Example using rule induction

Let I be the subset of {a,b}* inductively defined by the
axioms and rules on Slide 17 of the notes.

For u € {a,b}*, let P(u) be the property
u contains the same number of a and b symbols
We can prove Yu € I. P(u) by rule induction:

» base case: P(¢) is true (the number of as and bs is zero!)

» induction steps: if P(u) and P(v) hold, then clearly so do
P(aub), P(bua) and P(uv).

(It's not so easy to show Vu € {a,b}*. P(u) = u € I — rule induction for I is not much help for
that.)

Example (CST 2009, Paperl, Question Sl

I C {a,b}* inductively defined Ry

u uo

a au buv

Example (CST 2009, Paperl, Question Sl
I C {a,b}* inductively defined Ry

IN this case R.ule Induction says:

i£ © P(a)

<0 Vu€el.P(u) = P(au)

< @ Yu,v € I.P(u) AP(v) = P(buv)
then Yu € 1. P(u)

for any predicate P(u)

Example (CST 2009, Paperl, Question Sl
I C {a,b}* inductively defined Ry

Asked to show

ucl=#,(u) > #,(u)

e, that there are more ’a’s than 'B’s in every
string In 1

Example (CST 2009, Paperl, Question Sl
I C {a,b}* inductively defined Ry

Asked tO show
ucl=#,(u) > #(u)

sO dO sO using R.ule Induction with
P(u) = #,(u) > #,(u)

Example (CST 2009, Paperl, Question Sl

I C {a,b}* inductively defined Ry

P(u) = #,(u) > #,(u)

(OY P(a) holds (1> 0

Example (CST 2009, Paperl, Question Sl

I C {a,b}* inductively defined Ry

P(u) = #,(u) > #,(u)

O £ P(u), then #,(au) =1+ #,(u)

Example (CST 2009, Paperl, Question Sl

I C {a,b}* inductively defined Ry

P(u) = #,(u) > #,(u)

O £ P(u), then #,(au) =1+ #,(u)
> #,(u) > #,(u) (Because P(u))
= #,(au)

Example (CST 2009, Paperl, Question Sl
I C {a,b}* inductively defined Ry

u uv
o) — — 2
a au buv

P(u) = #a(u) > #,(u)

O£ P(u), then #,(au) =1+ #,(u)
> #,(u) > #,(u) (Because P(u))
= #p(au)
so P(au) holds as well, and thus P(u) = P(au)

Example (CST 2009, Paperl, Question Sl
I C {a,b}* inductively defined Ry

P(u) = #a(u) > #,(u)

(2 18 P(u) AP(v), then #,(buv) = #,(u) + $#,(v)
> ((#() +1) + ($5(0) +1)) (kgD
> #,(buv)
so P(buv)

Example (CST 2009, Paperl, Question Sl
I C {a,b}* inductively defined Ry

P(u) = #4(u) > #y(u)

i$© P(a) v

0o Vuel.P(u)= P(au) v

< @ Yu,0o € I.P(u) ANP(v) = P(buv) v
then Yu € 1. P(u)

so for all u € I, we have #,(u) > #,(u)

Example (CST 2009, Paperl, Question Sl
I C {a,b}* inductively defined Ry

P(u) = #4(u) > #y(u)

Hhouah h
a uch we ave‘v’uEI.P(u)

we dont have
Vu € {a,b}*.P(u) =>ucl

ea. P(aab) eut aab & I (Why?)

Decidina memeership of an inductively defined
surset can Be hard!

Decidina memeership of an inductively defined
surset can Be hard!

really, R.eally hard

ea. .

Collatz Conjecture

1 +n=0,1
f(n) =< f(nl2) i$n>1 neven
f(3n+1) i n>1, nodd

Does this define a total function f:IN — IN?

(NoBROdYy kNOWS)

Collatz Conjecture

1 +n=0,1
f(n) =< f(nl2) i$n>1 neven
f(3n+1) i n>1, nodd

Does this define a total function f:IN — IN?

(NoBROdYy kNOWS)

(I# it does then f is necessarily the
unary 1 function n +— 1)

Collatz Conjecture

1 +n=0,1
f(n) =< f(nl2) i$n>1 neven
f(3n+1) i#n>1, nodd
Does this define a total function f:IN — IN?

(NoBROdYy kNOWS)

Can reformulate as a proelem arout inductively
defined sursets..

Collatz Conjecture

1 +n=0,1
f(n) =< f(nl2) i$n>1 neven
f(3n+1) it n>1, nodd

Is the sueset I C IN inductively defined By

equal to the whole of IN?

Abstract Syntax Trees

Formal languages

An extensional view of what constitutes a formal language is that it is
completely determined by the set of ‘words in the dictionary’:

Given an alphabet X, we call any subset of £* a (formal)
language over the alphabet X.

