Euclid’s infinitude of primes

Theorem 80 The set of primes is infinite.
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Sets
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Objectives

To introduce the basics of the theory of sets and some of its uses.
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Abstract sets
It has been said that a set is like a mental “bag of dots”, except of

course that the bag has no shape; thus,
4

o1 (1.2 o(13) (14 o(1,5)

2,3) 2,4) 2,5)

2,1) 2,2)

o21)  o(22) (23] (24 ol

-
may be a convenient way of picturing a certain set for some con-
siderations, but what is apparently the same set may be pictured
as

[.m,n o2 o(1.2) o22) o(13) o(23) o(14) o24) (1,5 .(2,5)]

D

for other considerations.

or even simply as
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Naive Set Theory

We are not going to be formally studying Set Theory here; rather,
we will be naively looking at ubiquituous structures that are
available within it.
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Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

Vsets A\B. A=B & (Vx.x€ A &< x€B)

Example:

0) 7 10,1} = 1,07 # {2} = 12,2
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é Subsets and supersets
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Separation principle

For any set A and any definable property P, there is a
set containing precisely those elements of A for which
the property P holds.

(xe AP EA

Q€ { reh| P = (a%\ ~ P
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Russell’s paradox
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Empty set
D or {}
defined by
Vx.x &0
or, equivalently, by
—(Ix.x € 0)
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Cardinality

"'he cardinality of a set specifies its size. If this is a natural number,
then the set is said to be finite.

ypical notations for the cardinality of a set S are #S or |S|.

Example:

- 29Q7 ——



Prape. 0(0)-{0t#¢ #0(9)=1
: Ples=F 0 , 11 7 #0R):=2

Powerset axiom

For any set, there is a set consisting of all its subsets.

P(U)

VX. Xe?P(U) & XCU . %W&C |
4 #M?V\,

KQEJ‘[{ @é 69("’“) - s #6)(«“);2%
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