D1irected graphs

Definition 107 A directed graph (A, R) consists of a set A and a
relation R on A (i.e. a relation from A to A). A
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Corollary 109 For every set A, the structure
(Rel(A), ida o)

IS a monoid.

Definition 110 ForR € Rel(A) andn € N, we let

R = Ro---0oR &€ Rel(A)
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be defined asid, forn =0, andasRoR°™ forn =m + 1.
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Paths

Proposition 112 Let (A, R) be a directed graph. For alln € N and
s,t € A, s R t Iff there exists a path of length n in R with source s

and target t. - p
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Definition 113 ForR € Rel(A), let

R* = J{R™e€Rel(A) IneN} = [,y R .

neN

Corollary 114 Let (A, R) be a directed graph. For all s,t € A,
s R°* t iff there exists a path with source s and targett in R.
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The (n x n)-matrix M = mat(R) of a finite directed graph ([n], R)
for n a positive integer is called its adjacency matrix.

The adjacency matrix M* = mat(R°*) can be computed by matrix
multiplication and addition as M,, where

y

M, = I,
\ My = In—l—(M'Mk)

This gives an algorithm for establishing or refuting the existence of
paths in finite directed graphs.
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Preorders

Definition 115 Apreorder ( P, C ) consists of a set P and a relation
C onP (i.e. C € P(P x P)) satisfying the following two axioms.

» Reflexivity.
Vx e P. xCx
» Iransitivity.

Vx,y,z€eP. xCy ANyLz) = xCz
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Examples: g@%}%

—
> (R,<)and (R,>). A~ xTY A?)Eza z:?
> (P(A),C)and (P(A), D).

- (Z,]) M

- 200 ——



- 0 e Luest pedodidn
Theorem 117 ForR C A x A, let WF“T /Z %J

IJr = {QgAxA | RCQ AN Qs reordeW

Then, (i) R°* € Fk and (ii) R°* C () Fr. Hence, R°* = ([ k.

PROOF: 5 -
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7 Adt e i e
Partial functions o W@w‘%;

Definition 118 A relation R : A —+ B is said to be functional, aré%
called a partial function, whenever it is such that

\V/CLEA.\V/b],bzéB. aRb; A aRb, — b;=b, .




Functions (or maps)

Definition 122 A partial function is said to be total, and referred
fo as a (total) function or map, whenever its domain of definition
coincides with its source.

@{wmﬁ»m/&w&@

Theorem 123 For allf € Rel( A B),

f e AéB & VYVaeA.dlbeB. afb
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Proposition 124 For all finite sets A and B,
# (A =B) = #B* .
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Theorem 125 The identity partial function is a function, and

composition of functions yields a function. A 1 | 3 /;_\ e

NB a4 ;

1. f=g:A—>Biff Vae A.f(a) =g(a).
2. For all sets A, the identity function id, : A — A is given by the
rule
ida(a) = a

and, for all functions f: A — B and g : B — C, the composition
function go f: A — C is given by the rule

(gof)(a) =g(f(a))

a1
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Bijections

Definition 126 A function f : A — B is said to be ijective or
a bijection, whenever there exists a (necessarily unique) function

g:B — A (referred to as the inverse of f) such that

1. g is aretraction (or left inverse) for f:

g of = ldA y S,%
2. g Is asection (orright inverse) for f: § 0 7[; Mﬂ
fo g = ldB . /\

0 4 =id
" ik 1@ 5] b
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Definition 130 Two setfs A and B are said to be isomorphic (and
to have the same cardinatity) whenever there is a bijection between
them: in which case we write

A=B or #A=4+#DB

Examples:
1. {0, 1} = {false, true}.

2. N=N" |, N=Z , N=NxN, N=Q.
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