Concrete syntax: strings of symbols

» possibly including symbols to disambiguate the semantics
(brackets, white space, etc),

» or that have no semantic content (e.g. syntax for comments).
For example, an ML expression:

let fun f x =
if x > 100 them x — 10
else £ (£ (x + 11))
in £ 1 end

(*x v a 1l u e i s 9 9 =)

Abstract syntax: finite rooted trees

» vertexes with n children are labelled by operators expecting n
arguments (n-ary operators) — in particular leaves are labelled
with 0-ary (nullary) operators (constants, variables, etc)

» label of the root gives the ‘outermost form' of the whole phrase

let
E.g. for the ML expression / \

on Slide 41: fun @
f/x \if f/ \1
>/ _\@
X/ \100 x/ \10 f \@

/ N\
£+
/ N\

X 11

R_eaular Expressions

A reaular expression defines a pattern of
syMROols (and thus a lanGuace).

Important to distinauish retween the languace
a par-ticular recular expression defines and the
set Of possiBle regular expressions.

We arout to look at the second of these.

Regular expressions (concrete syntax)

over a given alphabet X.

Let X/ be the 6-element set {€,D, |,*, (,)} (assumed disjoint from X)

U= (zux’)*

axioms: —— E— —_—

a € @

| r r s r s r
rules: — —
(r) r|s rs r*

(where a € Z and r,s € U)

Some derivations of regular expressions
(assuming a,b € X)

b a b
a b* € a b ab
ab* €la b* | e ab*
€|ab* €|ab* €|ab*
b a b
b* ab
a (b*) | € a b (ab)
a(b*) €la b* (ab)*
(a(®*)) | (ela) (b*) | e ((ab)¥)
e|(a(b)) (ela)(b™) e|((ab)”)

Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet X) consists of

» binary operators Union and Concat
» unary operator Star

» nullary operators (constants) Null, Empty and Sym
(one for each a € X).

Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet) as an ML datatype declaration:

datatype ‘aRE = Union of (‘aRE) * ("aRE)
| Concat of ("aRE) * (‘aRE)
| Star of 'aRE
| Null

| Empty

| Sym of ‘a

(the type 'aRE is parameterised by a type variable ‘a standing for the alphabet X)

Some abstract syntax trees of regular expressions
(assuming a,b € X)

1.
Union
Null Concat
VRN
Sym, Stlar
Sym,,

2.
Concat
Union Star
Null Sym, Sylmb

3.
Union
Null Star
Corlcat

Sym, Sym,

(cf. examples a few slides previous)

We will use a textual representation of trees, for example:

1. Union(Null, Concat(Sym,, Star(Sym,)))
2. Concat(Union(Null, Sym), Star(Sym,,))
3. Union(Null, Star(Concat(Sym , Sym,)))

Relating concrete and abstract syntax

for regular expressions over an alphabet X, via an
inductively defined relation ~ between strings and trees:

a~ Sym, € ~ Null @ ~ Empty
r~ R r~ R s~ S
(r) ~R r|s ~ Union(R, S)
r~ R s~ S r~ R

rs ~ Concat(R,S) r* ~ Star(R)

For example:

e|(a(b*)) ~ Union(Null, Concat(Sym,, Star(Sym,)))
e|lab® ~ Union(Null, Concat(Sym,, Star(Sym,)))
e|lab® ~ Concat(Union(Null, Sym), Star(Sym,,))

Thus ~ is a ‘many-many’ relation between strings and trees.

» Parsing: algorithms for producing abstract syntax
trees parse(r) from concrete syntax r, satisfying
r ~ parse(r).

» Pretty printing: algorithms for producing concrete
syntax pp(R) from abstract syntax trees R, satisfying

pp(R) ~ R.

(See CST IB Compiler construction course.)

Operator precedence £or reaular expressions

Star > Concat > Union

So
glab* stands for e|(a(b*))

Union (Null, Concat (Syw,, Star (SympON

Associativity for reaular expressions

So

Concat < Union are left associative

abc stands for (ab)c

a|blc stands for (a|b)|c

From now on, we will rely on operator
precedence (5 associativity) conventions in the
conerete syntax Of regular expressions to
allow us to map directly to thelr arstract syntax

associativity less important (in some sense)
than precedence Because the meaning
(semanttics) Of concatenation and union is
always associative

sO abc has the same aBstract syntax as (ab)c,
But different arstract syntax from a(bc), But
all of these have the same semantics.

Matching

Each regular expression r over an alphabet X determines a
language L(r) C X*. The strings u in L(#) are by
definition the ones that match r, where

v

u matches the regular expression a (where a € L) iff u = a

v

u matches the regular expression € iff u is the null string &
» no string matches the regular expression @
» u matches r|s iff it either matches r, or it matches s

» u matches rs iff it can be expressed as the concatenation of two
strings, u = vw, with v matching r and w matching s

» u matches r* iff either u = &, or u matches r, or u can be
expressed as the concatenation of two or more strings, each of
which matches r.

	Abstract Syntax Trees

