
Formal Languages and Automata

7 lectures for
University of Cambridge

2015-16 Computer Science Tripos
Part IA Discrete Mathematics

by Ian Leslie

c© 2014,2015 AM Pitts, 2016; IM Leslie (minor tweaks)

What is this course about?

◮ Examining the power of an abstract machine

What can this box of tricks do?

2

What is this course about?

◮ Examining the power of an abstract machine

◮ Domains of discourse: automata and formal languages

Automaton is the box of tricks, language recognition is
what it can do.

2

What is this course about?

◮ Examining the power of an abstract machine

◮ Domains of discourse: automata and formal languages

◮ Formalisms to describe languages and automata

Very useful for future courses.

2

What is this course about?

◮ Examining the power of an abstract machine

◮ Domains of discourse: automata and formal languages

◮ Formalisms to describe languages and automata

◮ Proving a particular case: relationship between regular
languages and finite automata

Perhaps the simplest result about power of a machine.
Finite Automata are simply a formalisation of finite state
machines you looked at in Digital Electronics.

2

A word about formalisms to describe
languages

◮ Classically (i.e. when I was young) this would be done
using formal grammars.

e.g. S → NV
e.g. I → ID, I → D, I → −D

3

A word about formalisms to describe
languages

◮ Classically (i.e. when I was young) this would be done
using formal grammars.

◮ Here will we use rule induction

Excuse to introduce now, useful in other things

3

Contents

Formal Languages 7
Inductive Definitions 14
Abstract Syntax Trees 26
Finite Automata 43
Regular Languages 66
The Pumping Lemma 101

Syllabus for this part of the course

◮ Inductive definitions using rules
and proofs by rule induction.

◮ Abstract syntax trees.

◮ Regular expressions and pattern matching.

◮ Finite automata and regular languages:
Kleene’s theorem.

◮ The Pumping Lemma.

5

Common theme: mathematical techniques for defining
formal languages and reasoning about their properties.

Key concepts: inductive definitions, automata

Relevant to:

Part IB Compiler Construction, Computation Theory, Complexity
Theory, Semantics of Programming Languages

Part II Natural Language Processing, Optimising Compilers,
Denotational Semantics, Temporal Logic and Model
Checking

N.B. we do not cover the important topic of context-free grammars, which prior to 2013/14 was
part of the CST IA course Regular Languages and Finite Automata that has been subsumed into
this course.

6

Formal Languages

7

Alphabets

An alphabet is specified by giving a finite set, Σ, whose
elements are called symbols. For us, any set qualifies as a
possible alphabet, so long as it is finite.

Examples:

◮ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 10-element set of decimal digits.

◮ {a, b, c, . . . , x, y, z}, 26-element set of lower-case characters of
the English language.

◮ {S | S ⊆ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}, 210-element set of all
subsets of the alphabet of decimal digits.

Non-example:

◮ N = {0, 1, 2, 3, . . . }, set of all non-negative whole numbers is
not an alphabet, because it is infinite.

8

Strings over an alphabet

A string of length n (for n = 0, 1, 2, . . .) over an
alphabet Σ is just an ordered n-tuple of elements of Σ,
written without punctuation.

Σ
∗ denotes set of all strings over Σ of any finite length.

Examples:

◮ If Σ = {a, b, c}, then ε,

notation for the
string of length 0

a, ab, aac, and bbac are
strings over Σ of lengths zero, one, two, three and four
respectively.

◮ If Σ = {a}, then Σ
∗ contains ε, a, aa, aaa, aaaa,

etc.

In general, an denotes the string of length n just containing a symbols

9

Strings over an alphabet

A string of length n (for n = 0, 1, 2, . . .) over an
alphabet Σ is just an ordered n-tuple of elements of Σ,
written without punctuation.

Σ
∗ denotes set of all strings over Σ of any finite length.

Examples:

◮ If Σ = {a, b, c}, then ε, a, ab, aac, and bbac are
strings over Σ of lengths zero, one, two, three and four
respectively.

◮ If Σ = {a}, then Σ
∗ contains ε, a, aa, aaa, aaaa,

etc.

◮ If Σ = ∅ (the empty set), then Σ
∗ = {ε}.

9

Notes

◮ There is a unique string of length zero over Σ, called the null string (or empty string) and
denoted ε, no matter which alphabet Σ we are talking about.

◮ We make no notational distinction between a symbol a ∈ Σ and the string of length 1

containing a. Thus we regard Σ as a subset of Σ
∗.

◮ ∅, {ε} and ε are three different things!
◮ ∅ is the (unique) set with no elements,
◮ {ε} is a set with one element (the null string),
◮ ε is the string of length 0.

◮ The length of a string u ∈ Σ
∗ is denoted |u|.

◮ We are not concerned here with data structures and algorithms for implementing strings
(so strings and finite lists are interchangeable concepts here).

◮ Warning! the symbol ∗ is highly overloaded – it means different things in different
contexts in this course. (The same comment applies to the symbol ε and, to a lesser
extent, the symbol ∅.)

10

Concatenation of strings

The concatenation of two strings u and v is the string uv
obtained by joining the strings end-to-end. This generalises
to the concatenation of three or more strings.

Examples:

If Σ = {a, b, c, . . . , z} and u, v, w ∈ Σ
∗ are u = ab, v = ra and

w = cad, then

vu = raab

uu = abab

wv = cadra

uvwuv = abracadabra

11

Notes

◮ Concatenation satisfies:

uε = u = εu

(uv)w = uvw = u(vw)

(but in general uv 6= vu)

◮ |uv| = |u|+ |v|

Notation

If u ∈ Σ
∗, then un denotes n copies of u concatenated together. By convention u0 = ε.

12

Formal languages

An extensional view of what constitutes a formal language is that it is

completely determined by the set of ‘words in the dictionary’:

Given an alphabet Σ, we call any subset of Σ
∗ a (formal)

language over the alphabet Σ.

We will use inductive definitions to describe languages in terms of

grammatical rules for generating subsets of Σ
∗.

13

Inductive Definitions

14

Axioms and rules

for inductively defining a subset of a given set U

◮ axioms
a

are specified by giving an element a of U

◮ rules
h1 h2 · · · hn

c

are specified by giving a finite subset {h1, h2, . . . , hn} of U (the

hypotheses of the rule) and an element c of U (the conclusion

of the rule)

15

Derivations

Given a set of axioms and rules for inductively defining a
subset of a given set U, a derivation (or proof) that a
particular element u ∈ U is in the subset is by definition

a finite rooted tree with vertexes labelled by
elements of U and such that:

◮ the root of the tree is u (the conclusion of
the whole derivation),

◮ each vertex of the tree is the conclusion of a
rule whose hypotheses are the children of the
node,

◮ each leaf of the tree is an axiom.

16

Example

U = {a, b}∗

axiom:
ε

rules:
u

aub

u

bua

u v

uv
(for all u, v ∈ U)

Example derivations:

ε

ab

ε

ab

aabb

abaabb

ε

ba

ε

ab

baab

abaabb

17

Inductively defined subsets

Given a set of axioms and rules over a set U, the subset of
U inductively defined by the axioms and rules consists of
all and only the elements u ∈ U for which there is a
derivation with conclusion u.

For example, for the axioms and rules on Slide 17

◮ abaabb is in the subset they inductively define (as witnessed by
either derivation on that slide)

◮ abaab is not in that subset (there is no derivation with that
conclusion – why?)

(In fact u ∈ {a, b}∗ is in the subset iff it contains the same number of a and b symbols.)

18

Notes

◮ Axioms are special cases of rules – the ones where n = 0, i.e. the set of hypotheses is
empty.

◮ There is a more general form inductive definitions in which rules have infinitely many
hypotheses – in which case one has to consider derivations of infinite (ordinal) height. In
that general setting, definitions for which all rules have finitely many hypotheses are called
finitary. We only consider such inductive definitions here.

◮ We are generally interested in inductive definitions of subsets that are infinite. An
inductive definition with only finitely many axioms and rules defines a finite subset.
(Why?) So we usually have to consider infinite sets of axioms and rules. However, those
sets are usually specified schematically: an axiom scheme, or a rule scheme is a template
involving variables that can be instantiated to get a whole family of actual axioms or rules.

