
Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

For u ∈ {a, b}∗, let P(u) be the property

u contains the same number of a and b symbols

We can prove ∀u ∈ I. P(u) by rule induction:

◮ base case: P(ε) is true (the number of as and bs is zero!)

◮ induction steps: if P(u) and P(v) hold, then clearly so do
P(aub), P(bua) and P(uv).

(It’s not so easy to show ∀u ∈ {a, b}∗. P(u)⇒ u ∈ I – rule induction for I is not much help for
that.)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a

u

au

u v

buv

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

In this case Rule Induction says:
if (0) P(a)
& (1) ∀u ∈ I . P(u) ⇒ P(au)
& (2) ∀u, v ∈ I . P(u)∧ P(v) ⇒ P(buv)
then ∀u ∈ I . P(u)

for any predicate P(u)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

Asked to show

u ∈ I ⇒ #a(u) > #b(u)

i.e., that there are more ’a’s than ’b’s in every
string in I

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

Asked to show

u ∈ I ⇒ #a(u) > #b(u)

so do so using Rule Induction with

P(u) = #a(u) > #b(u)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

P(u) = #a(u) > #b(u)

(0) P(a) holds (1 > 0)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

P(u) = #a(u) > #b(u)

(1) If P(u), then #a(au) = 1 + #a(u)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

P(u) = #a(u) > #b(u)

(1) If P(u), then #a(au) = 1 + #a(u)
> #a(u) > #b(u) (because P(u))

= #b(au)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

P(u) = #a(u) > #b(u)

(1) If P(u), then #a(au) = 1 + #a(u)
> #a(u) > #b(u) (because P(u))

= #b(au)
so P(au) holds as well, and thus P(u) ⇒ P(au)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

P(u) = #a(u) > #b(u)

(2) If P(u)∧ P(v), then #a(buv) = #a(u) + $#a(v)
≥ ((#b(u) + 1) + (#b(v) + 1)) (why?)

> #b(buv)
so P(buv)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

P(u) = #a(u) > #b(u)

if (0) P(a) X

& (1) ∀u ∈ I . P(u) ⇒ P(au) X

& (2) ∀u, v ∈ I . P(u)∧ P(v) ⇒ P(buv) X

then ∀u ∈ I . P(u)
so for all u ∈ I, we have #a(u) > #b(u)

Example [CST 2009, Paper2, Question 5]

I ⊆ {a, b}∗ inductively defined by

a
0

u

au
1

u v

buv
2

P(u) = #a(u) > #b(u)

although we have
∀u ∈ I . P(u)

we don’t have
∀u ∈ {a, b}∗ . P(u) ⇒ u ∈ I

e.g. P(aab) but aab /∈ I (Why?)

Deciding membership of an inductively defined
subset can be hard!

Deciding membership of an inductively defined
subset can be hard!

really, Really hard

e.g. ...

Collatz Conjecture

f (n) =

1 if n = 0, 1

f (n/2) if n > 1, n even
f (3n + 1) if n > 1, n odd

Does this define a total function f : N → N?

(nobody knows)

Collatz Conjecture

f (n) =

1 if n = 0, 1

f (n/2) if n > 1, n even
f (3n + 1) if n > 1, n odd

Does this define a total function f : N → N?

(nobody knows)

(If it does then f is necessarily the
unary 1 function n 7→ 1)

Collatz Conjecture

f (n) =

1 if n = 0, 1

f (n/2) if n > 1, n even
f (3n + 1) if n > 1, n odd

Does this define a total function f : N → N?

(nobody knows)

Can reformulate as a problem about inductively
defined subsets...

Collatz Conjecture

f (n) =

1 if n = 0, 1

f (n/2) if n > 1, n even
f (3n + 1) if n > 1, n odd

Is the subset I ⊆ N inductively defined by

0 1

k

2k

6k + 4

2k + 1
(k ≥ 1)

equal to the whole of N?

Abstract Syntax Trees

Formal languages

An extensional view of what constitutes a formal language is that it is

completely determined by the set of ‘words in the dictionary’:

Given an alphabet Σ, we call any subset of Σ
∗ a (formal)

language over the alphabet Σ.

Concrete syntax: strings of symbols

◮ possibly including symbols to disambiguate the semantics
(brackets, white space, etc),

◮ or that have no semantic content (e.g. syntax for comments).

For example, an ML expression:

let fun f x =

if x > 100 then x − 10

else f (f (x + 11))

in f 1 end

(∗ v a l u e i s 9 9 ∗)

Abstract syntax: finite rooted trees

◮ vertexes with n children are labelled by operators expecting n
arguments (n-ary operators) – in particular leaves are labelled
with 0-ary (nullary) operators (constants, variables, etc)

◮ label of the root gives the ‘outermost form’ of the whole phrase

E.g. for the ML expression
on Slide 41:

let

fun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f 1

Regular Expressions

A regular expression defines a pattern of
symbols (and thus a language).

