M= (Q,X,A,s,F,T)
» Look at paths in the transition graph (including
e-transitions) from start state to some accepting state.

» Each such path gives a string in £*, namely the string
of non-¢ labels that occur along the path.

» The set of all such strings is by definition the
language accepted by M, written L(M).

v

Notation: write g = g’ to mean that there is a path in M from state
g to state g’ whose non-¢ labels form the string u € L*.



An NFA with e-transitions (NFA?)
M= (Q,%,A,s,FT)
is an NFA (Q, X, A, s, F) together with a subset
T C Q X Q, called the e-transition relation.

Example:

For this NFA® we have, e.g.: qo = q2. 90 = q3 and qo = q7.

In fact the language of accepted strings is equal to the set of strings
matching the regular expression (a|b)*(aa|bb)(a|b)*.
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Sets of Languaaes Accepted By Finite
Automata

» every DFA is an NFA (with transition
MaPPING A Reing 8 Nnext-state function )

» every NFA is an NFA? (with empty
e—transition relation)

clearly
L(DFA) C L(INFA) C L(INFA®)

BRUt
L(]DIFA) C L(INIFA) C L(INIFAG)???



NFA¢ accepts i there exists a path..
DFA: path is determined one syymeol at a time

Let Q re the states of some NFAZ What i£
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states we could Be In, Or more precisely the
supset Of QR containing the states we could re
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NFA¢ accepts i there exists a path..
DFA: path is determined one syymeol at a time

Let Q re the states of some NFAZ What i£
we thouaht, one syyrol at a time, arout the
states we could Be In, Or more precisely the
supset Of QR containing the states we could re
in

Then we could construct a new DFEFA whose
states were taken from the powerset of R
from the NFAE
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Surset Construction

Given an NFA? M with states Q construct a
DFA PM whose states are sursets of the
states of M

the start state iIn PM would Be a8 set
contalning the start state of M together
with any states that can re reached ry
e—transitions from that state.

accepting states iIn PM would Be any sukset
contaliNinGg an accepting state of M

alpharet Is the same as the alpharet of M
That just leaves ¢



Example of the subset construction

next-state function for PM
a a b

(%) (%) (%)
@ {90}  |[{90.9v 92} {42}
y {g9:1} {g1} @
{92} % {492}
{9091} {90, 91,92} {a2}
{9092} | {90, 91,92} {42}

{qva} | {my {42}

b {90, 91,92} [ {q0, 91,92} {42}




A word about @ in the subset
construction
Potential for confusion

» The DFA has a state which corresponds to the empty
set of states in the NFA? which we have designated
as @.

» Once you enter this state we get stuck in it. Why?
» Could rewrite (next slide)



DFA State | subset of NFA® | a b
Sq %) S1
S, {qo} Ss S
S3 {q1} S3 S1
S4 {612} S> S
Ss {1701171} Ss S
Se {1101112} Ss S
Sy {qquz} Ss S4
Sg {90,91,92} |Ss Sa

Noting that Sg is the start state (why?) we could eliminate
states that can’t be reached (i.e. Sy, S5, S and S7; and
thence S3) if we cared. Here we don't. (Care that is).



Theorem. For each NFA* M = (Q, L, A, s, F, T) there
isa DFA PM = (P(Q),X%,d,s’, F") accepting exactly
the same strings as M, i.e. with L(PM) = L(M).

Definition of PM:

» set of states is the powerset P(Q) = {S | S C Q} of the set
Q of states of M

» same input alphabet X as for M

» next-state function maps each (S,a) € P(Q) X L to
5(S,a)2{q €Q|3g€S.q= 4 in M}

> start stateis s’ = {q' € Q| s = ¢’}
» subset of accepting sates is F/ = {S € P(Q) | SNF # @}

To prove the theorem we show that L(M) C L(PM) and L(PM) C L(M).
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Then we have

s = 11 2 ... B qn € FinM
M M

a1

S — Sq
I
5(5’, al)
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M M M

az
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Consider a string ajay...a, € L(PM), ie. is
accepted By our DFA PM

Then we have

az

s s B ...S,.4 2 S.€F inPM
) W W

9o = q1 = ... dn—1 = g, € F InM
e

S



Consider a string ajay...a, € L(PM), ie. is
accepted By our DFA PM

Then we have

s & s B .8, S,€F inPM
) W W

o = g1 2 ... g1 = g.€F inM
e

S



Consider a string ajay...a, € L(PM), ie. is
accepted By our DFA PM

Then we have

az

s & s B .8, S,€F inPM
) W W
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Consider a string ajay...a, € L(PM), ie. is
accepted By our DFA PM
Then we have

az

s & s B .8, S,€F inPM
) W W

G = g1 2 .. g 2 g,€F inM
e

S

sO a1az...a, € L(M)
so L(PM) C L(M)



So we have shown

L(M) C L(PM) and L(PM) C L(M)

sO that
L(M) = L(PM)

where PM is specified By M throuah sugset
construction

Thus for every NFA¢ there is an equivalent
DFA




Theorem. For each NFA* M = (Q, L, A, s, F, T) there
isa DFA PM = (P(Q),X%,d,s’, F") accepting exactly
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We are arout to show that these are
eQuivalent

» we define one of these sets of languaces
t0o re the set Of regular l[anguaces

» we prove that other set Is also the set of
recular languaaes

» in real life we never rememeer which way
round

» here we will define a language to Be regular
on the Basis Of recoanition By a DFA



Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.
(a) For any regular expression 7, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression .




The first part reauires us to demonstrate
that for any regular expression r, we can
construct a DFA, M with L(M) = L(r)

We will do this By demonstrating that for any r
we can construct a NFA? M’ with L(M’) = L(r)
and rely on the sukset construction theorem
t0 aive us the DFA M.

\We consider each axiom and rule that define
recular expressions
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Axioms

U= (Zux)*

axioms:

a € )
(where a € X and r,s € U)

with straicghtforward matching rules
@ 2 just accepts the one-sywmeol string a

Just accepts the null string, &
accepts NO strinas