For example, on Slide 17, we used the rule scheme
u

aub
where u is meant to be

instantiated with any string over the alphabet {a, b}. Thus this rule scheme stands for the

infinite collection of rules
ε

ab
,

a

aab
,

b

abb
,

aa

aaab
, etc.

◮ It is sometimes convenient to flatten derivations into finite lists, because they are easier to
fit on a page. The last element of the list is the conclusion of the derivation. Every
element of the list is either an axiom, or the conclusion of a rule all of whose hypotheses
occur earlier in the list.

◮ The fact that an element is in an inductively defined subset may be witnessed by more
than one derivation (see the example on Slide 17).

◮ In general, there is no sure-fire, algorithmic method for showing that an element is not in a
particular inductively defined subset.

19

Example: transitive closure

Given a binary relation R ⊆ X × X on a set X, its
transitive closure R+ is the smallest (for subset
inclusion) binary relation on X which contains R and which
is transitive (∀x, y, z ∈ X. (x, y) ∈ R+ & (y, z) ∈ R+ ⇒ (x, z) ∈ R+).

R+ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

20

Example: reflexive-transitive closure

Given a binary relation R ⊆ X × X on a set X, its
reflexive-transitive closure R∗ is defined to be the
smallest binary relation on X which contains R, is both
transitive and reflexive (∀x ∈ X. (x, x) ∈ R∗).

R∗ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)
(x, x)

(for all x ∈ X)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

we can use Rule Induction (Slide 22) to prove this

21

Rule Induction
Theorem. The subset I ⊆ U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S ⊆ U is also closed under the
axioms and rules, then I ⊆ S.

Given axioms and rules for inductively defining a subset of a set U, we
say that a subset S ⊆ U is closed under the axioms and rules if

◮ for every axiom
a

, it is the case that a ∈ S

◮ for every rule
h1 h2 · · · hn

c
, if h1, h2, . . . , hn ∈ S, then c ∈ S.

22

Rule Induction
Theorem. The subset I ⊆ U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S ⊆ U is also closed under the
axioms and rules, then I ⊆ S.

We use the theorem as method of proof: given a property P(u) of
elements of U, to prove ∀u ∈ I. P(u) it suffices to show

◮ base cases: P(a) holds for each axiom
a

◮ induction steps: P(h1) & P(h2) & · · · & P(hn)⇒ P(c)

holds for each rule
h1 h2 · · · hn

c

(To see this, apply the theorem with S = {u ∈ U | P(u)}.)

22

Proof of the Theorem on Slide 22

I is closed under any of the axioms
a

, because a is a derivation of length 1 showing that

a ∈ I. I is closed under any of the rules
h1 · · · hn

c
, because if each hi is in I, there is a derivation

Di with conclusion hi; and then
D1 · · · Dn

c
is a derivation (why?) with conclusion c ∈ I.

Now suppose S ⊆ U is some subset closed under the axioms and rules. We can use mathematical
induction to prove

∀n. all derivations of height ≤ n have their conclusion in S (∗)

Hence all derivations have their conclusions in S; and therefore I ⊆ S, as required. �

[Proof of (∗) by mathematical induction:

Base case n = 0: trivial, because there are no derivations of height 0.

Induction step for n + 1: suppose D is a derivation of height ≤ n + 1, with conclusion c – say

D =
D1 · · · Dm

c
(some m ≥ 0). We have to show c ∈ S. Note that each Di is a derivation of

height ≤ n and so by induction hypothesis its conclusion, ci say, is in S. Since D is a well-formed

derivation,
c1 · · · cm

c
has to be a rule (or m = 0 and it is an axiom). Since S is closed under the

axioms and rules and each ci is in S, we conclude that c ∈ S. �]

23

Example: reflexive-transitive closure

Given a binary relation R ⊆ X × X on a set X, its
reflexive-transitive closure R∗ is defined to be the
smallest binary relation on X which contains R, is both
transitive and reflexive (∀x ∈ X. (x, x) ∈ R∗).

R∗ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)
(x, x)

(for all x ∈ X)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

we can use Rule Induction (Slide 22) to prove this, since
S ⊆ X × X being closed under the axioms & rules is the same

as it containing R, being reflexive and being transitive.
24

Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 17.

For u ∈ {a, b}∗, let P(u) be the property

u contains the same number of a and b symbols

We can prove ∀u ∈ I. P(u) by rule induction:

◮ base case: P(ε) is true (the number of as and bs is zero!)

◮ induction steps: if P(u) and P(v) hold, then clearly so do
P(aub), P(bua) and P(uv).

(It’s not so easy to show ∀u ∈ {a, b}∗. P(u)⇒ u ∈ I – rule induction for I is not much help for
that.)

25

Abstract Syntax Trees

26

Concrete syntax: strings of symbols

◮ possibly including symbols to disambiguate the semantics
(brackets, white space, etc),

◮ or that have no semantic content (e.g. syntax for comments).

For example, an ML expression:

let fun f x =

if x > 100 then x − 10

else f (f (x + 11))

in f 1 end

(∗ v a l u e i s 9 9 ∗)

27

Abstract syntax: finite rooted trees

◮ vertexes with n children are labelled by operators expecting n
arguments (n-ary operators) – in particular leaves are labelled
with 0-ary (nullary) operators (constants, variables, etc)

◮ label of the root gives the ‘outermost form’ of the whole phrase

E.g. for the ML expression
on Slide 27:

let

fun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f 1

28

Regular expressions (concrete syntax)

over a given alphabet Σ.

Let Σ
′ be the 6-element set {ǫ, ∅, |, ∗, (,)} (assumed disjoint from Σ)

U = (Σ ∪ Σ
′)∗

axioms:
a ǫ ∅

rules:
r

(r)

r s

r|s

r s

rs

r

r∗

(where a ∈ Σ and r, s ∈ U)

29

Some derivations of regular expressions
(assuming a, b ∈ Σ)

ǫ

a

b

b∗

ab∗

ǫ|ab∗

ǫ a

ǫ|a

b

b∗

ǫ|ab∗

ǫ

a b

ab

ab∗

ǫ|ab∗

ǫ

a

b

b∗

(b∗)

a(b∗)

(a(b∗))

ǫ|(a(b∗))

ǫ a

ǫ|a

(ǫ|a)

b

b∗

(b∗)

(ǫ|a)(b∗)

ǫ

a b

ab

(ab)

(ab)∗

((ab)∗)

ǫ|((ab)∗)

30

Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) consists of

◮ binary operators Union and Concat

◮ unary operator Star

◮ nullary operators (constants) Null, Empty and Syma

(one for each a ∈ Σ).

31

Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) as an ML datatype declaration:

datatype ′a RE = Union of (′a RE) ∗ (′a RE)
| Concat of (′a RE) ∗ (′a RE)
| Star of ′a RE

| Null

| Empty

| Sym of ′a

(the type ′
a RE is parameterised by a type variable ′

a standing for the alphabet Σ)

32

Some abstract syntax trees of regular expressions
(assuming a, b ∈ Σ)

1. 2. 3.

Union

Null Concat

Syma Star

Symb

Concat

Union

Null Syma

Star

Symb

Union

Null Star

Concat

Syma Symb

(cf. examples on Slide 30)

We will use a textual representation of trees, for example:

1. Union(Null, Concat(Syma, Star(Symb)))

2. Concat(Union(Null, Syma), Star(Symb))

3. Union(Null, Star(Concat(Syma, Symb)))

33

Relating concrete and abstract syntax

for regular expressions over an alphabet Σ, via an
inductively defined relation ∼ between strings and trees:

a ∼ Syma ǫ ∼ Null ∅ ∼ Empty

r ∼ R

(r) ∼ R

r ∼ R s ∼ S

r|s ∼ Union(R, S)

r ∼ R s ∼ S

rs ∼ Concat(R, S)

r ∼ R

r∗ ∼ Star(R)

34

For example:

ǫ|(a(b∗)) ∼ Union(Null, Concat(Syma, Star(Symb)))

ǫ|ab∗ ∼ Union(Null, Concat(Syma, Star(Symb)))

ǫ|ab∗ ∼ Concat(Union(Null, Syma), Star(Symb))

Thus ∼ is a ‘many-many’ relation between strings and trees.

