
Directed graphs

Definition 107 A directed graph (A,R) consists of a set A and a

relation R on A (i.e. a relation from A to A).
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Corollary 109 For every set A, the structure

(

Rel(A) , idA , ◦ )

is a monoid.

Definition 110 For R ∈ Rel(A) and n ∈ N, we let

R◦n = R ◦ · · · ◦ R︸ ︷︷ ︸
n times

∈ Rel(A)

be defined as idA for n = 0, and as R ◦ R◦m for n = m+ 1.
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Paths

Proposition 112 Let (A,R) be a directed graph. For all n ∈ N and

s, t ∈ A, s R◦n t iff there exists a path of length n in R with source s

and target t.

PROOF:
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Definition 113 For R ∈ Rel(A), let

R◦∗ =
⋃
{
R◦n ∈ Rel(A) | n ∈ N

}
=

⋃

n∈N R◦n .

Corollary 114 Let (A,R) be a directed graph. For all s, t ∈ A,

s R◦∗ t iff there exists a path with source s and target t in R.
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The (n× n)-matrix M = mat(R) of a finite directed graph
(

[n], R
)

for n a positive integer is called its adjacency matrix .

The adjacency matrix M∗ = mat(R◦∗) can be computed by matrix

multiplication and addition as Mn where




M0 = In

Mk+1 = In +
(

M ·Mk

)

This gives an algorithm for establishing or refuting the existence of

paths in finite directed graphs.
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Preorders

Definition 115 A preorder
(

P , ⊑
)

consists of a set P and a relation

⊑ on P (i.e. ⊑ ∈ P(P × P)) satisfying the following two axioms.

◮ Reflexivity.

∀ x ∈ P. x ⊑ x

◮ Transitivity.

∀ x, y, z ∈ P. (x ⊑ y ∧ y ⊑ z) =⇒ x ⊑ z
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Examples:

◮ (R,≤) and (R,≥).

◮ (P(A),⊆) and (P(A),⊇).

◮ ( Z , | ).
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Theorem 117 For R ⊆ A×A, let

FR =
{
Q ⊆ A×A | R ⊆ Q ∧ Q is a preorder

}
.

Then, (i) R◦∗ ∈ FR and (ii) R◦∗ ⊆ ⋂

FR. Hence, R◦∗ =
⋂

FR.

PROOF:
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Partial functions

Definition 118 A relation R : A −→p B is said to be functional, and

called a partial function, whenever it is such that

∀a ∈ A.∀b1, b2 ∈ B. aRb1 ∧ aRb2 =⇒ b1 = b2 .
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Functions (or maps)

Definition 122 A partial function is said to be total, and referred

to as a (total) function or map, whenever its domain of definition

coincides with its source.

Theorem 123 For all f ∈ Rel(A,B),

f ∈ (A⇒ B) ⇐⇒ ∀a ∈ A.∃!b ∈ B. a f b .
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Proposition 124 For all finite sets A and B,

# (A⇒ B) = #B#A .

PROOF IDEA :
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Theorem 125 The identity partial function is a function, and the

composition of functions yields a function.

NB

1. f = g : A→ B iff ∀a ∈ A. f(a) = g(a).

2. For all sets A, the identity function idA : A→ A is given by the

rule

idA(a) = a

and, for all functions f : A→ B and g : B→ C, the composition

function g ◦ f : A→ C is given by the rule
(

g ◦ f
)

(a) = g
(

f(a)
)

.
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Bijections

Definition 126 A function f : A → B is said to be bijective, or

a bijection, whenever there exists a (necessarily unique) function

g : B→ A (referred to as the inverse of f) such that

1. g is a retraction (or left inverse) for f:

g ◦ f = idA ,

2. g is a section (or right inverse) for f:

f ◦ g = idB .
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Definition 130 Two sets A and B are said to be isomorphic (and

to have the same cardinatity) whenever there is a bijection between

them; in which case we write

A ∼= B or #A = #B .

Examples:

1. {0, 1} ∼= {false, true}.

2. N ∼= N+ , N ∼= Z , N ∼= N× N , N ∼= Q .
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