
What is this course about?

◮ Examining the power of an abstract machine

What can this box of tricks do?



What is this course about?

◮ Examining the power of an abstract machine

◮ Domains of discourse: automata and formal languages

Automaton is the box of tricks, language recognition is
what it can do.



What is this course about?

◮ Examining the power of an abstract machine

◮ Domains of discourse: automata and formal languages

◮ Formalisms to describe languages and automata

Very useful for future courses.



What is this course about?

◮ Examining the power of an abstract machine

◮ Domains of discourse: automata and formal languages

◮ Formalisms to describe languages and automata

◮ Proving a particular case: relationship between regular
languages and finite automata

Perhaps the simplest result about power of a machine.
Finite Automata are simply a formalisation of finite state
machines you looked at in Digital Electronics.



A word about formalisms to describe
languages

◮ Classically (i.e. when I was young) this would be done
using formal grammars.

e.g. S → NV
e.g. I → ID, I → D, I → −D



A word about formalisms to describe
languages

◮ Classically (i.e. when I was young) this would be done
using formal grammars.

◮ Here will we use rule induction

Excuse to introduce now, useful in other things



Syllabus for this part of the course

◮ Inductive definitions using rules
and proofs by rule induction.

◮ Abstract syntax trees.

◮ Regular expressions and pattern matching.

◮ Finite automata and regular languages:
Kleene’s theorem.

◮ The Pumping Lemma.

mathematics needed for computer science



Common theme: mathematical techniques for defining
formal languages and reasoning about their properties.

Key concepts: inductive definitions, automata

Relevant to:

Part IB Compiler Construction, Computation Theory, Complexity
Theory, Semantics of Programming Languages

Part II Natural Language Processing, Optimising Compilers,
Denotational Semantics, Temporal Logic and Model
Checking

N.B. we do not cover the important topic of context-free grammars, which prior to 2013/14 was

part of the CST IA course Regular Languages and Finite Automata that has been subsumed into

this course.

see course web page for relevant Tripos questions



Formal Languages



Alphabets

An alphabet is specified by giving a finite set, Σ, whose
elements are called symbols. For us, any set qualifies as a
possible alphabet, so long as it is finite.

Examples:

◮ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 10-element set of decimal digits.

◮ {a, b, c, . . . , x, y, z}, 26-element set of lower-case characters of
the English language.

◮ {S | S ⊆ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}, 210-element set of all
subsets of the alphabet of decimal digits.

Non-example:

◮ N = {0, 1, 2, 3, . . . }, set of all non-negative whole numbers is
not an alphabet, because it is infinite.



Strings over an alphabet

A string of length n (for n = 0, 1, 2, . . .) over an
alphabet Σ is just an ordered n-tuple of elements of Σ,
written without punctuation.

Σ
∗ denotes set of all strings over Σ of any finite length.

Examples:

◮ If Σ = {a, b, c}, then ε,

notation for the
string of length 0

a, ab, aac, and bbac are
strings over Σ of lengths zero, one, two, three and four
respectively.

◮ If Σ = {a}, then Σ
∗ contains ε, a, aa, aaa, aaaa,

etc.

In general, an denotes the string of length n just containing a symbols



Strings over an alphabet

A string of length n (for n = 0, 1, 2, . . .) over an
alphabet Σ is just an ordered n-tuple of elements of Σ,
written without punctuation.

Σ
∗ denotes set of all strings over Σ of any finite length.

Examples:

◮ If Σ = {a, b, c}, then ε, a, ab, aac, and bbac are
strings over Σ of lengths zero, one, two, three and four
respectively.

◮ If Σ = {a}, then Σ
∗ contains ε, a, aa, aaa, aaaa,

etc.

◮ If Σ = ∅ (the empty set), then what is Σ
∗?



Strings over an alphabet

A string of length n (for n = 0, 1, 2, . . .) over an
alphabet Σ is just an ordered n-tuple of elements of Σ,
written without punctuation.

Σ
∗ denotes set of all strings over Σ of any finite length.

Examples:

◮ If Σ = {a, b, c}, then ε, a, ab, aac, and bbac are
strings over Σ of lengths zero, one, two, three and four
respectively.

◮ If Σ = {a}, then Σ
∗ contains ε, a, aa, aaa, aaaa,

etc.

◮ If Σ = ∅ (the empty set), then Σ
∗ = {ε}.



