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An Example

Demonstrates don’t always have to follow
induction to bitter end (but when in doubt...)

Construction works backwards to the
induction; we start with all the states and
remove one at a time.

We get to choose the state to remove in
each step.

Strategy: choose a state that disconnects the
automaton as much as possible
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By direct inspection we have:

r
{0}
i,j 0 1 2

0

1 ∅ ε a
2 aa∗ a∗b ε

r
{0,2}
i,j 0 1 2

0 a∗ a∗b
1

2

(we don’t need the unfilled entries in the tables)



We want r
{0,1,2}
0,0



We want r
{0,1,2}
0,0

Remove 1 from {0, 1, 2}



We want r
{0,1,2}
0,0

Remove 1 from {0, 1, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1 ]∗ r

{0,2}
1,0 )



We want r
{0,1,2}
0,0

Remove 1 from {0, 1, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1 ]∗ r

{0,2}
1,0 )

a∗ a∗b



We want r
{0,1,2}
0,0

Remove 1 from {0, 1, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1 ]∗ r

{0,2}
1,0 )

= a∗ | (a∗b [r
{0,2}
1,1 ]∗ r

{0,2}
1,0, )



We want r
{0,1,2}
0,0

Remove 2 from {0, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1 ]∗ r

{0,2}
1,0 )

= a∗ | (a∗b [r
{0,2}
1,1 ]∗ r

{0,2}
1,0, )

r
{0,2}
1,1 , r

{0}
1,1 | (r

{0}
0,2 [r

{0}
2,2 ]∗ r

{0}
2,1 )



We want r
{0,1,2}
0,0

Remove 2 from {0, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1 ]∗ r

{0,2}
1,0 )

= a∗ | (a∗b [r
{0,2}
1,1 ]∗ r

{0,2}
1,0, )

r
{0,2}
1,1 , r

{0}
1,1 | (r

{0}
0,2 [r

{0}
2,2 ]∗ r

{0}
2,1 )

= ε | (a [ε]∗ a∗b)



We want r
{0,1,2}
0,0

Remove 2 from {0, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1 ]∗ r

{0,2}
1,0 )

= a∗ | (a∗b [r
{0,2}
1,1 ]∗ r

{0,2}
1,0, )

r
{0,2}
1,1 , r

{0}
1,1 | (r

{0}
0,2 [r

{0}
2,2 ]∗ r

{0}
2,1 )

= ε | (a [ε]∗ a∗b)
= ε | (aa ∗ b)



We want r
{0,1,2}
0,0

Remove 2 from {0, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1 ]∗ r

{0,2}
1,0 )

= a∗ | (a∗b [ε|(aa ∗ b)]∗ r
{0,2}
1,0 )

r
{0,2}
1,1 , r

{0}
1,1 | (r

{0}
0,2 [r

{0}
2,2 ]∗ r

{0}
2,1 )

= ε | (a [ε]∗ a∗b)
= ε | (aa ∗ b)



We want r
{0,1,2}
0,0

Remove 2 from {0, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1 ]∗ r

{0,2}
1,0 )

= a∗ | (a∗b [ε|(aa ∗ b)]∗ r
{0,2}
1,0 )



We want r
{0,1,2}
0,0

Remove 2 from {0, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1 ]∗ r

{0,2}
1,0 )

= a∗ | (a∗b [ε|(aa ∗ b)]∗ r
{0,2}
1,0 )

r
{0,2}
1,0 , r

{0}
1,0 | (r

{0}
1,2 [r

{0}
2,2 ]∗ r

{0}
2,0 )



We want r
{0,1,2}
0,0

Remove 2 from {0, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1 ]∗ r

{0,2}
1,0 )

= a∗ | (a∗b [ε|(aa ∗ b)]∗ r
{0,2}
1,0 )

r
{0,2}
1,0 , r

{0}
1,0 | (r

{0}
1,2 [r

{0}
2,2 ]∗ r

{0}
2,0 )

