$M = Quo(m,n) \cdot n + rem(m,n)$

The division theorem and algorithm

Theorem 42 (Division Theorem) For every natural number m and positive natural number n, there exists a unique pair of integers q and r such that $q \ge 0$, $0 \le r < n$, and $m = q \cdot n + r$.

Definition 43 The natural numbers q and r associated to a given pair of a natural number m and a positive integer n determined by the Division Theorem are respectively denoted quo(m, n) and rem(m, n).

Corollary 46 Let m be a positive integer.

1. For every natural number n,

 $n \equiv \operatorname{rem}(n,m) \pmod{m}$.

 $1 \leq \langle m \rangle$

PROOF: Let h be a natural mber. We know

$$n = q \cdot m + rem(n,m)$$
 and so $n - rem(n,n) = q \cdot m$

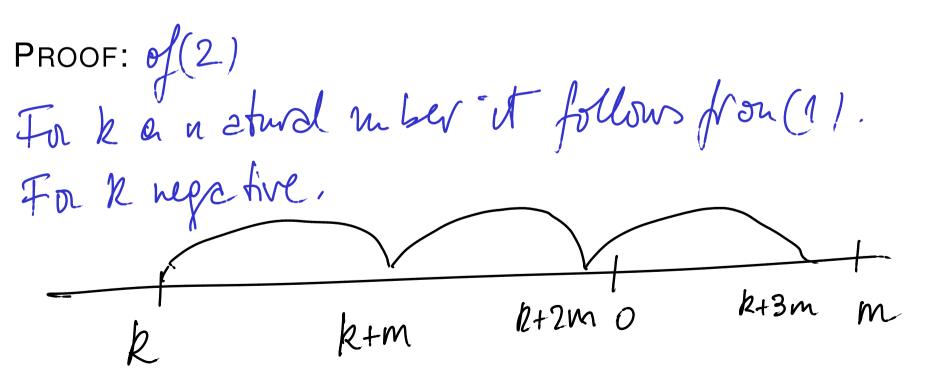
Corollary 46 Let m be a positive integer.

1. For every natural number n,

 $n \equiv \operatorname{rem}(n, m) \pmod{m}$.

2. For every integer k there exists a unique integer $[k]_m$ such that

 $0 \leq [k]_{\mathfrak{m}} < \mathfrak{m}$ and $k \equiv [k]_{\mathfrak{m}} \pmod{\mathfrak{m}}$.

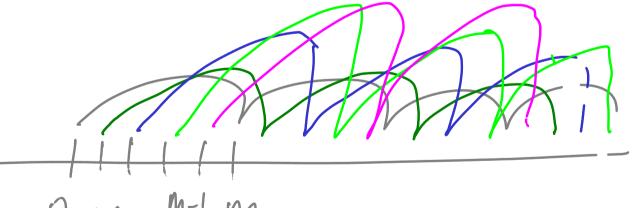


— 157-а —

k+ |k|.m Counder

ord toke

 $[k]_{m} = rem(k+|k|.m,m)$



Zm

Modular arithmetic

For every positive integer m, the *integers modulo* m are:

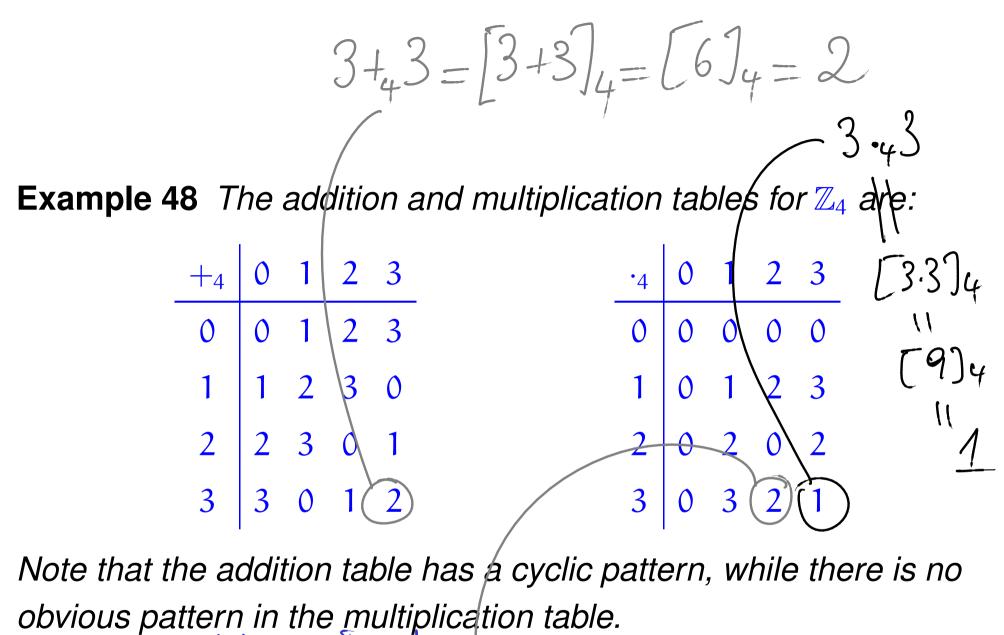
\mathbb{Z}_m : 0, 1, ..., m-1.