Concatenation of strings

The concatenation of two strings u and v is the string uv
obtained by joining the strings end-to-end. This generalises
to the concatenation of three or more strings.

Examples:

If Σ = {a, b, c, . . . , z} and u, v, w ∈ Σ
∗ are u = ab, v = ra and

w = cad, then

vu = raab

uu = abab

wv = cadra

uvwuv = abracadabra



Concatenation of strings

The concatenation of two strings u and v is the string uv
obtained by joining the strings end-to-end. This generalises
to the concatenation of three or more strings.

Examples:

If Σ = {a, b, c, . . . , z} and u, v, w ∈ Σ
∗ are u = ab, v = ra and

w = cad, then

vu = raab

uu = abab

wv = cadra

uvwuv = abracadabra

N.B. (uv)w = uvw = u(vw) ( any u,v,w )
uǫ = u =ǫu

The length of a string u ∈ Σ
∗ is denoted |u|.



Formal languages

An extensional view of what constitutes a formal language is that it is

completely determined by the set of ‘words in the dictionary’:

Given an alphabet Σ, we call any subset of Σ
∗ a (formal)

language over the alphabet Σ.

We will use inductive definitions to describe languages in terms of

grammatical rules for generating subsets of Σ
∗.



Inductive Definitions



Axioms and rules

for inductively defining a subset of a given set U

◮ axioms
a

are specified by giving an element a of U

◮ rules
h1 h2 · · · hn

c

are specified by giving a finite subset {h1, h2, . . . , hn} of U (the

hypotheses of the rule) and an element c of U (the conclusion

of the rule)



Axioms and rules

for inductively defining a subset of a given set U

◮ axioms
a

are specified by giving an element a of U

which means that a is in the subset we are
defining

◮ rules
h1 h2 · · · hn

c

are specified by giving a finite subset {h1, h2, . . . , hn} of U (the

hypotheses of the rule) and an element c of U (the conclusion

of the rule)

which means that c is in the subset we are
defining if all of h1, h2, . . . , hn are



Derivations

Given a set of axioms and rules for inductively defining a
subset of a given set U, a derivation (or proof) that a
particular element u ∈ U is in the subset is by definition

a finite rooted tree with vertexes labelled by
elements of U and such that:

◮ the root of the tree is u (the conclusion of
the whole derivation),

◮ each vertex of the tree is the conclusion of a
rule whose hypotheses are the children of the
node,

◮ each leaf of the tree is an axiom.

usually draw with leaves at top, root at bottom



Example

U = {a, b}∗

axiom:
ε

rules:
u

aub

u

bua

u v

uv
(for all u, v ∈ U)

Example derivations:

ε

ab

ε

ab

aabb

abaabb

ε

ba

ε

ab

baab

abaabb



Example

U = {a, b}∗ The universal set from which
we are specifying a subset.

axiom:
ε

rules:
u

aub

u

bua

u v

uv
(for all u, v ∈ U)

Example derivations:

ε

ab

ε

ab

aabb

abaabb

ε

ba

ε

ab

baab

abaabb



Example

U = {a, b}∗ It is the set of all finite
strings containing a’s & b’s.

axiom:
ε

rules:
u

aub

u

bua

u v

uv
(for all u, v ∈ U)

Example derivations:

ε

ab

ε

ab

aabb

abaabb

ε

ba

ε

ab

baab

abaabb



Example

U = {a, b}∗

Now the axioms and rules to define the
subset :

axiom:
ε

rules:
u

aub

u

bua

u v

uv
(for all u, v ∈ U)

Example derivations:

ε

ab

ε

ab

aabb

abaabb

ε

ba

ε

ab

baab

abaabb



Inductively defined subsets

Given a set of axioms and rules over a set U, the subset of
U inductively defined by the axioms and rules consists of
all and only the elements u ∈ U for which there is a
derivation with conclusion u.

For example, for the axioms and rules on Slide 13

◮ abaabb is in the subset they inductively define (as witnessed by
either derivation on that slide)

◮ abaab is not in that subset (there is no derivation with that
conclusion – why?)

(In fact u ∈ {a, b}∗ is in the subset iff it contains the same number of a and b symbols.)



rules or templates?

u v

uv
(for all u, v ∈ U)

is really a template for a (potentially) infinite
set of rules



Example: transitive closure

Given a binary relation R ⊆ X × X on a set X, its
transitive closure R+ is the smallest (for subset
inclusion) binary relation on X which contains R and which
is transitive (∀x, y, z ∈ X. (x, y) ∈ R+ & (y, z) ∈ R+ ⇒ (x, z) ∈ R+).