= ∅ | a ∗ (ǫ)∗ aa∗



We want r
{0,1,2}
0,0

Remove 2 from {0, 2}

r
{0,1,2}
0,0 , r

{0,2}
0,0 | (r

{0,2}
0,1 [r

{0,2}
1,1 ]∗ r

{0,2}
1,0 )

= a∗ | (a∗b [ε|(aa ∗ b)]∗ r
{0,2}
1,0 )

r
{0,2}
1,0 , r

{0}
1,0 | (r

{0}
1,2 [r

{0}
2,2 ]∗ r

{0}
2,0 )

= ∅ | a ∗ (ǫ)∗ aa∗

= aaa∗



We want r
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r
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We want r
{0,1,2}
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Remove 2 from {0, 2}

r
{0,1,2}
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{0,2}
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{0,2}
0,1 [r

{0,2}
1,1 ]∗ r

{0,2}
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Which might have a simpler form...



Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?



Not(M)

Given DFA M = (Q, Σ, δ, s, F),
then Not(M) is the DFA with

◮ set of states = Q
◮ input alphabet = Σ

◮ next-state function = δ

◮ start state = s
◮ accepting states = {q ∈ Q | q 6∈ F}.

(i.e. we just reverse the role of accepting/non-accepting and leave everything else the same)

Because M is a deterministic finite automaton, then u is accepted by
Not(M) iff it is not accepted by M:

L(Not(M)) = {u ∈ Σ
∗ | u 6∈ L(M)}



So regular languages are closed under
complementation:

◮ given a regular expression r

L(∼ r) = {u ∈ Σ
∗|u /∈ L(r)}
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◮ build DFA M such that L(M) = L(r) (Kleene
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So regular languages are closed under
complementation:

◮ given a regular expression r

◮ build DFA M such that L(M) = L(r) (Kleene
(a))

◮ build Not(M) from M (just defined)

◮ find ∼ r such that L(∼ r) = L(Not(M))
(Kleene (b))

L(∼ r) = {u ∈ Σ
∗|u /∈ L(r)}



Regular languages are
closed under intersection

Theorem. If L1 and L2 are a regular languages over an
alphabet Σ, then their intersection
L1 ∩ L2 = {u ∈ Σ

∗ | u ∈ L1 & u ∈ L2} is also regular.
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Theorem. If L1 and L2 are a regular languages over an
alphabet Σ, then their intersection
L1 ∩ L2 = {u ∈ Σ

∗ | u ∈ L1 & u ∈ L2} is also regular.

Proof. Note that L1 ∩ L2 = Σ
∗ \ ((Σ

∗ \ L1)∪ (Σ
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(cf. de Morgan’s Law: p & q = ¬(¬p ∨¬q)).
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then L1 ∩ L2 = L(Not(PM)), PM subset-constructed from M,
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Regular languages are
closed under intersection

Theorem. If L1 and L2 are a regular languages over an
alphabet Σ, then their intersection
L1 ∩ L2 = {u ∈ Σ

∗ | u ∈ L1 & u ∈ L2} is also regular.

Proof. Note that L1 ∩ L2 = Σ
∗ \ ((Σ

∗ \ L1)∪ (Σ
∗ \ L2))

(cf. de Morgan’s Law: p & q = ¬(¬p ∨¬q)).

So if L1 = L(M1) and L2 = L(M2) for DFAs M1 and M2,
then L1 ∩ L2 = L(Not(PM)), PM subset-constructed from M,
where M is the NFAε Union(Not(M1), Not(M2)). �

[It is not hard to directly construct a DFA And(M1, M2) from M1 and M2 such that
L(And(M1, M2)) = L(M1)∩ L(M2) – see Exercise 4.7.]



Regular languages are
closed under intersection

Corollary: given regular expressions r1 and r2,there is a
regular expression, which we write as r1 & r2, such that

a string u matches r1 & r2 iff it matches both r1

and r2.