◮ Parsing: algorithms for producing abstract syntax
trees parse(r) from concrete syntax r, satisfying
r ∼ parse(r).

◮ Pretty printing: algorithms for producing concrete
syntax pp(R) from abstract syntax trees R, satisfying
pp(R) ∼ R.

(See CST IB Compiler construction course.)
35

We can introduce operator precedence and associativity conventions for concrete syntax and cut
down the pairs in the ∼ relation to make it single-valued (that is, r ∼ R & r ∼ R′ ⇒ R = R′).
For example, for regular expressions we decree:

_∗ binds more tightly than _ _, binds more tightly than _|_

So, for example, the only parse of ǫ|ab∗ is the tree

Union(Null, Concat(Syma, Star(Symb)))

We also decree that the binary operations of concatenation _ _ and union _|_ are left associative,
so that for example abc parses as

Concat(Concat(Syma, Symb), Symc)

(However, the union and concatenation operators for regular expressions will always be given a
semantics that is associative, so the left-associativity convention is less important than the
operator-precedence convention.)

Note: for the rest of the course we adopt these operator-precedence and associativity
conventions for regular expressions and refer to abstract syntax trees using concrete syntax.

36

Matching

Each regular expression r over an alphabet Σ determines a
language L(r) ⊆ Σ

∗. The strings u in L(r) are by
definition the ones that match r, where

◮ u matches the regular expression a (where a ∈ Σ) iff u = a

◮ u matches the regular expression ǫ iff u is the null string ε

◮ no string matches the regular expression ∅

◮ u matches r|s iff it either matches r, or it matches s

◮ u matches rs iff it can be expressed as the concatenation of two
strings, u = vw, with v matching r and w matching s

◮ u matches r∗ iff either u = ε, or u matches r, or u can be
expressed as the concatenation of two or more strings, each of
which matches r.

37

Inductive definition of matching

U = Σ
∗ ×{regular expressions over Σ}

axioms:
(a, a) (ε, ǫ) (ε, r∗)

rules:

(u, r)

(u, r|s)

(u, s)

(u, r|s)

(v, r) (w, s)

(vw, rs)

(u, r) (v, r∗)

(uv, r∗)

abstract syntax trees

(No axiom/rule involves the empty regular expression ∅ – why?)
38

Examples of matching

Assuming Σ = {a, b}, then:

◮ a|b is matched by each symbol in Σ

◮ b(a|b)∗ is matched by any string in Σ
∗ that starts with a ‘b’

◮ ((a|b)(a|b))∗ is matched by any string of even length in Σ
∗

◮ (a|b)∗(a|b)∗ is matched by any string in Σ
∗

◮ (ε|a)(ε|b)|bb is matched by just the strings ε, a, b, ab, and bb

◮ ∅b|a is just matched by a

39

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?
40

(a) The answer to question (a) on Slide 40 is ‘yes’: algorithms for deciding such
pattern-matching questions make use of finite automata. We will see this next.

(b) If you have used the UNIX utility grep, or a text editor with good facilities for regular
expression based search, like emacs, you will know that the answer to question (b) on
Slide 40 is also ‘yes’—the regular expressions defined on Slide 29 leave out some forms of
pattern that one sees in such applications. However, the answer to the question is also
‘no’, in the sense that (for a fixed alphabet) these extra forms of regular expression are
definable, up to equivalence, from the basic forms given on Slide 29. For example, if the
symbols of the alphabet are ordered in some standard way, it is common to provide a form
of pattern for naming ranges of symbols—for example [a-z] might denote a pattern
matching any lower-case letter. It is not hard to see how to define a regular expression
(albeit a rather long one) which achieves the same effect. However, some other commonly
occurring kinds of pattern are much harder to describe using the rather minimalist syntax
of Slide 29. The principal example is complementation, ∼(r):

u matches ∼(r) iff u does not match r.

It will be a corollary of the work we do on finite automata (and a good measure of its
power) that every pattern making use of the complementation operation ∼(−) can be
replaced by an equivalent regular expression just making use of the operations on Slide 29.
But why do we stick to the minimalist syntax of regular expressions on that slide? The
answer is that it reduces the amount of work we will have to do to show that, in principle,
matching strings against patterns can be decided via the use of finite automata.

41

(c) The answer to question (c) on Slide 40 is ‘yes’ and once again this will be a corollary of
the work we do on finite automata.

(d) Finally, the answer to question (d) is easily seen to be ‘no’, provided the alphabet Σ

contains at least one symbol. For in that case Σ
∗ is countably infinite; and hence the

number of languages over Σ, i.e. the number of subsets of Σ
∗ is uncountable. (Recall

Cantor’s diagonal argument.) But since Σ is a finite set, there are only countably many
abstract syntax trees for regular expressions over Σ. (Why?) So the answer to (d) is ‘no’
for cardinality reasons. However, even amongst the countably many languages that are
‘finitely describable’ (an intuitive notion that we will not formulate precisely) many are not
of the form L(r) for any regular expression r. For example, we will use the Pumping
Lemma to see that {anbn | n ≥ 0} is not of this form.

42

Finite Automata

43

We will be making use of mathematical models of physical systems called finite state machines –
of which there are many different varieties. Here we use one particular sort, finite automata
(singular: finite automaton), to recognise whether or not a string is in a particular language. The
key features of this abstract notion of machine are as follows and are illustrated by the example on
Slide 46.

◮ There are only finitely many different states that a finite automaton can be in. In the
example there are four states, labelled q0, q1, q2, and q3.

◮ We do not care at all about the internal structure of machine states. All we care about is
which transitions the machine can make between the states. A symbol from some fixed
alphabet Σ is associated with each transition: we think of the elements of Σ as input
symbols. Thus all the possible transitions of the finite automaton can be specified by
giving a finite graph whose vertices are the states and whose edges have both a direction
and a label (an element of Σ). In the example Σ = {a, b} and the only possible transitions
from state q1 are

q1
b
−→ q0 and q1

a
−→ q2.

In other words, in state q1 the machine can either input the symbol b and enter state q0,
or it can input the symbol a and enter state q2. (Note that transitions from a state back

to the same state are allowed: e.g. q3
a
−→ q3 in the example.)

◮ There is a distinguished start state (also known as the initial state). In the example it is
q0. In the graphical representation of a finite automaton, the start state is usually
indicated by means of a unlabelled arrow.

44

◮ The states are partitioned into two kinds: accepting states (also know as final states) and
non-accepting states. In the graphical representation of a finite automaton, the accepting
states are indicated by double circles round the name of each such state, and the
non-accepting states are indicated using single circles. In the example there is only one
accepting state, q3; the other three states are non-accepting. (The two extreme
possibilities that all states are accepting, or that no states are accepting, are allowed; it is
also allowed for the start state to be accepting.)

The reason for the partitioning of the states of a finite automaton into ‘accepting’ and
‘non-accepting’ has to do with the use to which one puts finite automata—namely to recognise
whether or not a string u ∈ Σ

∗ is in a particular language (= subset of Σ
∗). Given u we begin in

the start state of the automaton and traverse its graph of transitions, using up the symbols in u in
the correct order reading the string from left to right. If we can use up all the symbols in u in this
way and reach an accepting state, then u is in the language ‘accepted’ (or ‘recognised’) by this
particular automaton. On the other hand, if there is no path in the graph of transitions from the
start state to some accepting state with string of labels equal to u, then u is not in the language
accepted by the automaton. This is summed up on Slide 47.

45

Example of a finite automaton

M , q0
a

b

q1

b

a q2

b

a q3

a

b

◮ set of states: {q0, q1, q2, q3}

◮ input alphabet: {a, b}

◮ transitions, labelled by input symbols: as indicated by the above
directed graph

◮ start state: q0

◮ accepting state(s): q3

46

Language accepted
by a finite automaton M

◮ Look at paths in the transition graph from the start
state to some accepting state.

◮ Each such path gives a string of input symbols, namely
the string of labels on each transition in the path.

◮ The set of all such strings is by definition the
language accepted by M, written L(M).

Notation: write q
u
−→∗ q′ to mean that in the automaton there is a

path from state q to state q′ whose labels form the string u.

(N.B. q
ε
−→∗ q′ means q = q′.)