R+ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)



Example: reflexive-transitive closure

Given a binary relation R ⊆ X × X on a set X, its
reflexive-transitive closure R∗ is defined to be the
smallest binary relation on X which contains R, is both
transitive and reflexive (∀x ∈ X. (x, x) ∈ R∗).

R∗ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)
(x, x)

(for all x ∈ X)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)



Example: reflexive-transitive closure

Given a binary relation R ⊆ X × X on a set X, its
reflexive-transitive closure R∗ is defined to be the
smallest binary relation on X which contains R, is both
transitive and reflexive (∀x ∈ X. (x, x) ∈ R∗).

R∗ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)
(x, x)

(for all x ∈ X)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

we can use Rule Induction to prove this



Example: reflexive-transitive closure

Given a binary relation R ⊆ X × X on a set X, its
reflexive-transitive closure R∗ is defined to be the
smallest binary relation on X which contains R, is both
transitive and reflexive (∀x ∈ X. (x, x) ∈ R∗).

R∗ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)
(x, x)

(for all x ∈ X)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

we can use Rule Induction to prove this, since S ⊆ X × X
being closed under the axioms & rules is the same as it

containing R, being reflexive and being transitive.



Inductively defined subsets

Given a set of axioms and rules over a set U, the subset of
U inductively defined by the axioms and rules consists of
all and only the elements u ∈ U for which there is a
derivation with conclusion u.

Derivation is a finite (labelled) tree with u at
root, axiom at leaves and each vertex the
conclusion of a rule whose hypotheses are the
children of the vertex.

(We usually draw the trees with the root at
the bottom.)



Rule Induction
Theorem. The subset I ⊆ U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S ⊆ U is also closed under the
axioms and rules, then I ⊆ S.

Given axioms and rules for inductively defining a subset of a set U, we
say that a subset S ⊆ U is closed under the axioms and rules if

◮ for every axiom
a

, it is the case that a ∈ S

◮ for every rule
h1 h2 · · · hn

c
, if h1, h2, . . . , hn ∈ S, then c ∈ S.



E.g. for the axiom & rules

ǫ

u

aub

u

bua

u v

uv
for all u, v ∈ {a, b}∗

the subset

{u ∈ {a, b}∗ | #a(u) = #b(u)}

(where #a(u) is the number of ’a’s
in the string u)



E.g. for the axiom & rules

ǫ

u

aub

u

bua

u v

uv
for all u, v ∈ {a, b}∗

the subset

{u ∈ {a, b}∗ | #a(u) = #b(u)}

is closed under the axiom & rules.



N.B. for a given set R of axioms & rules

{u ∈ U | ∀S ⊆ U.(S closed under R) =⇒ u ∈ S}

is closed under R (Why?) and so is the smallest
such (with respect to subset inclusion, ⊆)



N.B. for a given set R of axioms & rules

{u ∈ U | ∀S ⊆ U.(S closed under R) =⇒ u ∈ S}

is closed under R (Why?) and so is the smallest
such (with respect to subset inclusion, ⊆)

This set contains all items that are in every set
that is closed under R



Theorem. The subset I ⊆ U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S ⊆ U is also closed under the
axioms and rules, then I ⊆ S.

“the least subset closed under the axioms &
rules”

is sometimes take as the definition of

“inductively defined subset”



Proof of the Theorem [Page 23 of notes]

Closure part

◮ I is closed under each axiom
a

because we can construct a derivation
witnessing a ∈ I . . .

. . . which is simply a tree with one node
containing a



Closure part (2)

◮ I is closed under each rule r =
h1 h2 . . . hn

a

because if h1 h2 . . . hn ∈ I . . .

we have n derivations from axioms to each
hi and so . . .

we can just make these the n children to
our rule r to form a big tree . . .

which is a derivation witnessing c ∈ I



Proof of the Theorem

so we have closure under rules & axioms

Now the “least such subset” part

We need to show, for every S ⊆ U

(S closed under axioms and rules ) ⇒ I ⊆ S

That is, I is the least subset, in that any other
subset that is closed under the axioms & rules
contains I .