with arithmetic operations of addition $+_{\mathfrak{m}}$ and multiplication $\cdot_{\mathfrak{m}}$ defined as follows

$$k +_{m} l = [k + l]_{m} = \operatorname{rem}(k + l, m) ,$$

$$k \cdot_{m} l = [k \cdot l]_{m} = \operatorname{rem}(k \cdot l, m)$$

for all $0 \leq k, l < m$.



$$\frac{NB: 3 \text{ has a mbhphcell H}}{\text{ hverse while 2 does}} = \frac{3 \cdot 42}{3 \cdot 42} = [3 \cdot 2]_{4} = (6)_{4} = 2$$

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		multiplicative inverse
0	0	0	_
1	3	1	1
2	2	2	_
3	1	3	3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.

Example 49 The addition and multiplication tables for \mathbb{Z}_5 are:

$+_{5}$	0	1	2	3	4	•5	0	1	2	3	4
0	0	1	2	3	4	0	0	0	0	0	0
1	1	2	3	4	0	1	0		2	3	4
2	2	3	4	0	1	2	0	2	4		3
3	3	4	0	1	2	3	0	3		4	2
4	4	0	1	2	3	4	0	4	3	2	

Again, the addition table has a cyclic pattern, while this time the multiplication table restricted to non-zero elements has a permutation pattern.

From the addition and multiplication tables, we can readily read tables for additive and multiplicative inverses:

	additive inverse		<i>multiplicative</i> <i>inverse</i>
0	0	0	_
1	4	1	1
2	3	2	3
3	2	3	2
4	1	4	4

Surprisingly, every non-zero element has a multiplicative inverse.

Proposition 50 For all natural numbers m > 1, the modular-arithmetic structure

 $(\mathbb{Z}_m, 0, +_m, 1, \cdot_m)$

is a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have further mathematical structure in the form of multiplicative inverses

Important mathematical jargon: Sets

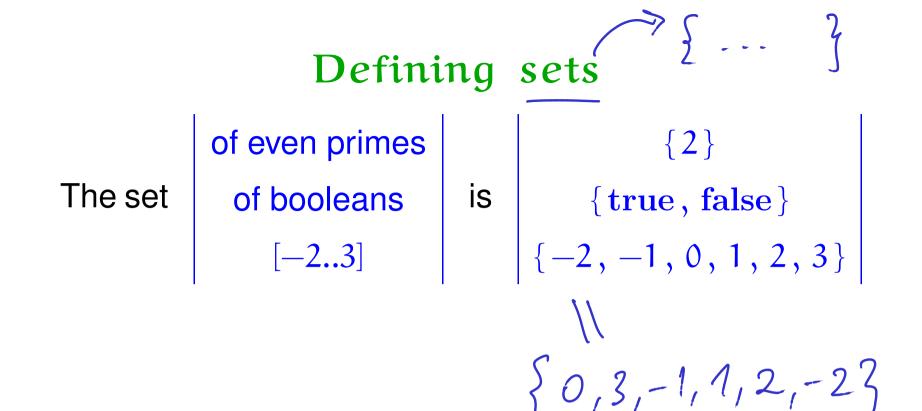
Very roughly, sets are the mathematicians' data structures. Informally, we will consider a <u>set</u> as a (well-defined, unordered) collection of mathematical objects, called the <u>elements</u> (or <u>members</u>) of the set.