47

Example of an accepted language

M , q0
a

b

q1

b

a q2

b

a q3

a

b

For example

◮ aaab ∈ L(M), because q0
aaab
−−→∗ q3

◮ abaa 6∈ L(M), because ∀q(q0
abaa
−−→∗ q ⇔ q = q2)

48

Example of an accepted language

M , q0
a

b

q1

b

a q2

b

a q3

a

b

Claim:
L(M) = L((a|b)∗aaa(a|b)∗)

set of all strings matching the

regular expression (a|b)∗aaa(a|b)∗

(qi (for i = 0, 1, 2) represents the state in the process of reading a string in which the last i
symbols read were all as)

48

Determinism and non-determinism

Slide 50 gives a formal definition of the notion of finite automaton. The reason for the
qualification ‘non-deterministic’ is because in general, for each state q ∈ Q and each input symbol
a ∈ Σ, there may be no, one, or many states that can be reached in a single transition labelled a
from q; see the example on Slide 51.

We single out as particularly important the case when there is always exactly one next state for a
given input symbol in any given state and call such automata deterministic: see Slide 52. The
finite automaton pictured on Slide 53 is deterministic. But note that if we took the same graph of
transitions but insisted that the alphabet of input symbols was {a, b, c} say, then we have
specified an NFA not a DFA – see Slide 54. The moral of this is: when specifying an NFA, as well
as giving the graph of state transitions, it is important to say what is the alphabet of input
symbols (because some input symbols may not appear in the graph at all).

49

Non-deterministic
finite automaton (NFA)

is by definition a 5-tuple M = (Q, Σ, ∆, s, F), where:

◮ Q is a finite set (of states)

◮ Σ is a finite set (the alphabet of input symbols)

◮ ∆ is a subset of Q × Σ × Q (the transition relation)

◮ s is an element of Q (the start state)

◮ F is a subset of Q (the accepting states)

Notation: write “q
a
−→ q′ in M” to mean (q, a, q′) ∈ ∆.

50

Example of an NFA

Input alphabet: {a, b}.

States, transitions, start state, and accepting states as shown:

q0

a

b

a q1
a q2

a q3

a

b

For example {q | q1
a
−→ q} = {q2}

{q | q1
b
−→ q} = ∅

{q | q0
a
−→ q} = {q0, q1}.

The language accepted by this automaton is the same as for the automaton on
Slide 46, namely {u ∈ {a, b}∗ | u contains three consecutive a’s}.

51

Deterministic finite automaton (DFA)
A deterministic finite automaton (DFA) is an NFA
M = (Q, Σ, ∆, s, F) with the property that for each state
q ∈ Q and each input symbol a ∈ ΣM, there is a unique

state q′ ∈ Q satisfying q
a
−→ q′.

In a DFA ∆ ⊆ Q × Σ × Q is the graph of a function Q × Σ → Q,
which we write as δ and call the next-state function.

Thus for each (state, input symbol)-pair (q, a), δ(q, a) is the unique
state that can be reached from q by a transition labelled a:

∀q′(q
a
−→ q′ ⇔ q′ = δ(q, a))

52

Example of a DFA

with input alphabet {a, b}

M , q0
a

b

q1

b

a q2

b

a q3

a

b

next-state function:

δ a b
q0 q1 q0

q1 q2 q0

q2 q3 q0

q3 q3 q3

53

Example of an NFA

with input alphabet {a, b, c}

M , q0
a

b

q1

b

a q2

b

a q3

a

b

M is non-deterministic, because for example {q | q0
c
−→ q} = ∅.

54

ε-Transitions

When constructing machines for matching strings with regular expressions (as we will do later), it
is useful to consider finite state machines exhibiting an ‘internal’ form of non-determinism in which
the machine is allowed to change state without consuming any input symbol. One calls such

transitions ε-transitions and writes them as q
ε
−→ q′. This leads to the definition on Slide 56.

When using an NFAε M to accept a string u ∈ Σ
∗ of input symbols, we are interested in

sequences of transitions in which the symbols in u occur in the correct order, but with zero or

more ε-transitions before or after each one. We write q
u
⇒ q′ to indicate that such a sequence

exists from state q to state q′ in the NFAε. Equivalently, {(q, u, q′) | q
u
⇒ q′} is the subset of

Q × Σ
∗ × Q inductively defined by

axioms:
(q, ε, q)

and rules:
(q, u, q′)

(q, u, q′′)
if q′ ε

−→ q′′,
(q, u, q′)

(q, ua, q′′)
if q′ a

−→ q′′ (see Exercise 7)

Slide 57 uses the relation q
u
⇒ q′ to define the language accepted by an NFAε. For example, for

the NFAε on Slide 56 it is not too hard to see that the language accepted consists of all strings
which either contain two consecutive a’s or contain two consecutive b’s, i.e. the language
determined by the regular expression (a|b)∗(aa|bb)(a|b)∗.

55

An NFA with ε-transitions (NFAε)
M = (Q, Σ, ∆, s, F, T)

is an NFA (Q, Σ, ∆, s, F) together with a subset
T ⊆ Q × Q, called the ε-transition relation.

Example: q1
a q2

a q3
ε

q0

ε

ε

a

b

q7

a

bq4
b

q5
b

q6
ε

Notation: write “q
ε
−→ q′ in M” to mean (q, q′) ∈ T.

(N.B. for NFAεs, we always assume ε 6∈ Σ.)

56

Language accepted by an NFAε

M = (Q, Σ, ∆, s, F, T)

◮ Look at paths in the transition graph (including
ε-transitions) from start state to some accepting state.

◮ Each such path gives a string in Σ
∗, namely the string

of non-ε labels that occur along the path.

◮ The set of all such strings is by definition the
language accepted by M, written L(M).

Notation: write q
u
⇒ q′ to mean that there is a path in M from state

q to state q′ whose non-ε labels form the string u ∈ Σ
∗.

57

An NFA with ε-transitions (NFAε)
M = (Q, Σ, ∆, s, F, T)

is an NFA (Q, Σ, ∆, s, F) together with a subset
T ⊆ Q × Q, called the ε-transition relation.

Example: q1
a q2

a q3
ε

q0

ε

ε

a

b

q7

a

bq4
b

q5
b

q6
ε

For this NFAε we have, e.g.: q0
aa
⇒ q2, q0

aa
⇒ q3 and q0

aa
⇒ q7.

In fact the language of accepted strings is equal to the set of strings
matching the regular expression (a|b)∗(aa|bb)(a|b)∗.

58

The subset construction for NFAεs

Note that every DFA is an NFA (whose transition relation is deterministic) and that every NFA is
an NFAε (whose ε-transition relation is empty). It might seem that non-determinism and
ε-transitions allow a greater range of languages to be characterised as sets of strings accepted by a
finite automaton, but this is not so. We can use a construction, called the subset construction, to
convert an NFAε M into a DFA PM accepting the same language (at the expense of increasing
the number of states, possibly exponentially). Slide 60 gives an example of this construction.

The name ‘subset construction’ refers to the fact that there is one state of PM for each subset of
the set of states of M. Given two such subsets, S and S′ say, there is a transition S

a
−→ S′ in PM

just in case S′ consists of all the M-states q′ reachable from states q in S via the ·
a
⇒ · relation

defined on Slide 57, i.e. such that we can get from q to q′ in M via finitely many ε-transitions
followed by an a-transition followed by finitely many ε-transitions.

59

Example of the subset construction

M

q1

a

q0

ε

ε

a

q2

b

next-state function for PM
a b

∅ ∅ ∅

{q0} {q0, q1, q2} {q2}
{q1} {q1} ∅

{q2} ∅ {q2}
{q0, q1} {q0, q1, q2} {q2}
{q0, q2} {q0, q1, q2} {q2}
{q1, q2} {q1} {q2}

{q0, q1, q2} {q0, q1, q2} {q2}

60

A word about ∅ in the subset
construction

Potential for confusion

◮ The DFA has a state which corresponds to the empty
set of states in the NFAε which we have designated
as ∅.

◮ Once you enter this state we get stuck in it. Why?

