Euclid's infinitude of primes

Theorem 80 The set of primes is infinite. PROOF: By convediction assue that There are a finite mber of prime, say pi, p2, ..., pN (fr NEN). Consider $(p_1, p_2, \dots, p_N) + 1 \in \mathbb{N}$ Since it is not prime, as it is hyper than all the pi, it is a product of prime. Hence it is divisible by a prime Say pi. So:

for some ken $p_1 \cdot p_2 \cdots p_N + 1 = p_i \cdot R$ Then $p_i \cdot k + (-1) p_i \cdot p_2 \cdots p_N = 1$ $\begin{pmatrix} \text{Lemmd} : & \text{H} a 2+by = 1 & \text{fn} a, b \text{ positive inte-} \\ \text{gens and } x, y \text{ ore integens then } gcd(a, b) = 1. \end{cases}$ J pi. k + pi. l = 1 J by Lemma L= (-1). pr. -. pir pir -.. Pa 9 cd (Pi,pi) = 1 a contradiction $\left[\right]$ lipi

Objectives

To introduce the basics of the theory of sets and some of its uses.

Abstract sets

It has been said that a set is like a mental "bag of dots", except of course that the bag has no shape; thus,

may be a convenient way of picturing a certain set for some considerations, but what is apparently the same set may be pictured as

or even simply as

for other considerations.

Naive Set Theory

We are not going to be formally studying Set Theory here; rather, we will be *naively* looking at ubiquituous structures that are available within it.

Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

$$\forall \text{ sets } A, B. \ A = B \iff (\ \forall x. x \in A \iff x \in B)$$

Example:

$$\{0\} \neq \{0,1\} = \{1,0\} \neq \{2\} = \{2,2\}$$

def 11 Ederal d'madinz E an ply $\underline{CD}(m,n) = \underline{D}(\underline{gcd}(m,n))$ 11 def SKENIK GOD (m,n) ? View. (ilmniln) (=> ilgcd(m,n)

Subset inclusion A is 2 subsetof3 equiv. Subsets and supersets ACB (Xr. xEA =) xEB) Bis a superset of A $NB: A=B \implies A \subseteq B$ Exaple We can have ASB with A#B; e.g. $A = \{0\}, B = \{0, 1\}$

NB: We have piver our selves varions sets: N, Z, Q, R, C.

Separation principle

For any set A and any definable property P, there is a set containing precisely those elements of A for which the property P holds.

 $\{x \in A \mid P(x)\} \subseteq A$ $a \in \{x \in A \mid P(x)\} \implies (a \in A \land P(a))$

-264 ----

Russell's paradox 17 What about a multiberal way to construct subjects by separation as follows: ? $z | P(x)^{2}$ Suppose The shore is sllowed, Then define Notation QĘĂ R={x|x4x3 T(aEA) Consider nhetter a wit Risin R? if RER the REEX X & 2] SORER EI RER TIM T(RESX | X & X]) So RER

Ø={zEA | false ?

Empty set
Ø or {}

defined by

or, equivalently, by

 $\forall \mathbf{x}. \mathbf{x} \notin \emptyset$

 $\neg(\exists x. x \in \emptyset)$

-266 ----

Cardinality

The *cardinality* of a set specifies its size. If this is a natural number, then the set is said to be *finite*.

Typical notations for the cardinality of a set S are #S or |S|.

Example:

 $\#\emptyset = 0$

-267 ---

 $\forall X. \ X \in \mathcal{P}(U) \iff X \subseteq U \quad .$

Renark

-268 ----

the # P(2)=2n