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The division theorem and algorithm

Theorem 42 (Division Theorem) For every natural number m and
positive natural number n, there exists a unique pair of integers q
andr suchthatq > 0,0 <r<n,andm=q-n+r.

Definition 43 The natural numbers q and r associated to a given
pair of a natural number m and a positive integer n determined by
the Division Theorem are respectively denoted quo(m,n) and
rem(m,n).
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Corollary 46 Let m be a positive integer.
1. For every natural number n,

n =rem(n,m) (modm) .

Lot be s wediod bt Re Bt
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Corollary 46 Let m be a positive integer.
1. For every natural number n,

n =rem(n,m) (mod m)

2. For every integer k there exists a unique integer k|, such that

0<[klp,<m and k=[kl,, (modm)
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Modular arithmetic

For every positive integer m, the integers modulo m are:

Loy = O, 1, ..., m—1.

with arithmetic operations of addition +,,, and multiplication -,
defined as follows

k4l = k+1l, = rem(k+1l,m) ,
kml = k-1, = rem(k-1l,m)

forall 0 <k,l < m.
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Example 48 The addition and multiplication tables for 7.4 é(\e

4|0 12 3 110 123 [33)
010 112 3 0/0 O\ 0 0 \
111 2% o0 110 1\2 3 [y
{l
212 3 1 O\ 2 /]
3130 1 0 3(2)]

obvious pattern in the multiplicgtion table.
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From the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

a?dditive mu{tip/icative
inverse inverse

0 0 0 —

| 3 | |

2 2 2 —

3 1 3 3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.
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Example 49 The addition and multiplication tables for 75 are:

+5[0 1 2 3 4 510123 4
001234 000000
11123 40 110(1)2 3 4
212340 1 210 2 4(1)3
3034071 2 310 3(1)4 2
41401 23 410 4 3 2(1

Again, the addition table has a cyclic pattern, while this time the
multiplication table restricted to non-zero elements has a
permutation pattern.
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From the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

a?dditive mu{tip/icative
inverse inverse

0 0 0 —

1 4 1 1

2 3 2 3

3 2 3 2

4 1 4 4

Surprisingly, every non-zero element has a multiplicative inverse.
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Proposition 50 For all natural numbers m > 1, the
modular-arithmetic structure

(an O) _I_m) 1 ) 'm)

IS @ commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have
further mathematical structure in the form of multiplicative inverses
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Important mathematical jargon: Sets

Very roughly, sets are the mathematicians’ data structures.
Informally, we will consider a set as a (well-defined, unordered)

collection of mathematical objects, called the elements (or
members) of the set.
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Set membership

The symbol ‘e’ known as the set membership predicate is central to
the theory of sets, and its purpose is to build statements of the form

X €A

that are true whenever it is the case that the object x is an element
of the set A, and false otherwise.
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The set

Defining sets

of even primes
of booleans
[—2..3]

— 166 —
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{true, false}

{_2>_1>O>1>2>3}
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Set comprehension

The basic idea behind set comprehension is to define a set
by means of a property that precisely characterises all the
elements of the set.

Notations:

{IxeA|P(x)} |, {xe A:P(x)}
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Greatest common divisor

Given a natural number n, the set of its divisors is defined by set
comprehension as follows

Dn)={deN:d|n} .
Example 52
1. D(0) =N

( )
1,2,3,4,6,8,9,12,17,18, 24,34, 36,51, 68,
2. D(1224) = ¢ >

72,102,136, 153, 204, 306, 408, 612, 1224

\ /

Remark Sets of divisors are hard to compute. However, the
computation of the greatest divisor is straightforward. :)
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Going a step further, what about the common divisors of pairs of
natural numbers? That is, the set

CD(m,n)={deN:d|/m Ad|n}

for m,n € N.

Example 53
CD(1224,660) ={1,2,3,4,6,12}

Since CD(n,n) = D(n), the computation of common divisors is as
hard as that of divisors. But, what about the computation of the
greatest common divisor?
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Lemma 55 (Key Lemma) Let m and m' be natural numbers and
let n be a positive integer such that m = m’ (mod n). Then,

CD(m,n) =CD(m’,n) .
proor: Lot m m' scd bt oo vl
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Lemma 57 For all positive integers m and n,

D(n) ,fn|m
CD(m,n) = 4

\ CD(n, rem(m, n)) , otherwise
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Lemma 57 For all positive integers m and n,

D(n) ,fn|m
CD(m,n) = 4

\ CD(n, rem(m, n)) , otherwise

Since a positive integer n is the greatest divisor in D(n), the lemma
suggests a recursive procedure:

( .
n fn|m

ng(m> Tl) = 3

| ged (n, rem(m, n)) , otherwise

for computing the greatest common divisor, of two positive integers
m and n. This is

Euclid’s Algorithm
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gcd

fun gcd( m , n )
= let
val (g , r ) = divalg(m , n )
1n
if r = 0 then n
else gcd(n , r )

end
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Example 58 (gcd(13,34) = 1)

— N N N N

— 1722