◮ Could rewrite (next slide)

61

DFA State subset of NFAε a b
qa ∅ qa qa

qb {q0} qh qd

qc {q1} qc qa

qd {q2} qa qd

qe {q0, q1} qh qd

q f {q0, q2} qh qd

qg {q1, q2} qc qd

qh {q0, q1, q2} qh qd

Noting that qh is the start state (why?) we could eliminate
states that can’t be reached (i.e. qb, qe, q f and qq; and
thence qc) if we cared. Here we don’t. (Care that is).

62

Theorem. For each NFAε M = (Q, Σ, ∆, s, F, T) there
is a DFA PM = (P(Q), Σ, δ, s′, F′) accepting exactly
the same strings as M, i.e. with L(PM) = L(M).

Definition of PM:

◮ set of states is the powerset P(Q) = {S | S ⊆ Q} of the set
Q of states of M

◮ same input alphabet Σ as for M

◮ next-state function maps each (S, a) ∈ P(Q)× Σ to

δ(S, a) , {q′ ∈ Q | ∃q ∈ S. q
a
⇒ q′ in M}

◮ start state is s′ , {q′ ∈ Q | s
ε
⇒ q′}

◮ subset of accepting sates is F′ , {S ∈ P(Q) | S ∩ F 6= ∅}

To prove the theorem we show that L(M) ⊆ L(PM) and L(PM) ⊆ L(M).

63

Proof that L(M) ⊆ L(PM)

Consider the case of ε first: if ε ∈ L(M), then s
ε
⇒ q for some q ∈ F, hence s′ ∈ F′ and thus

ε ∈ L(PM).

Now given any non-null string u = a1a2 . . . an, if u ∈ L(M), then there is a sequence of
transitions in M of the form

s
a1⇒ q1

a2⇒ · · ·
an
⇒ qn ∈ F (1)

Since PM is deterministic, feeding a1a2 . . . an to it results in the sequence of transitions

s′
a1
−→ S1

a2−→ · · ·
an
−→ Sn (2)

where S1 = δ(s′, a1), S2 = δ(S1, a2), etc. By definition of δ (Slide 63), from (1) we deduce

q1 ∈ δ(s′, a1) = S1, hence q2 ∈ δ(S1, a2) = S2, . . . , hence qn ∈ δ(Sn−1, an) = Sn.

Therefore Sn ∈ F′ (because qn ∈ Sn ∩ F). So (2) shows that u is accepted by PM. �

64

Proof that L(PM) ⊆ L(M)

Consider the case of ε first: if ε ∈ L(PM), then s′ ∈ F′ and so there is some q ∈ s′ with q ∈ F,

i.e. s
ε
⇒ q ∈ F and thus ε ∈ L(M).

Now given any non-null string u = a1a2 . . . an, if u ∈ L(PM), then there is a sequence of
transitions in PM of the form (2) with Sn ∈ F′, i.e. with Sn containing some qn ∈ F. Now since

qn ∈ Sn = δ(Sn−1, an), by definition of δ there is some qn−1 ∈ Sn−1 with qn−1
an
⇒ qn in M. Then

since qn−1 ∈ Sn−1 = δ(Sn−2, an−1), there is some qn−2 ∈ Sn−2 with qn−2

an−1
⇒ qn−1. Working

backwards in this way we can build up a sequence of transitions like (1) until, at the last step,

from the fact that q1 ∈ S1 = δ(s′, a1) we deduce that s
a1⇒ q1. So we get a sequence of

transitions (1) with qn ∈ F, and hence u is accepted by M. �

65

Regular Languages

66

Kleene’s Theorem

Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.

(a) For any regular expression r, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression r.

67

Kleene part (a): from regular expressions to automata

Given a regular expression r, over an alphabet Σ say, we wish to construct a DFA M with alphabet
of input symbols Σ and with the property that for each u ∈ Σ

∗, u matches r iff u is accepted by
M, so that L(r) = L(M).

Note that by the Theorem on Slide 63 it is enough to construct an NFAε N with the property
L(N) = L(r). For then we can apply the subset construction to N to obtain a DFA M = PN
with L(M) = L(PN) = L(N) = L(r). Working with finite automata that are non-deterministic
and have ε-transitions simplifies the construction of a suitable finite automaton from r.

Let us fix on a particular alphabet Σ and from now on only consider finite automata whose set of
input symbols is Σ.

The construction of an NFAε for each regular expression r over Σ proceeds by induction on the
size (= number of vertices) of regular expression abstract syntax trees, as indicated on the next
slide. Thus starting with step (i) and applying the constructions in steps (ii)–(iv) over and over
again, we eventually build NFAεs with the required property for every regular expression r.

Put more formally, one can prove the statement

for all n ≥ 0, and for all regular expressions abstract syntax trees of size ≤ n,
there exists an NFAε M such that L(r) = L(M)

by mathematical induction on n, using step (i) for the base case and steps (ii)–(iv) for the
induction steps.

68

(i) Base cases: show that {a}, {ε} and ∅ are regular languages.

(ii) Induction step for r1|r2: given NFAεs M1 and M2, construct
an NFAε Union(M1, M2) satisfying

L(Union(M1, M2)) = {u | u ∈ L(M1)∨ u ∈ L(M2)}
Thus if L(r1) = L(M1) and L(r2) = L(M2), then L(r1|r2) = L(Union(M1, M2)).

(iii) Induction step for r1r2: given NFAεs M1 and M2, construct an
NFAε Concat(M1, M2) satisfying

L(Concat(M1, M2)) = {u1u2 | u1 ∈ L(M1) &

u2 ∈ L(M2)}
Thus L(r1r2) = L(Concat(M1, M2)) when L(r1) = L(M1) and L(r2) = L(M2).

(iv) Induction step for r∗: given NFAε M, construct an NFAε

Star(M) satisfying

L(Star(M)) = {u1u2 . . . un | n ≥ 0 and each ui ∈ L(M)}
Thus L(r∗) = L(Star(M)) when L(r) = L(M).

69

NFAs for regular expressions a, ǫ, ∅

q0
a q1 just accepts the one-symbol string a

q0 just accepts the null string, ε

q0 accepts no strings

70

Union(M1, M2)

s1 M1

q0

ε

ε
s2 M2

accepting states = union of accepting states of M1 and M2

71

For example,

if Ma = a

and Mb = b

then Union(Ma, Mb) =

a
ε

ε

b

72

Induction step for r1|r2

Given NFAεs M1 = (Q1, Σ, ∆1, s1, T1) and M2 = (Q2, Σ, ∆2, s2, T2), the construction of
Union(M1, M2) is pictured on Slide 71. First, renaming states if necessary, we assume that
Q1 ∩ Q2 = ∅. Then the states of Union(M1, M2) are all the states in either Q1 or Q2, together
with a new state, called q0 say. The start state of Union(M1, M2) is this q0 and its set of
accepting states is the union F1 ∪ F2 of the sets of accepting states in M1 and M2. Finally, the
transitions of Union(M1, M2) are given by all those in either M1 or M2, together with two new
ε-transitions out of q0, one to the start states s1 of M1 and one to the start state s2 of M2.

Thus if u ∈ L(M1), i.e. if we have s1
u
⇒ q1 for some q1 ∈ F1, then we get q0

ε
−→ s1

u
⇒ q1 showing

that u ∈ L(Union(M1, M2)). Similarly for M2. So L(Union(M1, M2)) contains the union of
L(M1) and L(M2). Conversely if u is accepted by Union(M1, M2), there is a transition sequence

q0
u
⇒ q with q ∈ F1 or q ∈ F2. Clearly, in either case this transition sequence has to begin with

one or other of the ε-transitions from q0, and thereafter we get a transition sequence entirely in
one or other of M1 or M2 (because we assumed that Q1 and Q2 are disjoint) finishing in an
acceptable state for that one. So if u ∈ L(Union(M1, M2)), then either u ∈ L(M1) or
u ∈ L(M2). So we do indeed have

L(Union(M1, M2)) = {u | u ∈ L(M1)∨ u ∈ L(M2)}

73

Concat(M1, M2)

s1 M1
ε s2 M2

accepting states are those of M2

74

For example,

if M1 =
a

ε

ε

ε

ε b

ε

and M2 =
a

then Concat(M1, M2) =
a

ε

a ε ε

ε

ε b

ε

75

Induction step for r1r2

Given NFAεs M1 = (Q1, Σ, ∆1, s1, T1) and M2 = (Q2, Σ, ∆2, s2, T2), the construction of
Concat(M1, M2) is pictured on Slide 74. First, renaming states if necessary, we assume that
Q1 ∩ Q2 = ∅. Then the set of states of Concat(M1, M2) is Q1 ∪ Q2. The start state of
Concat(M1, M2) is the start state s1 of M1. The set of accepting states of Concat(M1, M2) is the
set F2 of accepting states of M2. Finally, the transitions of Concat(M1, M2) are given by all those
in either M1 or M2, together with new ε-transitions from each accepting state of M1 to the start
state s2 of M2 (only one such new transition is shown in the picture).

