of things that we have seen, eg a"b"

Sliaghtly modified DFA alona with a stack which
stores pairs Oof states and symrOls.

DPDA |looks at top of stack as well as input to
decide what to do

on state transitions, DPDA can pop and/or
push thinags on the stack as well as (perhaps)
readinGg sywmROol

What arout our "Questions"?

What arout our "Questions"?

Given two DPDA, M; and M,, can we determine

What arout our "Questions"?

Given two DPDA, M; and M,, can we determine

Ves.

What arout our "Questions"?

Given two DPDA, M; and M,, can we determine

Mes. Proved in [997.

What arout our "Questions"?

Given two DPDA, M; and M,, can we determine

Mes. Proved in 1997 Earned 20072 Gddel
Prize.

What arout our "Questions"?

Given two DPDA, M; and M,, can we determine

Mes. Proved in 1997 Earned 20072 Gddel
Prize.

But for NPDA, the Question of equivalence is

What arout our "Questions"?

Given two DPDA, M; and M,, can we determine

Mes. Proved in 1997 Earned 20072 Gddel
Prize.

But for NPDA, the Question of equivalence is
undecidagle