Important to distinguish between the language
a particular regular expression defines and the
set of possible regular expressions.

We about to look at the second of these.

Regular expressions (concrete syntax)

over a given alphabet Σ.

Let Σ
′ be the 6-element set {ǫ, ∅, |, ∗, (,)} (assumed disjoint from Σ)

U = (Σ ∪ Σ
′)∗

axioms:
a ǫ ∅

rules:
r

(r)

r s

r|s

r s

rs

r

r∗

(where a ∈ Σ and r, s ∈ U)

Some derivations of regular expressions
(assuming a, b ∈ Σ)

ǫ

a

b

b∗

ab∗

ǫ|ab∗

ǫ a

ǫ|a

b

b∗

ǫ|ab∗

ǫ

a b

ab

ab∗

ǫ|ab∗

ǫ

a

b

b∗

(b∗)

a(b∗)

(a(b∗))

ǫ|(a(b∗))

ǫ a

ǫ|a

(ǫ|a)

b

b∗

(b∗)

(ǫ|a)(b∗)

ǫ

a b

ab

(ab)

(ab)∗

((ab)∗)

ǫ|((ab)∗)

Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) consists of

◮ binary operators Union and Concat

◮ unary operator Star

◮ nullary operators (constants) Null, Empty and Syma

(one for each a ∈ Σ).

Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) as an ML datatype declaration:

datatype ′a RE = Union of (′a RE) ∗ (′a RE)
| Concat of (′a RE) ∗ (′a RE)
| Star of ′a RE

| Null

| Empty

| Sym of ′a

(the type ′
a RE is parameterised by a type variable ′

a standing for the alphabet Σ)

Some abstract syntax trees of regular expressions
(assuming a, b ∈ Σ)

1. 2. 3.

Union

Null Concat

Syma Star

Symb

Concat

Union

Null Syma

Star

Symb

Union

Null Star

Concat

Syma Symb

(cf. examples a few slides previous)

We will use a textual representation of trees, for example:

1. Union(Null, Concat(Syma, Star(Symb)))

2. Concat(Union(Null, Syma), Star(Symb))

3. Union(Null, Star(Concat(Syma, Symb)))

Relating concrete and abstract syntax

for regular expressions over an alphabet Σ, via an
inductively defined relation ∼ between strings and trees:

a ∼ Syma ǫ ∼ Null ∅ ∼ Empty

r ∼ R

(r) ∼ R

r ∼ R s ∼ S

r|s ∼ Union(R, S)

r ∼ R s ∼ S

rs ∼ Concat(R, S)

r ∼ R

r∗ ∼ Star(R)

For example:

ǫ|(a(b∗)) ∼ Union(Null, Concat(Syma, Star(Symb)))

ǫ|ab∗ ∼ Union(Null, Concat(Syma, Star(Symb)))

ǫ|ab∗ ∼ Concat(Union(Null, Syma), Star(Symb))

Thus ∼ is a ‘many-many’ relation between strings and trees.

◮ Parsing: algorithms for producing abstract syntax
trees parse(r) from concrete syntax r, satisfying
r ∼ parse(r).

◮ Pretty printing: algorithms for producing concrete
syntax pp(R) from abstract syntax trees R, satisfying
pp(R) ∼ R.

(See CST IB Compiler construction course.)

Operator precedence for regular expressions

Star > Concat > Union

So
ε|ab∗ stands for ε|(a(b∗))

Union (Null, Concat (Syma, Star (Symb)))

Associativity for regular expressions

Concat & Union are left associative

So
abc stands for (ab)c

a|b|c stands for (a|b)|c

From now on, we will rely on operator
precedence (& associativity) conventions in the
concrete syntax of regular expressions to
allow us to map directly to their abstract syntax

associativity less important (in some sense)
than precedence because the meaning
(semantics) of concatenation and union is
always associative

so abc has the same abstract syntax as (ab)c,
but different abstract syntax from a(bc), but
all of these have the same semantics.

Matching

Each regular expression r over an alphabet Σ determines a
language L(r) ⊆ Σ

∗. The strings u in L(r) are by
definition the ones that match r, where

◮ u matches the regular expression a (where a ∈ Σ) iff u = a

◮ u matches the regular expression ǫ iff u is the null string ε

◮ no string matches the regular expression ∅

◮ u matches r|s iff it either matches r, or it matches s

◮ u matches rs iff it can be expressed as the concatenation of two
strings, u = vw, with v matching r and w matching s

◮ u matches r∗ iff either u = ε, or u matches r, or u can be
expressed as the concatenation of two or more strings, each of
which matches r.

	Abstract Syntax Trees