Thus if u1 ∈ L(M1) and u2 ∈ L(M2), there are transition sequences s1
u1⇒ q1 in M1 with q1 ∈ F1,

and s2
u2⇒ q2 in M2 with q2 ∈ F2. These combine to yield

s1
u1⇒ q1

ε
−→ s2

u2⇒ q2

in Concat(M1, M2) witnessing the fact that u1u2 is accepted by Concat(M1, M2). Conversely, it is
not hard to see that every v ∈ L(Concat(M1, M2)) is of this form: for any transition sequence
witnessing the fact that v is accepted starts out in the states of M1 but finishes in the disjoint set
of states of M2. At some point in the sequence one of the new ε-transitions occurs to get from
M1 to M2 and thus we can split v as v = u1u2 with u1 accepted by M1 and u2 accepted by M2.
So we do indeed have

L(Concat(M1, M2)) = {u1u2 | u1 ∈ L(M1) & u2 ∈ L(M2)}

76

Star(M)

q0
ε s M

ε

the only accepting state of Star(M) is q0

(N.B. doing without q0 by just looping back to s
and making that accepting won’t work – Exercise 4.1.)

77

For example,

if M =

a
ε

ε

b

then Star(M) =
a

ε

ε

ε

ε b

ε

78

Induction step for r∗

Given an NFAε M = (Q, Σ, ∆, s, T), the construction of Star(M) is pictured on Slide 77. The
states of Star(M) are all those of M together with a new state, called q0 say. The start state of
Star(M) is q0 and this is also the only accepting state of Star(M). Finally, the transitions of
Star(M) are all those of M together with new ε-transitions from q0 to the start state of M and
from each accepting state of M to q0 (only one of this latter kind of transition is shown in the
picture).

Clearly, Star(M) accepts ε (since its start state is accepting) and any concatenation of one or
more strings accepted by M. Conversely, if v is accepted by Star(M), the occurrences of q0 in a
transition sequence witnessing this fact allow us to split v into the concatenation of zero or more
strings, each of which is accepted by M. So we do indeed have

L(Star(M)) = {u1u2 . . . un | n ≥ 0 and each ui ∈ L(M)}

�

This completes the proof of part (a) of Kleene’s Theorem (Slide 67). Slide 80 shows how the
step-by-step construction applies in the case of the regular expression (a|b)∗a to produce an NFAε

M satisfying L(M) = L((a|b)∗a). Of course an automaton with fewer states and ε-transitions
doing the same job can be crafted by hand. The point of the construction is that it provides an
automatic way of producing automata for any given regular expression.

79

Example

Regular expression (a|b)∗a

whose abstract syntax tree is

Concat

Star

Union

Syma Symb

Syma

is mapped to the NFAε Concat(Star(Union(Ma, Mb)), Ma) =

a

ε

a ε ε

ε

ε b

ε

(cf. Slides 72, 75 and 78).

80

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?
81

Decidability of matching

We now have a positive answer to question (a) on Slide 40.
Given string u and regular expression r:

◮ construct an NFAε M satisfying L(M) = L(r);

◮ in PM (the DFA obtained by the subset construction, Slide 63)
carry out the sequence of transitions corresponding to u from the
start state to some state q (because PM is deterministic, there is
a unique such transition sequence);

◮ check whether q is accepting or not: if it is, then
u ∈ L(PM) = L(M) = L(r), so u matches r; otherwise
u /∈ L(PM) = L(M) = L(r), so u does not match r.

(The subset construction produces an exponential blow-up of the number of states: PM has 2n

states if M has n. This makes the method described above potentially inefficient – more efficient
algorithms exist that don’t construct the whole of PM.)

82

Kleene’s Theorem

Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.

(a) For any regular expression r, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression r.

83

Example of a regular language

Recall the example DFA we used earlier:

M , q0
a

b

q1

b

a q2

b

a q3

a

b

In this case it’s not hard to see that L(M) = L(r) for

r = (a|b)∗aaa(a|b)∗

84

Example

M , 1

a0

b
a

2

b

a

L(M) = L(r) for which regular expression r?

Guess: r = a∗|a∗b(ab)∗aaa∗

WRONG!
since baabaa ∈ L(M)
but baabaa 6∈ L(a∗|a∗b(ab)∗aaa∗)

We need an algorithm for constructing a suitable r for each M
(plus a proof that it is correct).

85

Kleene part (b): from automata to regular expressions

Given any DFA M = (Q, Σ, δ, s, F), we have to find a regular expression r (over the alphabet Σ of
input symbols of M) satisfying L(r) = L(M). In fact we do something more general than this, as
described in the Lemma on Slide 87. Note that if we can find the regular expressions rS

q,q′

mentioned in the lemma (for any choice of S ⊆ Q and q, q′ ∈ Q), then the problem is solved. For

taking S to be the whole of Q and q to be the start state s, then by definition of r
Q
s,q′

, a string u

matches this regular expression iff there is a transition sequence s
u
−→∗ q′ in M. As q′ ranges over

the finitely many accepting states, q1, . . . , qk say, then we match exactly all the strings accepted by

M. In other words the regular expression r
Q
s,q1

| · · · |r
Q
s,qk

has the property we want for part (b) of
Kleene’s Theorem. (In case k = 0, i.e. there are no accepting states in M, then L(M) is empty
and so we can use the regular expression ∅.)

86

Lemma. Given an NFA M = (Q, Σ, ∆, s, F), for each
subset S ⊆ Q and each pair of states q, q′ ∈ Q, there is a
regular expression rS

q,q′ satisfying

L(rS
q,q′) = {u ∈ Σ

∗ | q
u
−→∗ q′ in M with all inter-

mediate states of the sequence
of transitions in S}.

Hence if the subset F of accepting states has k distinct elements,
q1, . . . , qk say, then L(M) = L(r) with r , r1| · · · |rk where

ri = r
Q
s,qi

(i = 1, . . . , k)

(in case k = 0, we take r to be the regular expression ∅).

87

Proof of the Lemma on Slide 87

The regular expression rS
q,q′

can be constructed by induction on the number of elements in the

subset S.

Base case, S is empty. In this case, for each pair of states q, q′, we are looking for a regular
expression to describe the set of strings

{u | q
u
−→∗ q′ with no intermediate states in the sequence of transitions}.

So each element of this set is either a single input symbol a (if q
a
−→ q′ holds in M) or possibly ε,

in case q = q′. If there are no input symbols that take us from q to q′ in M, we can simply take

r∅

q,q′ ,

{

∅ if q 6= q′

ε if q = q′

On the other hand, if there are some such input symbols, a1, . . . , ak say, we can take

r∅

q,q′ ,

{

a1| · · · |ak if q 6= q′

a1| · · · |ak|ε if q = q′

88

[Notation: given sets X and Y, we write X \ Y for the set {x ∈ X | x 6∈ Y} of elements of X that
are not in Y and call it the relative complement of X by Y.]

Induction step. Suppose we have defined the required regular expressions for all subsets of states
with n elements. If S is a subset with n + 1 elements, choose some element q0 ∈ S and consider
the n-element set S \ {q0} = {q ∈ S | q 6= q0}. Then for any pair of states q, q′ ∈ StatesM , by
inductive hypothesis we have already constructed the regular expressions

r1 , r
S\{q0}
q,q′

r2 , r
S\{q0}
q,q0

r3 , r
S\{q0}
q0 ,q0

, r4 , r
S\{q0}
q0 ,q′

Consider the regular expression
r , r1|r2(r3)

∗r4

Clearly every string matching r is in the set

{u | q
u
−→∗ q′ with all intermediate states in the sequence of transitions in S}.