Proof. By Kleene (a), L(r1) and L(r2) are regular languages and
hence by the theorem, so is L(r1)∩ L(r2). Then we can use
Kleene (b) to construct a regular expression r1 & r2 with
L(r1 & r2) = L(r1)∩ L(r2). �



Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?



Equivalent regular expressions

Definition. Two regular expressions r and s are said to be
equivalent if L(r) = L(s), that is, they determine
exactly the same sets of strings via matching.

For example, are b∗a(b∗a)∗ and (a|b)∗a equivalent?



Equivalent regular expressions

Definition. Two regular expressions r and s are said to be
equivalent if L(r) = L(s), that is, they determine
exactly the same sets of strings via matching.

For example, are b∗a(b∗a)∗ and (a|b)∗a equivalent?

Answer: yes (Exercise 2.3)

How can we decide all such questions?
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Note that L(r) = L(s)

iff L(r) ⊆ L(s) and L(s) ⊆ L(r)
iff (Σ

∗ \ L(r))∩ L(s) = ∅ = (Σ
∗ \ L(s))∩ L(r)

iff L((∼r) & s) = ∅ = L((∼s) & r)
iff L(M) = ∅ = L(N)

where M and N are DFAs accepting the sets of strings matched by the
regular expressions (∼r) & s and (∼s) & r respectively.

So to decide equivalence for regular expressions it suffices to

check, given any DFA M, whether or not it accepts any string at all.

Note that the number of transitions needed to reach an accepting state in a finite
automaton is bounded by the number of states (we can remove loops from longer
paths). So we only have to check finitely many strings to see whether or not L(M)
is empty.



That gives us our answer to question (c)
(which is yes).

Now onto the last of our questions...



The Pumping Lemma



Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?



Examples of languages that are
not regular

◮ The set of strings over {(, ), a, b, . . . , z} in which the
parentheses ‘(’ and ‘)’ occur well-nested.

◮ The set of strings over {a, b, . . . , z} which are
palindromes, i.e. which read the same backwards as
forwards.

◮ {anbn | n ≥ 0}



The Pumping Lemma

For every regular language L, there is a number ℓ ≥ 1

satisfying the pumping lemma property:

All w ∈ L with |w| ≥ ℓ can be expressed as a
concatenation of three strings, w = u1vu2, where u1, v
and u2 satisfy:

◮ |v| ≥ 1 (i.e. v 6= ε)
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The Pumping Lemma

For every regular language L, there is a number ℓ ≥ 1

satisfying the pumping lemma property:

All w ∈ L with |w| ≥ ℓ can be expressed as a
concatenation of three strings, w = u1vu2, where u1, v
and u2 satisfy:

◮ |v| ≥ 1 (i.e. v 6= ε)

◮ |u1v| ≤ ℓ

◮ for all n ≥ 0, u1vnu2 ∈ L
(i.e. u1u2 ∈ L, u1vu2 ∈ L [but we knew that anyway],

u1vvu2 ∈ L, u1vvvu2 ∈ L, etc.)

Note similarity to construction in Kleene (b)



Suppose L = L(M) for a DFA M = (Q, Σ, δ, s, F).
Taking ℓ to be the number of elements in Q, if n ≥ ℓ,
then in

s = q0

a1−→ q1

a2−→ q2 · · ·
aℓ−→ qℓ

︸ ︷︷ ︸

ℓ+1 states

· · ·
an
−→ qn ∈ F

q0, . . . , qℓ can’t all be distinct states. So qi = qj for some
0 ≤ i < j ≤ ℓ. So the above transition sequence looks like

s = q0
u1 ∗qi

v

∗
= qj

u2 ∗qn ∈ F

where

u1 , a1 . . . ai v , ai+1 . . . aj u2 , aj+1 . . . an



How to use the Pumping Lemma
to prove that a language L

is not regular

For each ℓ ≥ 1, find some w ∈ L of length ≥ ℓ so that

no matter how w is split into three, w = u1vu2,
with |u1v| ≤ ℓ and |v| ≥ 1, there is some n ≥ 0

for which u1vnu2 is not in L






(†)
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