$$A \xrightarrow{f} B \qquad g \circ f = td_A \iff fa \in A \cdot g(fa) = a$$

$$f \circ g = td_B \iff b \in B \cdot f(gb) = b$$
Definition 130 Two sets A and B are said to be isomorphic (and to have the same cardinatity) whenever there is a bijection between them; in which case we write
$$\begin{cases} o & f \in G \\ f \circ g = td_B \iff b \in B \\ f \circ g = td_B \iff b \in B \\ f \circ g = td_B \implies b$$

Equivalence relations and set partitions

► Equivalence relations.

REAXA: HaEA. aRa YO, bEA. aR5 => bRa HabceA. aRbabRc=raRc Martion of A s V the equir. rel FROMHUCT - 322 —

Part (A) = STI Tis a partition ?

 $\pi \subseteq P(A)$

 $TT = \{P_1, P_2, \dots, P_{i-1}\}$ PCA (): Pi = A

 $a \in P_i \implies i = j$ $a \in P_j$

EgRel (A; Part(A) def TI(R, B---4 RCAXA equit. rel Enerd define (i.e. prove) That this is a partition. BETTRE JAEA. B=[a]R equir. class [a]R={x|aRx?

EquivRel (A) - Part(A) RATI SAXA < TT = { ? _____ ned to prove our definition is a equil relation. x RET y (=) FBETT. XEBAYEB.

Exercise: Then two proceeses are inverses of each other.

Theorem 133 For every set A,

 $\operatorname{EqRel}(A) \cong \operatorname{Part}(A)$.

PROOF:

By: These two processes are inverses of each other

Finite cardinality

Definition 135 A set A is said to be finite whenever $A \cong [n]$ for some $n \in \mathbb{N}$, in which case we write #A = n.

Theorem 136 For all $m, n \in \mathbb{N}$,

- 1. $\mathcal{P}([n]) \cong [2^n]$
- 2. $[m] \times [n] \cong [m \cdot n]$
- 3. $[m] \uplus [n] \cong [m+n]$
- 4. $([m] \Rightarrow [n]) \cong [(n+1)^m]$
- 5. $([m] \Rightarrow [n]) \cong [n^m]$
- **6.** $Bij([n], [n]) \cong [n!]$

Infinity axiom

There is an infinite set, containing \emptyset and closed under successor.

Bijections

-

Proposition 137 For a function $f : A \to B$, the following are equivalent.

2.
$$\forall b \in B. \exists! a \in A. f(a) = b.$$

3. $(\forall b \in B. \exists a \in A. f(a) = b)$ \land $(\forall a_1, a_2 \in A. f(a_1) = f(a_2) \implies a_1 = a_2)$ $(\forall a_1, a_2 \in A. f(a_1) = f(a_2) \implies a_1 = a_2)$ $(\forall a_1, a_2 \in A. f(a_1) = f(a_2) \implies a_1 = a_2)$

Surjections

Definition 138 A function $f : A \rightarrow B$ is said to be surjective, or a surjection, and indicated $f : A \rightarrow B$ whenever

 $\forall b \in B. \exists a \in A. f(a) = b$.

Enumerability

Definition 141

$$e(0), e(1), e(2) \dots e(n) \dots$$

- 1. A set A is said to be <u>enumerable</u> whenever there exists a surjection $\mathbb{N} \xrightarrow{\rightarrow} A$, referred to as an <u>enumeration</u>.
- 2. A countable set is one that is either empty or enumerable.

Examples:

1. A bijective enumeration of \mathbb{Z} .

-335-

2. A bijective enumeration of $\mathbb{N} \times \mathbb{N}$.

	0	1	2	3	4	5	•••
0	0	ļ	5	6			
1	2	Ч	7				
2	3	Z					
3	9						
4							
:							

Axiom of choice

Injections

Definition 144 A function $f : A \rightarrow B$ is said to be <u>injective</u>, or an injection, and indicated $f : A \rightarrow B$ whenever

 $\forall a_1, a_2 \in A. \left(f(a_1) = f(a_2) \right) \implies a_1 = a_2 .$

Replacement axiom

The direct image of every definable functional property on a set is a set.

Set-indexed constructions

For every mapping associating a set A_i to each element of a set I, we have the set

$$\bigcup_{i\in I} A_i = \bigcup \{A_i \mid i \in I\} = \{a \mid \exists i \in I. a \in A_i\}$$

Examples:

1. Indexed disjoint unions:

$$\biguplus_{i\in I} A_i = \bigcup_{i\in I} \{i\} \times A_i$$

2. Finite sequences on a set A:

$$A^* = \biguplus_{n \in \mathbb{N}} A^n$$

Foundation axiom

The membership relation is well-founded.

Thereby, providing a

Principle of \in -Induction .