Conversely, if u is in this set, consider the number of times the sequence of transitions q
u
−→∗ q′

passes through state q0. If this number is zero then u ∈ L(r1) (by definition of r1). Otherwise this
number is k ≥ 1 and the sequence splits into k + 1 pieces: the first piece is in L(r2) (as the
sequence goes from q to the first occurrence of q0), the next k − 1 pieces are in L(r3) (as the
sequence goes from one occurrence of q0 to the next), and the last piece is in L(r4) (as the
sequence goes from the last occurrence of q0 to q′). So in this case u is in L(r2(r3)∗r4). So in
either case u is in L(r). So to complete the induction step we can define rS

q,q′
to be this regular

expression r = r1|r2(r3)∗r4. �

89

An example

We give an example to illustrate the construction of regular expressions from automata that is
inherent in the above proof of part (b) of Kleene’s Theorem. The example also demonstrates that
we do not have to pursue the inductive construction of the regular expression to the bitter end
(the base case S = ∅): often it is possible to find some of the regular expressions rS

q,q′
one needs

by ad hoc arguments – but if in doubt, use the algorithm.

Note also that at the inductive steps in the construction of a regular expression for M, we are free
to choose which state q0 to remove from the current state set S. A good rule of thumb is: choose
a state that disconnects the automaton as much as possible.

90

M , 1

a0

b
a

2

b

a

By direct inspection we have:

r
{0}
i,j 0 1 2

0

1 ∅ ε a
2 aa∗ a∗b ε

r
{0,2}
i,j 0 1 2

0 a∗ a∗b
1

2

(we don’t need the unfilled entries in the tables)

91

Consider the NFA shown on Slide 91. Since the start state is 0 and this is also the only accepting

state, the language of accepted strings is that determined by the regular expression r
{0,1,2}
0,0 .

Choosing to remove state 1 from the state set, we have

L(r
{0,1,2}
0,0) = L(r

{0,2}
0,0 |r

{0,2}
0,1 (r

{0,2}
1,1)∗r

{0,2}
1,0) (3)

Direct inspection shows that L(r
{0,2}
0,0) = L(a∗) and L(r

{0,2}
0,1) = L(a∗b). To calculate L(r

{0,2}
1,1),

and L(r
{0,2}
1,0), we choose to remove state 2:

L(r
{0,2}
1,1) = L(r

{0}
1,1 |r

{0}
1,2 (r

{0}
2,2)∗r

{0}
2,1)

L(r
{0,2}
1,0) = L(r

{0}
1,0 |r

{0}
1,2 (r

{0}
2,2)∗r

{0}
2,0)

These regular expressions can all be determined by inspection, as shown on Slide 91. Thus

L(r
{0,2}
1,1) = L(ε|a(ε)∗(a∗b)) and it’s not hard to see that this is equal to L(ε|aa∗b). Similarly

L(r
{0,2}
1,0) = L(∅|a(ε)∗(aa∗)) which is equal to L(aaa∗). Substituting all these values into (3),

we get

L(r
{0,1,2}
0,0) = L(a∗|a∗b(ε|aa∗b)∗aaa∗)

So a∗|a∗b(ε|aa∗b)∗aaa∗ is a regular expression whose matching strings comprise the language
accepted by the NFA on Slide 91. (Clearly, one could simplify this to a smaller, but equivalent
regular expression, but we do not bother to do so.)

92

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?
93

Regular languages are closed under complementation

Lemma. If L is a regular language over alphabet Σ, then its complement {u ∈ Σ
∗ | u /∈ L} is also

regular.

Proof. Since L is regular, by definition there is a DFA M such that L = L(M). Let Not(M) be
the DFA constructed from M as indicated on Slide 95. Then {u ∈ Σ

∗ | u /∈ L} is the set of
strings accepted by Not(M) and hence is regular. �

[N.B. If one applies the construction on Slide 95 (interchanging the role of accepting &
non-accepting states) to a non-deterministic finite automaton N, then in general L(Not(N)) is
not equal to {u ∈ Σ

∗ | u 6∈ L(N)} – see Exercise 4.5.]

We saw on slide 82 that part (a) of Kleene’s Theorem allows us to answer question (a) on
Slide 40. Now that we have proved the other half of the theorem, we can say more about
question (b) on that slide. In particular, it is a consequence of Kleene’s Theorem plus the above
lemma that for each regular expression r over an alphabet Σ, there is a regular expression ∼r that
determines via matching the complement of the language determined by r:

L(∼r) = {u ∈ Σ
∗ | u /∈ L(r)}

To see this, given a regular expression r, by part (a) of Kleene’s Theorem there is a DFA M such
that L(r) = L(M). Then by part (b) of the theorem applied to the DFA Not(M), we can find a
regular expression ∼r so that L(∼r) = L(Not(M)). Since
L(Not(M)) = {u ∈ Σ

∗ | u /∈ L(M)} = {u ∈ Σ
∗ | u /∈ L(r)}, this ∼r is the regular expression

we need for the complement of r.

94

Not(M)

Given DFA M = (Q, Σ, δ, s, F),
then Not(M) is the DFA with

◮ set of states = Q
◮ input alphabet = Σ

◮ next-state function = δ

◮ start state = s
◮ accepting states = {q ∈ Q | q 6∈ F}.

(i.e. we just reverse the role of accepting/non-accepting and leave everything else the same)

Because M is a deterministic finite automaton, then u is accepted by
Not(M) iff it is not accepted by M:

L(Not(M)) = {u ∈ Σ
∗ | u 6∈ L(M)}

95

Regular languages are
closed under intersection

Theorem. If L1 and L2 are a regular languages over an
alphabet Σ, then their intersection
L1 ∩ L2 = {u ∈ Σ

∗ | u ∈ L1 & u ∈ L2} is also regular.

Proof. Note that L1 ∩ L2 = Σ
∗ \ ((Σ

∗ \ L1)∪ (Σ
∗ \ L2))

(cf. de Morgan’s Law: p & q = ¬(¬p ∨¬q)).

So if L1 = L(M1) and L2 = L(M2) for DFAs M1 and M2, then
L1 ∩ L2 = L(Not(PM)) where M is the NFAε

Union(Not(M1), Not(M2)). �

[It is not hard to directly construct a DFA And(M1, M2) from M1 and M2 such that
L(And(M1, M2)) = L(M1)∩ L(M2) – see Exercise 4.7.]

96

Regular languages are
closed under intersection

Corollary: given regular expressions r1 and r2,there is a
regular expression, which we write as r1 & r2, such that

a string u matches r1 & r2 iff it matches both r1

and r2.

Proof. By Kleene (a), L(r1) and L(r2) are regular languages and
hence by the theorem, so is L(r1)∩ L(r2). Then we can use
Kleene (b) to construct a regular expression r1 & r2 with
L(r1 & r2) = L(r1)∩ L(r2). �

97

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ
∗) of the form L(r) for

some r?
98

Equivalent regular expressions

Definition. Two regular expressions r and s are said to be
equivalent if L(r) = L(s), that is, they determine
exactly the same sets of strings via matching.

For example, are b∗a(b∗a)∗ and (a|b)∗a equivalent?

Answer: yes (Exercise 2.3)

How can we decide all such questions?

99

Note that L(r) = L(s)

iff L(r) ⊆ L(s) and L(s) ⊆ L(r)
iff (Σ

∗ \ L(r))∩ L(s) = ∅ = (Σ
∗ \ L(s))∩ L(r)

iff L((∼r) & s) = ∅ = L((∼s) & r)
iff L(M) = ∅ = L(N)

where M and N are DFAs accepting the sets of strings matched by the
regular expressions (∼r) & s and (∼s) & r respectively.

So to decide equivalence for regular expressions it suffices to

check, given any given DFA M, whether or not it accepts some string.

Note that the number of transitions needed to reach an accepting state in a finite
automaton is bounded by the number of states (we can remove loops from longer
paths). So we only have to check finitely many strings to see whether or not L(M)
is empty.