Set membership

The symbol ' \in ' known as the *set membership* predicate is central to the theory of sets, and its purpose is to build statements of the form

$\mathbf{x} \in \mathbf{A}$

that are true whenever it is the case that the object x is an element of the set A, and false otherwise.



$$P_{\gamma}: \{ \chi \in \mathbb{Z} \mid \chi \text{ is prime and even } \mathcal{F} = \{ 2 \} \}$$

Set comprehension

The basic idea behind set comprehension is to define a set by means of a property that precisely characterises all the elements of the set.

Notations:

$$\{x \in A \mid P(x)\}$$
, $\{x \in A : P(x)\}$

Greatest common divisor $N = \{0, 1, 2, \dots, n, \dots\}$

Given a natural number n, the set of its *divisors* is defined by set comprehension as follows

$$D(\mathbf{n}) = \left\{ d \in \mathbb{N} : d \mid \mathbf{n} \right\}$$

Example 52

1.
$$D(0) = \mathbb{N}$$

2. $D(1224) = \begin{cases} 1, 2, 3, 4, 6, 8, 9, 12, 17, 18, 24, 34, 36, 51, 68, \\ 72, 102, 136, 153, 204, 306, 408, 612, 1224 \end{cases}$

Remark Sets of divisors are hard to compute. However, the computation of the greatest divisor is straightforward. :)

Going a step further, what about the *common divisors* of pairs of natural numbers? That is, the set

```
\mathrm{CD}(\mathfrak{m},\mathfrak{n}) = \left\{ d \in \mathbb{N} : d \mid \mathfrak{m} \land d \mid \mathfrak{n} \right\}
```

for $m, n \in \mathbb{N}$.

Example 53

 $CD(1224, 660) = \{1, 2, 3, 4, 6, 12\}$

Since CD(n, n) = D(n), the computation of common divisors is as hard as that of divisors. But, what about the computation of the *greatest common divisor*?

Lemma 55 (Key Lemma) Let m and m' be natural numbers and let n be a positive integer such that $m \equiv m' \pmod{n}$. Then,

CD(m,n) = CD(m',n). PROOF: Let m, m'adn blos a The hypothesis. Assume m=m'(modn) That is m-m'= k.n fn some integerk. $RTP: \implies (d|m nd|n) \Rightarrow (d|m' nd|n)$ $(\Leftarrow) (d|m' n d|n) \Longrightarrow (d|m n d|n)$

-170 --

 (\Rightarrow) $(d|m a d|n) \Rightarrow (d|m' a d|n)$ Assume dim and din Lemma: RTP: d/m' and d/n dland(b=) dlatb d|a =) d|(la)

(<=) Andogous.

Lemma 57 For all positive integers m and n,

$$CD(m,n) = \begin{cases} D(n) & , \text{ if } n \mid m \\ CD(n, rem(m,n)) & , \text{ otherwise} \end{cases}$$

Lemma 57 For all positive integers m and n,

$$CD(m,n) = \begin{cases} D(n) & , \text{ if } n \mid m \\ CD(n, rem(m,n)) & , \text{ otherwise} \end{cases}$$

Since a positive integer n is the greatest divisor in D(n), the lemma suggests a recursive procedure:

$$gcd(m,n) = \begin{cases} n & , \text{ if } n \mid m \\ gcd(n, rem(m,n)) & , \text{ otherwise} \end{cases}$$

for computing the *greatest common divisor*, of two positive integers m and n. This is

Euclid's Algorithm

```
fun gcd( m , n )
= let
    val ( q , r ) = divalg( m , n )
    in
    if r = 0 then n
    else gcd( n , r )
    end
```

Example 58 (gcd(13, 34) = 1**)**

- gcd(13, 34) = gcd(34, 13)
 - $= \gcd(13, 8)$
 - $= \gcd(8,5)$
 - $= \gcd(5,3)$
 - $= \gcd(3,2)$
 - $= \gcd(2, 1)$
 - = 1