Least Subset

So we need to show that every element of I is
contained in any set S ⊆ U which is closed under
the rules & axioms

Q: How can we characterise an element of I?
A: For each element of I there is a derivation
that witnesses its membership

So let’s do induction on the height of the
derivation (i.e. the height of the tree)



Least Subset - Proof by Induction

P(n) , “all derivations of height n
have their conclusion in S”

Need to show:

◮ P(0) (consider these to be single (axiom)
node derivations)

◮ ∀(k ≤ n) P(k) ⇒ P(n + 1)

since if P(n) is true for all n, then all
derivations have their conclusion in S, and thus
every element of I is in S.



Least Subset - Proof by Induction

P(n) , “all derivations of height n
have their conclusion in S”

◮ P(0):
trivially true since conclusion is an axiom
and S is closed under axioms



Least Subset - Proof by Induction

P(n) , “all derivations of height n
have their conclusion in S”

◮ P(0):
trivially true since conclusion is an axiom
and S is closed under axioms

◮ ∀(k ≤ n) P(k) ⇒ P(n + 1):



Least Subset - Proof by Induction

P(n) , “all derivations of height n
have their conclusion in S”

◮ P(0):
trivially true since conclusion is an axiom
and S is closed under axioms

◮ ∀(k ≤ n) P(k) ⇒ P(n + 1):
Suppose ∀(k ≤ n) P(k) and that D is a
derivation of height n + 1 with, say,
conclusion c



D

D1

c1

D2

c2

• • • Dk

ck

c



D

D1

c1

D2

c2

• • • Dk

ck

csome rule

c is the result of applying some rule to a set of
conclusions c1 c2 . . . ck



D

D1

c1

D2

c2

• • • Dk

ck

csome rule

heights
≤ n

But the derivations for the ci all have height
≤ n. So the ci are all in S by assumption

and since S is closed under all axioms & rules,
c ∈ S

so ∀(k ≤ n) P(k) ⇒ P(n + 1)



Thus every element in I is in any S that is closed
under the axioms & rules that inductively
defined I .

Thus I is the least subset that is closed under
those axioms & rules.



Rule Induction
Theorem. The subset I ⊆ U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S ⊆ U is also closed under the
axioms and rules, then I ⊆ S.

We use the theorem as method of proof: given a property P(u) of
elements of U, to prove ∀u ∈ I. P(u) it suffices to show

◮ base cases: P(a) holds for each axiom
a

◮ induction steps: P(h1) & P(h2) & · · · & P(hn)⇒ P(c)

holds for each rule
h1 h2 · · · hn

c



Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

ǫ

u

aub

u

bua

u v

uv



Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

ǫ

u

aub

u

bua

u v

uv

Associated Rule Induction:



Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

ǫ

u

aub

u

bua

u v

uv

Associated Rule Induction:

◮ P(ǫ)



Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

ǫ

u

aub

u

bua

u v

uv

Associated Rule Induction:

◮ P(ǫ)
◮ ∀u ∈ I . P(u) ⇒ P(aub)



Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

ǫ

u

aub

u

bua

u v

uv

Associated Rule Induction:

◮ P(ǫ)
◮ ∀u ∈ I . P(u) ⇒ P(aub)
◮ ∀u ∈ I . P(u) ⇒ P(bua)



Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

ǫ

u

aub

u

bua

u v

uv

Associated Rule Induction:

◮ P(ǫ)
◮ ∀u ∈ I . P(u) ⇒ P(aub)
◮ ∀u ∈ I . P(u) ⇒ P(bua)
◮ ∀u, v ∈ I . P(u)∧ P(v) ⇒ P(uv)



Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

For u ∈ {a, b}∗, let P(u) be the property

u contains the same number of a and b symbols

We can prove ∀u ∈ I. P(u) by rule induction:

◮ base case: P(ε) is true (the number of as and bs is zero!)



Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

For u ∈ {a, b}∗, let P(u) be the property

u contains the same number of a and b symbols

We can prove ∀u ∈ I. P(u) by rule induction:

◮ base case: P(ε) is true (the number of as and bs is zero!)

◮ induction steps: if P(u) and P(v) hold, then clearly so do
P(aub), P(bua) and P(uv).



Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17 of the notes.

For u ∈ {a, b}∗, let P(u) be the property

u contains the same number of a and b symbols

We can prove ∀u ∈ I. P(u) by rule induction:

◮ base case: P(ε) is true (the number of as and bs is zero!)

◮ induction steps: if P(u) and P(v) hold, then clearly so do
P(aub), P(bua) and P(uv).

(It’s not so easy to show ∀u ∈ {a, b}∗. P(u)⇒ u ∈ I – rule induction for I is not much help for
that.)
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