100

The Pumping Lemma

101

In the context of programming languages, a typical example of a regular language (Slide 67) is the
set of all strings of characters which are well-formed tokens (basic keywords, identifiers, etc) in a
particular programming language, Java say. By contrast, the set of all strings which represent
well-formed Java programs is a typical example of a language that is not regular. Slide 103 gives
some simpler examples of non-regular languages. For example, there is no way to use a search
based on matching a regular expression to find all the palindromes in a piece of text (although of
course there are other kinds of algorithm for doing this).

The intuitive reason why the languages listed on Slide 103 are not regular is that a machine for
recognising whether or not any given string is in the language would need infinitely many different
states (whereas a characteristic feature of the machines we have been using is that they have only
finitely many states). For example, to recognise that a string is of the form anbn one would need
to remember how many as had been seen before the first b is encountered, requiring countably
many states of the form ‘just_ seen_n_as’. This section make this intuitive argument rigorous and
describes a useful way of showing that languages such as these are not regular.

The fact that a finite automaton does only have finitely many states means that as we look at
longer and longer strings that it accepts, we see a certain kind of repetition—the pumping lemma
property given on Slide 104.

102

Examples of languages that are
not regular

◮ The set of strings over {(,), a, b, . . . , z} in which the
parentheses ‘(’ and ‘)’ occur well-nested.

◮ The set of strings over {a, b, . . . , z} which are
palindromes, i.e. which read the same backwards as
forwards.

◮ {anbn | n ≥ 0}

103

The Pumping Lemma

For every regular language L, there is a number ℓ ≥ 1

satisfying the pumping lemma property:

All w ∈ L with |w| ≥ ℓ can be expressed as a
concatenation of three strings, w = u1vu2, where u1, v
and u2 satisfy:

◮ |v| ≥ 1

(i.e. v 6= ε)

◮ |u1v| ≤ ℓ

◮ for all n ≥ 0, u1vnu2 ∈ L
(i.e. u1u2 ∈ L, u1vu2 ∈ L [but we knew that anyway], u1vvu2 ∈ L,

u1vvvu2 ∈ L, etc.)

104

Proving the Pumping Lemma

Since L is regular, it is equal to the set L(M) of strings accepted by some DFA
M = (Q, Σ, δ, s, F). Then we can take the number ℓ mentioned on Slide 104 to be the number of
states in Q. For suppose w = a1a2 . . . an with n ≥ ℓ. If w ∈ L(M), then there is a transition
sequence as shown at the top of Slide 106. Then w can be split into three pieces as shown on that
slide. Note that by choice of i and j, |v| = j − i ≥ 1 and |u1v| = j ≤ ℓ. So it just remains to
check that u1vnu2 ∈ L for all n ≥ 0. As shown on the lower half of Slide 106, the string v takes
the machine M from state qi back to the same state (since qi = qj). So for any n, u1vnu2 takes
us from the initial state sM = qo to qi, then n times round the loop from qi to itself, and then
from qi to qn ∈ AcceptM . Therefore for any n ≥ 0, u1vnu2 is accepted by M, i.e. u1vnu2 ∈ L. �

[Note. In the above construction it is perfectly possible that i = 0, in which case u1 is the
null-string, ε.]

Remark. One consequence of the pumping lemma property of L and ℓ is that if there is any string
w in L of length ≥ ℓ, then L contains arbitrarily long strings. (We just ‘pump up’ w by increasing
n.) If you did Exercise 4.3, you will know that if L is a finite set of strings then it is regular. In this
case, what is the number ℓ with the property on Slide 104? The answer is that we can take any ℓ

strictly greater than the length of any string in the finite set L. Then the Pumping Lemma
property is trivially satisfied because there are no w ∈ L with |w| ≥ ℓ for which we have to check
the condition!

105

Suppose L = L(M) for a DFA M = (Q, Σ, δ, s, F).
Taking ℓ to be the number of elements in Q, if n ≥ ℓ,
then in

s = q0

a1−→ q1

a2−→ q2 · · ·
aℓ−→ qℓ

︸ ︷︷ ︸

ℓ+1 states

· · ·
an
−→ qn ∈ F

q0, . . . , qℓ can’t all be distinct states. So qi = qj for some
0 ≤ i < j ≤ ℓ. So the above transition sequence looks like

s = q0
u1 ∗qi

v

∗
= qj

u2 ∗qn ∈ F

where

u1 , a1 . . . ai v , ai+1 . . . aj u2 , aj+1 . . . an

106

How to use the Pumping Lemma
to prove that a language L

is not regular

For each ℓ ≥ 1, find some w ∈ L of length ≥ ℓ so that

no matter how w is split into three, w = u1vu2,
with |u1v| ≤ ℓ and |v| ≥ 1, there is some n ≥ 0

for which u1vnu2 is not in L






(†)

107

Examples

None of the following three languages are regular:

(i) L1 , {anbn | n ≥ 0}
[For each ℓ ≥ 1, aℓbℓ ∈ L1 is of length ≥ ℓ and has property (†) on Slide 107.]

(ii) L2 , {w ∈ {a, b}∗ | w a palindrome}
[For each ℓ ≥ 1, aℓbaℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(iii) L3 , {ap | p prime}
[For each ℓ ≥ 1, we can find a prime p with p > 2ℓ and then ap ∈ L3 has length ≥ ℓ and

has property (†).]

108

Using the Pumping Lemma

The Pumping Lemma (Slide 104) says that every regular language has a certain property – namely
that there exists a number ℓ with the pumping lemma property. So to show that a language L is
not regular, it suffices to show that no ℓ ≥ 1 possesses the pumping lemma property for the
language L. Because the pumping lemma property involves quite a complicated alternation of
quantifiers, it will help to spell out explicitly what is its negation. This is done on Slide 107.

Slide 108 gives some examples:

(i) For any ℓ ≥ 1, consider the string w = aℓbℓ. It is in L1 and has length ≥ ℓ. We show
that property (†) holds for this w. For suppose w = aℓbℓ is split as w = u1vu2 with
|u1v| ≤ ℓ and |v| ≥ 1. Then u1v must consist entirely of as, so u1 = ar and v = as say,
and hence u2 = aℓ−r−sbℓ. Then the case n = 0 of u1vnu2 is not in L1 since

u1v0u2 = u1u2 = ar(aℓ−r−sbℓ) = aℓ−sbℓ

and aℓ−sbℓ /∈ L1 because ℓ− s 6= ℓ (since s = |v| ≥ 1).

(ii) The argument is very similar to that for example (i), but starting with the palindrome
w = aℓbaℓ. Once again, the n = 0 case of u1vnu2 yields a string u1u2 = aℓ−sbaℓ which
is not a palindrome (because ℓ− s 6= ℓ).

109

(iii) Given ℓ ≥ 1, since [Euclid proved that] there are infinitely many primes p, we can certainly
find one satisfying p > 2ℓ. I claim that w = ap has property (†). For suppose w = ap is

split as w = u1vu2 with |u1v| ≤ ℓ and |v| ≥ 1. Letting r , |u1| and s , |v|, so that
|u2| = p − r − s, we have

u1vp−su2 = ar as(p−s)ap−r−s = asp−s2+p−s = a(s+1)(p−s)

Now (s + 1)(p − s) is not prime, because s + 1 > 1 (since s = |v| ≥ 1) and
p − s > 2ℓ− ℓ = ℓ ≥ 1 (since p > 2ℓ by choice, and s ≤ r + s = |u1v| ≤ ℓ). Therefore
u1vnu2 /∈ L3 when n = p − s.

Remark. Unfortunately, the method on Slide 107 cannot cope with every non-regular language.
This is because the pumping lemma property is a necessary, but not a sufficient condition for a
language to be regular. In other words there do exist languages L for which a number ℓ ≥ 1 can
be found satisfying the pumping lemma property on Slide 104, but which nonetheless, are not
regular. Slide 111 gives an example of such an L.

110

Example of a non-regular language
with the pumping lemma property

L , {cmanbn | m ≥ 1 & n ≥ 0} ∪ {ambn | m, n ≥ 0}

satisfies the pumping lemma property on Slide 104 with
ℓ = 1.

[For any w ∈ L of length ≥ 1, can take u1 = ε, v = first letter of w,

u2 = rest of w.]

But L is not regular – see Exercise 5.1.

111

	Formal Languages
	Inductive Definitions
	Abstract Syntax Trees
	Finite Automata
	Regular Languages
	The Pumping Lemma

